ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ и МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Сентябрь 1965 Октябрь

№ 5

УДК 518:517.944/.947

ЭКОНОМИЧНАЯ СХЕМА СКВОЗНОГО СЧЕТА ДЛЯ МНОГОМЕРНОЙ ЗАДАЧИ СТЕФАНА

А. А. САМАРСКИЙ, Б. Д. МОИСЕЕНКО

(Москва)

В настоящей работе предлагается экономичная разностная схема сквозного счета для численного решения задачи Стефана в случае нескольких пространственных переменных и любого числа фаз *).

Схема сквозного счета характеризуется тем, что граница раздела фаз явно не выделяется и используются однородные разностные схемы. Основную роль при этом играет принцип «размазывания» теплоемкости по температуре, который тем самым не зависит от числа измерений. Явная схема для одномерной задачи рассматривалась в [1]. Другой явной схемой для решения одномерной задачи пользовался Р. П. Федоренко. Неоднородные неявные схемы с явным выделением траницы раздела фаз применялись в [2]. Для одномерной задачи Стефана алгоритм размазывания с использованием неявных схем проверялся авторами совместно с Л. А. Владимировым.

Для решения многомерного квазилинейного уравнения теплопроводности с размазанными коэффициентами теплоемкости и теплопроводности нами применяется локально-одномерный метод, предложенный и обоснованный в [3], [4]. Он состоит в поэталном решении по разным пространственным переменным одномерных уравнений теплопроводности при помоци безусловно устойчивых неявных схем. Метод пригоден для произвольных областей в случае краевых условий I рода, а в случае краевых условий III рода — для областей специального вида (см. [3]).

Схема сквозного счета задачи Стефана проверена на автомодельных решениях в случае одного и двух пространственных измерений. Мы не стремились выбирать задачи, наиболее благоприятные для разностной схемы. Так, например, мы рассматриваем задачу с цилиндрической симметрией (граница фазового перехода есть окружность) на прямоугольной сетке. Во всех случаях метод позволяет получить решение с достаточной гочностью.

Том 5

^{*)} Основное содержание настоящей статьи было изложено на Втором всесоюзном съезде по теоретической и прикладной механике (февраль 1964 г., Москва). Там же выяснилось, что аналогичная работа проводится Б. М. Будаком, Е. Н. Соловьевой, А. Б. Успенским.

§ 1. Задача Стефана

1. При изучении тепловых процессов с фазовыми переходами вещества из одного состояния в другое приходится сталкиваться со следующей задачей. В каждой из двух или нескольких фаз справедливо уравнение теплопроводности

$$c(u) \frac{\partial u}{\partial t} = \operatorname{div}(k(u)\operatorname{grad} u) + f, \qquad (1)$$

где $u = u(\mathbf{r}, t)$ — температура в момент t в точке с радиусом-вектором $\mathbf{r}(x_1, \ldots, x_p), k = k(u)$ — коэффициент теплопроводности, c = c(u) — коэффициент теплоемкости (на единицу объема), $f = f(\mathbf{r}, t)$ — плотность тепловых источников. Граница раздела фаз определяется условием, что температура вдоль этой границы равна температуре u^* фазового перехода, т. е. $u(\mathbf{r}, t) = u^*$. Это соотношение является уравнением для определения $\mathbf{R}(t)$ — положения границы фазового перехода в момент t. В общем виде можно считать, что уравнение границы фазового перехода имеет вид $\Phi(u) = 0$, где в качестве аргумента должно быть подставлено $u(\mathbf{r}, t)$. Мы будем также писать $\Phi(\mathbf{r}, t) = 0$. Формулируем условие на границе фазового перехода. Пусть 1 — индекс фазы, у которой $u < u^*, 2$ — индекс второй фазы (для нее $u > u^*$). Так как grad Φ направлен по нормали к поверхности Σ раздела фаз, то нормальная составляющая теплового потока Q = -k grad u на Σ равна

$$Q_{1,2} = -\left(k \operatorname{grad} u, \frac{\operatorname{grad} \Phi}{|\operatorname{grad} \Phi|}\right)_{1,2}$$

Разность потоков $Q_2 - Q_1$ равна произведению энтальпии фазового перехода λ на нормальную компоненту скорости $d\mathbf{R} / dt$ движения границы раздела фаз

$$Q_2 - Q_1 = \lambda \left(\frac{d\mathbf{R}}{dt}, \frac{\operatorname{grad} \Phi}{|\operatorname{grad} \Phi|} \right).$$
 (2)

Пользуясь тем, что вдоль Σ

$$\frac{d}{dt}\Phi(\mathbf{R}(t),t) = \frac{\partial\Phi}{\partial t} + \left(\frac{d\mathbf{R}}{dt}, \quad \text{grad} \ \Phi\right) = 0,$$

запишем (2) в виде

$$u = u^*,$$

$$((k \operatorname{grad} u)_1 - (k \operatorname{grad} u)_2, \operatorname{grad} \Phi) + \lambda \frac{\partial \Phi}{\partial t} = 0 \quad \operatorname{mpm} \quad \mathbf{r} = \mathbf{R}(t).$$

Будем предполагать, что имеется только две фазы, так что

$$c(u) = \begin{cases} c_1(u) & \text{при} \quad u < u^*, \\ c_2(u) & \text{при} \quad u > u^*; \end{cases} \quad k(u) = \begin{cases} k_1(u), & u < u^*, \\ k_2(u), & u > u^*. \end{cases}$$
(3)

3 жвм и мф, № 5

817

(2')

Функции $c_s(u)$, $k_s(u)$, s = 1, 2, достаточное число раз дифференцируемы в ограничены снизу постоянными m_1 и m_2 : $c_s(u) \ge m_1 > 0$, $k_s(u) \ge m_2 > 0$.

2. Физическое требование, из которого вытекает граничное условие (2'), состоит в том, что при температуре фазового перехода $u = u^*$ энергия w как функция температуры испытывает скачок величины λ , которая называется теплотой (или энтальпией) фазового перехода. Поэтому можно нацисать

$$w = \int_{0}^{u} c(u) du + \lambda \eta (u - u^{*}), \qquad \eta(\xi) = \begin{cases} 1, & \xi \ge 0; \\ 0, & \xi < 0. \end{cases}$$
(4)

Подставляя в уравнение энергии

$$\frac{\partial w}{\partial t} = \operatorname{div}(k \operatorname{grad} u) + f \tag{5}$$

выражение (4) и учитывая, что $d\eta(\xi) / d\xi = \delta(\xi)$ есть дельта-функция Дирака, получим

$$(c(u) + \lambda \delta(u - u^*)) \frac{\partial u}{\partial t} = \operatorname{div}(k \operatorname{grad} u) + f.$$
(6)

Это уравнение включает уравнение (1) и условие (2) на фазовой поверх-

ности. Для применения метода сквозного счета (без явного выделения границы раздела фаз) нам удобнее пользоваться уравнением в форме (6).

Покажем, что из (6) следует (2). Рассмотрим точку P на поверхности $\Phi = 0$ (см. фиг. 1), и построим симметричный относительно $\Phi = 0$ цилиндр достаточно малого объема с центром в точке P и с образующей, параллельной нормали $\mathbf{n}(P)$ к $\Phi = 0$ в точке P. Пусть $\sigma_1 -$ боковая поверхность, σ_2^- — нижнее, σ_2^+ — верхнее основание цилиндра; их

площади обозначим, соответственно, $|\sigma_1|$, $|\sigma_2| = |\sigma_2^-| = |\sigma_2^+|$. Проинтегрируем (6) по объему V цилиндра и устремим $|\sigma_1| \rightarrow 0$, а затем и $|\sigma_2| \rightarrow 0$. Интегралы от $c\partial u / \partial t$ и f в пределе дадут нуль. Объемные интегралы

$$J_{1} = \int_{V} \lambda \delta(u - u^{*}) \frac{\partial u}{\partial t} dv = \int_{V} \lambda \frac{\partial \eta (u - u^{*})}{\partial t} dv,$$
$$J_{2} = \int_{V} \operatorname{div} (k \operatorname{grad} u) dv$$

преобразуем в поверхностные по поперечным сечениям цилиндра. Предположим, что $d\Phi/du > 0$; тогда $\eta(u - u^*) = \eta(\Phi)$ и $\partial\eta(\Phi)/\partial t =$ $= \delta(\Phi) (\partial \Phi/\partial t)$. Элемент объема $dv = d\sigma dn$, где $d\sigma$ – элемент площади плоских участков, параллельных σ_2^{\pm} ; интегрирование по нормали заменим интегрированием по Φ , так как $d\Phi = (\operatorname{grad} \Phi, d\mathbf{n}) = |\operatorname{grad} \Phi| dn$. Тогда при $|\sigma_1| \to 0$

$$J_{1} = \int_{V} \lambda \delta(\Phi) \frac{\partial \Phi}{\partial t} d\sigma \frac{d\Phi}{|\operatorname{grad} \Phi|} = \int_{\sigma_{2}(0)}^{\cdot} \lambda \frac{\partial \Phi}{\partial t} \frac{d\sigma}{|\operatorname{grad} \Phi|} \rightarrow \lambda \frac{\partial \Phi}{\partial t} \frac{|\sigma_{2}|}{|\operatorname{grad} \Phi|},$$
rde $\sigma_{2}^{(0)}$ - среднее поперечное сечение цилиндра (на $\Phi = 0$).
818

Формула Остроградского дает при $|\sigma_i| \rightarrow 0$

$$J_{2} = \int_{\sigma} k \frac{\partial u}{\partial n} d\sigma \rightarrow \int_{\sigma_{2}(0)} \left((k \operatorname{grad} u)_{2} - (k \operatorname{grad} u)_{1}, \frac{\operatorname{grad} \Phi}{|\operatorname{grad} \Phi|} \right) d\sigma =$$
$$= \left((k \operatorname{grad} u)_{2} - (k \operatorname{grad} u)_{1}, \operatorname{grad} \Phi \right) \frac{|\sigma_{2}|}{|\operatorname{grad} \Phi|}.$$

Учитывая, что lim $(J_1 + J_2) = 0$, после сокращения на $|\sigma_2|/|$ grad $\Phi|$ и $|\sigma_1| \rightarrow 0$

 $|\sigma_2| \rightarrow 0$ получим (2').

3. Дадим теперь математическую постановку многомерной задачи Стефана в случае краевых условий I рода. Пусть G есть *p*-мерная область пространства $x = (x_1, \ldots, x_p)$ с границей $\Gamma, \bar{Q}_{\Gamma} = (G + \Gamma) \times [0 \le t \le T],$ $Q_{\Gamma} = G \times (0 < t \le T], u_s^*, \lambda_s \ (s = 1, 2, \ldots, s_0)$ — постоянные. Требуется найти функцию u(x, t) в \bar{Q}_{Γ} и вектор-функции $\mathbf{R}_s(t)$ при $t \in [0, T]$ из следующих условий:

$$\begin{bmatrix} \Gamma c(u) + \sum_{s=1}^{s_0} \lambda_s \delta(u - u_s^*) \end{bmatrix} \frac{\partial u}{\partial t} = \operatorname{div}(k \operatorname{grad} u) + f(x, t) \ \mathbf{B} \ Q_{\Gamma};$$
(I)
 $u(x, 0) = u_0(x)$ при $x \in G + \Gamma$, $u = \mu(x, t)$ при $x \in \Gamma$, $t \in [0, T]$,
 $u = u_s^*$ при $\mathbf{r} = \mathbf{R}_s(t), \quad s = 1, 2, \dots, s_0.$

Здесь *s*₀ — число фаз.

4. Ограничимся рассмотрением двухфазной задачи. Как видно из (6), c(u) и $\lambda\delta(u-u^*)$ входят в уравнение одинаковым образом; $\lambda\delta(u-u^*)$ представляет собой сосредоточенную теплоемкость (на поверхности $u = u^*$). Для перехода к разностной схеме заменим дельта-функцию приближенно дельтаобразной, или размазанной, дельта-функцией $\delta(u-u^*, \Delta) \ge 0$, где Δ — величина полуинтервала, на котором отлична от нуля $\delta(u-u^*, \Delta)$. Это размазывание, или сглаживание, эквивалентно замене на интервале $(u^* - \Delta, u^* + \Delta)$ разрывной функции $\eta(u-u^*)$ непрерывной функцией $\eta(u-u^*, \Delta)$ такой, что $\eta'(\xi, \Delta) = \delta(\xi, \Delta)$.

Итак, введем сглаженную, или эффективную, теплоемкость $\tilde{c}(u) = c(u) + \lambda \delta(u - u^*, \Delta)$ из условий:

1) $\tilde{c}(u) = c_1(u)$ при $u < u^* - \Delta$, $\tilde{c}(u) = c_2(u)$ при $u > u^* + \Delta$ (т. е. $\tilde{c}(u) = c(u)$ вне интервала $(u^* - \Delta, u^* + \Delta)$),

2) изменение энтальпии на интервале $(u^* - \Delta, u^* + \Delta)$ сохраняет-ся, т. е.

$$\int_{u^*-\Delta}^{u^*+\Delta} \tilde{c}(u) du = \lambda + \int_{u^*-\Delta}^{u^*} c_1(u) du + \int_{u^*}^{u^*+\Delta} c_2(u) du, \qquad (7)$$

или $\widetilde{w}(u^* + \Delta) - \widetilde{w}(u^* - \Delta) = w(u^* + \Delta) - w(u^* - \Delta)$, где w(u) определяется формулой (4). Приведем простейший пример. Пусть c_1 и c_2 не зависят от u. Тогда на интервале ($u^* - \Delta$, $u^* + \Delta$) можно взять $\widetilde{c} = \lambda/2\Delta + (c_1 + c_2)/2$, что соответствует линейной интерполяции w. Нами рас-

3*

сматривались также другие интерполяции теплоемкости (линейная и квадратичная с условием симметрии $\tilde{c}'(u^*) = 0$ и т. д.).

На том же интервале $(u^* - \Delta, u^* + \Delta)$ проводится сглаживание и коэффициента теплопроводности (например, при помощи полинома); вводится эффективный, или сглаженный, коэффициент $\tilde{k}(u)$, совпадающий с $k_1(u)$ при $u < u^* - \Delta$ и с $k_2(u)$ при $u > u^* + \Delta$.

5. В результате вместо (I) мы получим задачу для уравнения теплопроводности со сглаженными коэффициентами:

$$\tilde{\epsilon}(u) \frac{\partial u}{\partial t} = \operatorname{div}(\tilde{k}(u) \operatorname{grad} u) + f(t, x), \quad (x, t) \in Q_{\Gamma},$$

$$u(x, 0) = u_0(x), \quad u|_{\Gamma} = \mu(x, t), \quad t \in [0, T].$$
(\tilde{I})

§ 2. Разностная схема

1. Для задачи $(\tilde{1})$ уже можно строить алгоритм сквозного счета, поскольку никаких особых элементов в условии задачи теперь нет; имеется лишь один параметр размазывания Δ . Такая формулировка задачи не зависит ни от числа измерений, ни от числа фаз.

Вопрос о сходимости решения задачи (I) к решению задачи (I) при $\Delta \rightarrow 0$ рассматривался в [5], и мы его не будем касаться. Будем предполагать, что задача имеет единственное решение u = u(x, t), непрерывное в \bar{Q}_{Γ} и обладающее необходимыми для дальнейшего производными.

Перепишем уравнение (I) в виде

$$\tilde{c}(u) - \frac{\partial u}{\partial t} = \sum_{\alpha=1}^{p} L_{\alpha} u + f, \qquad L_{\alpha} u = \frac{\partial}{\partial x_{\alpha}} \left(\tilde{\kappa}(u) - \frac{\partial u}{\partial x_{\alpha}} \right).$$
 (8)

Его решение на разностной сетке в цилиндре \overline{Q}_{Γ} , как показано в [3], [4], можно свести к последовательному решению одномерных уравнений теплопроводности

$$\frac{1}{p}\tilde{c}(u)\frac{\partial u}{\partial t} = \frac{\partial}{\partial x_{\alpha}}\left(k(u)\frac{\partial u}{\partial x_{\alpha}}\right) + f_{\alpha}(x,t), \qquad \sum_{\alpha=1}^{p} f_{\alpha} = f.$$
(9)

Поэтому естественно начать с разностных схем решения одномерных квазилинейных уравнений (9).

2. Итак, рассмотрим в области $0 \le x \le 1$, $0 \le t \le T$ одномерное уравнение вида (индекс α опускаем)

$$\tilde{c}(u) \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\tilde{k}(u) \frac{\partial u}{\partial x} \right) + f(t, x), \qquad \tilde{k}(u) \ge c_1 > 0, \quad \tilde{c}(u) \ge c_2 > 0$$

$$(c_1, c_2 = \text{const}) \qquad (10)$$

с граничными условиями I рода и начальным условием $u(x, 0) = u_0(x)$. Разностные схемы для этого случая рассматривались в [6]-[7]. Остановимся на одном способе решения (10). Введем сетку $\omega_h = \{x_i, i = 0, 1, ..., N\}$ на отрезке $0 \leq x \leq 1$ и $\omega_{\tau} = \{t_n = n\tau, n = 0, 1, ...\}$ - сетку с шагом т на отрезке $0 \leq t \leq T$.

Введем новую функцию

$$v = \int_{0}^{u} \tilde{k}(u) \, du,$$

так что

$$\int_{\Omega} \tilde{c}(u) du = \varphi(v), \qquad \varphi'(v) = c(u) / \tilde{k}(u) > 0.$$

Тогда (10) примет вид

$$\frac{\partial \varphi(v)}{\partial t} = \frac{\partial^2 v}{\partial x^2} + f(t, x).$$
(11)

Для его решения рассмотрим схемы (см. [6])

$$\frac{\varphi(y_i^{n+1}) - \varphi(y_i^n)}{\tau} = \Lambda(\sigma y_i^{n+1} + (1-\sigma)y_i^n) + f(x_i, t_{n+1/2}), \quad 0 \leqslant \sigma \leqslant 1,$$
(12)

где Λ — разностная аппроксимация оператора *L*: на равномерной сетке $\omega_h = \{x_i = ih \in [0, 1]\}$

$$\Lambda y_i = (y_{i-1} - 2y_i + y_{i+1}) / h^2$$

на неравномерной сетке ω_h

$$\Lambda y_{i} = \frac{1}{\hbar_{i}} \left(\frac{y_{i+1} - y_{i}}{h_{i+1}} - \frac{y_{i} - y_{i-1}}{h_{i}} \right), \text{ где } h_{i} = x_{i} - x_{i-1}, \hbar_{i} = \frac{1}{2} (h_{i} + h_{i+1}).$$
(13)

При $\sigma \ge 0.5$ схема (12) безусловно-устойчива и равномерно сходится при $h \to 0$, $\tau \to 0$ на произвольной последовательности сеток. Нами показано, что при $\sigma = 0.5$ схема (12) может достигать точности $O(h^2 + \tau^2)$. Нелинейное относительно y_i^{n+1} трехточечное уравнение решается какимлибо методом итераций, например методом Ньютона; каждая из итераций находится по формулам прогонки. Мы не останавливаемся на условиях, обеспечивающих максимальный порядок точности и сходимость итераций.

В данной работе мы пользовались чисто неявной схемой, написанной для уравнения (10):

$$\tilde{c}(y_{i}^{n+1}) \frac{y_{i}^{n+1} - y_{i}^{n}}{\tau} = \Lambda' y_{i}^{n+1} + f(t_{n+1}, x_{i}),$$

$$\Lambda' y_{i} = \frac{1}{\hbar_{i}} \left[\frac{1}{\hbar_{i+1}} \tilde{\kappa}(y_{i+\frac{1}{2}}) (y_{i+1} - y_{i}) - \frac{1}{\hbar_{i}} \tilde{\kappa}(y_{i-\frac{1}{2}}) (y_{i} - y_{i-1}) \right], \quad (14)$$

$$y_{i-\frac{1}{2}} = \frac{y_{i} + y_{i-1}}{2}.$$

При определении $y_i = y_i^{n+1}$ методом итераций коэффициенты \tilde{c} и \tilde{k} можно брать на предыдущей итерации.

3. Обратимся теперь к многомерной задаче (I) для произвольной области. Следуя [3], мы конструктивно используем лишь одно предположение относительно G: пересечение с областью G прямой L_{α} , проведенной через любую внутреннюю точку G параллельно оси координат Ox_{α} , состоит из конечного числа интервалов. Нет необходимости давать детальное описание локально-одномерной схемы для уравнения (I) в общем случае. Достаточно сослаться [3], [4], где рассматривались два типа простран-

ственных сеток $\omega_h^{(1)}$ и $\omega_h^{(2)}$ в области G: на $\omega_h^{(1)}$ граничные условия задаются при помощи линейной интерполяции по тому направлению, по которому в данный момент решается одномерное уравнение (9), на $\omega_h^{(2)}$ граничные условия задаются без сноса.

Мы приведем локально-одномерную схему и расчетные формулы для задачи (\tilde{I}) в случае, когда G есть прямоугольник (т. е. $0 \le x \le l_1$, $0 \le y \le l_2$, где мы положили $x_1 = x_2$, $x_2 = y$). Введем произвольную неравномерную сетку

$$\omega_h = \{ (x_i, y_j), i = 1, 2, \dots, N_1, j \neq 1, 2, \dots, N_2, x_0 = 0, y_0 = 0, \\ x_{N_1} = l_1, y_{N_2} = l_2 \}$$

и обозначим v_{ij}^n — значение искомой функции в точке (x_i, y_j) в момент $t_n = n\tau$. Пусть $\bar{v}_i = v_i^{n+1/2}$ — промежуточное значение, которое определяется численным решением уравнения (9) при $x_{\alpha} = x$.

Локально-одномерная схема для задачи (Î) строится из одномерных схем вида (14) и имеет вид

$$\begin{split} \tilde{c}\left(\bar{v}_{ij}\right) & \frac{\bar{v}_{ij} - v_{ij}^{n}}{\tau} = \Lambda_{1}\bar{v}_{ij} + f_{1}\left(x_{i}, y_{j}, t_{n+\frac{1}{2}}\right), \quad (x_{i}, y_{j}) \in G;\\ \bar{v}_{ij} = \mu|_{t=t_{n+\frac{1}{2}}} \quad \text{прм} \quad i = 0, \quad i = N_{1}, \quad 0 < j < N_{2};\\ \Lambda_{1}\bar{v}_{ij} = \frac{1}{\hbar_{x, i}} \left[\tilde{k}(\bar{v}_{i+\frac{1}{2}, j}) \frac{\bar{v}_{i+i, j} - \bar{v}_{i, j}}{h_{x, i+1}} - \tilde{k}(v_{i-\frac{1}{2}, j}) \frac{\bar{v}_{i, j} - \bar{v}_{i-1, j}}{h_{x, i}} \right],\\ \tilde{c}\left(v_{ij}^{n+1}\right) \frac{v_{ij}^{n+1} - v_{ij}}{\tau} = \Lambda_{2}v_{ij}^{n+1} + f_{2}(x_{i}, y_{j}, t_{n+\frac{1}{2}}), \quad (x_{i}y_{j}) \in G;\\ v_{ij}^{n+1} = \mu|_{t=t_{n+1}} \quad \text{прм} \quad j = 0, \quad j = N_{2}, \quad 0 < i < N_{1};\\ \Lambda_{2}v_{ij} = \frac{1}{\hbar_{y, j}} \left[\tilde{k}\left(v_{i, j+\frac{1}{2}}\right) \frac{v_{i; j+1} - v_{i, j}}{h_{y, j+1}} - \tilde{k}\left(v_{i, j-\frac{1}{2}}\right) \frac{v_{i, j} - v_{i, j-1}}{h_{y, j}} \right],\\ v_{i, j}^{0} = u_{0}(x_{i}, y_{j}) \quad \text{прм} \quad t = 0, \quad 0 \leqslant i \leqslant N_{1}, \quad 0 \leqslant j \leqslant N_{2}. \end{split}$$

Здесь $v_{i+\frac{1}{2}, j} = 0.5(v_{i, j} + v_{i+1, j}), v_{i, j+\frac{1}{2}} = 0.5(v_{i, j} + v_{i, j+1}), h_{x, i}, h_{y, j}$ шаги сетки по x и y и $h_{x, i} = 0.5(h_{x, i} + h_{x, i+1}), h_{y, j} = 0.5(h_{y, j} + h_{y, j+1});$ сетка неравномерная, поэтому h_x и h_y зависят от узла сетки.

В рассматриваемых ниже примерах c_1 , c_2 , k_1 и k_2 не зависят от температуры, однако сглаженные коэффициенты \tilde{c} и \tilde{k} всегда зависят от температуры. Поэтому для определения v из написанных выше уравнений нужны итерации.

4. Мы применяли простейший метод итераций: при вычислении (s+1)-й итерации искомой функции $\frac{s+1}{v}$ или v^{n+1} коэффициенты \tilde{c} и \tilde{k} вычисляем по значениям $\frac{s}{v}$ или $\frac{s}{v}^{n+1}$ на предыдущей итерации. Для $\frac{s+1}{v}$ и s^{s+1} при этом получаются линейные трехточечные уравнения, которые решаются по одной и той же стандартной подпрограмме прогонки.

Приведем уравнения для $\overline{\overline{v}}$ и v = v^{n+1} . Обозначая

$$\overset{\mathrm{s}}{A}_{ij} = rac{1}{h_{x,\,i}}\,\widetilde{k}\,\left(rac{\mathrm{s}}{\widetilde{v}_{i^{-1/_2},\,j}}
ight),\qquad \overset{\mathrm{s}}{B}_{ij} = rac{1}{h_{x,\,i}}\,\widetilde{k}\,(\stackrel{\mathrm{s}}{v}_{i,\,j^{-1/_2}}),$$

получим

$$\begin{split} \stackrel{s}{A}_{ij} & \stackrel{s+1}{\overline{v}_{i-1,j}} = \left[\stackrel{s}{A}_{ij} + \stackrel{s}{A}_{i+1,j} + \frac{\hbar_{x,i}}{\tau} \widetilde{c} \left(\begin{array}{c} \frac{s}{\overline{v}_{ij}} \right) \right] \stackrel{s+1}{\overline{v}_{ij}} + \stackrel{s}{A}_{i+1,j} \stackrel{s+1}{\overline{v}_{i+1,j}} = \\ & = -\frac{\hbar_{x,i}}{\tau} \widetilde{c} \left(\overline{v}_{ij} \right) v_{ij}^n + h_{x,i} f_{1,ij}^{n+1/2} \end{split}$$

с краевыми условиями при i=0 и $i=N_1$ и

$$\overset{s \ s+1}{B_{ij}v_{i, j-1}} - \left[\overset{s}{B_{ij}} + \overset{s}{B_{i, j+1}} + \frac{\hbar_{y, j}}{\tau} \widetilde{c} \begin{pmatrix} s \\ v_{ij} \end{pmatrix} \right]^{s+1} \overset{s \ s+1}{v_{ij}} + \overset{s \ s+1}{B_{i, j+1}v_{i, j+1}} = \\ = -\frac{\hbar_{y, j}}{\tau} \widetilde{c} \begin{pmatrix} s \\ v_{ij} \end{pmatrix} \overline{v}_{ij} + \hbar_{y, j} f_{2, ij}^{n+1/2}$$

с краевыми условиями при i = 0 и $i = N_2$.

§ 3. Решение задачи с плоской границей раздела фаз

Рассмотрим известную (см. [8]) одномерную задачу Стефана о промерзании. В области ($0 \le x < \infty, t \ge 0$) ищется решение уравнений

$$c_s \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(k_s \frac{\partial u}{\partial x} \right), \quad s = 1, 2,$$
 (15)

с постоянными коэффициентами (c_s и k_s не зависят от u) и постоянными начальными и граничными данными; фаза 1 находится в области

Фиг. 2

Фиг. З

 $0 < x < \xi(t)$, фаза 2 — в области $x > \xi(t)$. При $x = \xi(t)$ заданы условия $u(\xi + 0, t) = u(\xi - 0, t) = u^*$,

$$k_1 \frac{\partial u}{\partial x} \Big|_{x=\xi+0} - k_2 \frac{\partial u}{\partial x} \Big|_{x=\xi-0} = \lambda \frac{d\xi}{dt}.$$
 (16)

Задача имеет автомодельное решение

$$u(x,t) = A_s \Phi\left(\frac{x}{2a_s\sqrt{t}}\right) + B_s, \qquad s = 1, 2, \qquad a_s = \sqrt{\frac{k_s}{c_s}}, \quad (17)$$

где а — постоянная, определяемая из некоторого трансцендентного уравнения (см. [8]), A_s и B_s — постоянные, выражения для которых даны в [8], стр. 264.

Будем рассматривать эту задачу в плоскости (x, y), выбирая оси координат так, чтобы граница раздела областей не была параллельна ни одной из координатных осей (см. фиг. 2). Для ее численного решения воспользуемся изложенной в § 2 методикой. В качестве области G выберем прямоугольник ($0 \leq x \leq l_1, 0 \leq y \leq l_2$). Начальные (при $t = t_{\text{нач}}$) и граничные данные для разностной задачи берем совпадающими с автомодельным решением (17).

В рассмотренном варианте $l_1 = l_2 = 2, h_x = h_y = 0.1; \tau = 1,$ число TOPER 21×21 , $t_{\text{Hay}} = 4$, $u^* = 0$, $\lambda = 1$, $k^{(1)} = 1.25$, $k^{(2)} = 2$, $c^{(1)} = 0.75$, $c^{(2)} = 0.5, u_0 = 1, a = 0.2, \Delta = 0.08.$

Для каждой строки $j = j_0$, тде j_0 – некоторый номер строки, можно с помощью линейной интерполяции найти $x(u^*, t)$, а затем по формулам преобразования координат при поворотах вычислить $\xi(t)$.

В табл. 1 представлены точные и считаемые для $j_0 = 11$ значения функции $\xi(t)$.

Таблица	'	1		
---------	---	---	--	--

t	Точные значения	Вычисленные значения	t	Точные значения	Вычисленные значения	t	Точные значения	Вычисленные значения
10 20 30 40	0.633 0.894 1.095 1.265	0.640 0.903 1.110 1.277	50 60 70 80	1.414 1.549 1.673 1.789	1.422 1.563 1.684 1.798	90 100 120	1.897 2.000 2.191	1.911 2.013 2.202
					-		T a	блица 2
Номер строк	$ \begin{array}{c c} j \\ \mathbf{x} \\ \mathbf{x} \\ \end{bmatrix} \begin{array}{c} t = 7 \\ \xi = 1.6 \end{array} $	$\begin{vmatrix} 0 \\ 573 \end{vmatrix} \begin{array}{c} t = 125 \\ \xi = 2.236 \end{vmatrix}$	Номер ј строки	$ \begin{vmatrix} t = 70 \\ \xi = 1.67 \end{vmatrix} $	$3 \begin{vmatrix} t = 125\\ \xi = 2.236 \end{vmatrix}$	Номер строк	$\begin{vmatrix} j \\ \mu \end{vmatrix} \begin{bmatrix} t = 7 \\ \xi = 1.6 \end{bmatrix}$	$\begin{array}{c c} 0 \\ 73 \end{array} \begin{vmatrix} t = 125 \\ \xi = 2.236 \end{vmatrix}$
1 2 3 4 5	$ \begin{array}{c} 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68 \end{array} $	1 7 4 7 4 6	8 9 10 11 12 13	1.686 1.683 1.686 1.683 1.683 1.687	2.236 2.247 2.247	15 16 17 18 19 20	1.68 1.68 1.68 1.68 1.68 1.68	$\begin{array}{c ccccc} 4 & 2.247 \\ 8 & 2.250 \\ 5 & 2.248 \\ 9 & 2.250 \\ 6 & 2.249 \\ 6 & 2.249 \\ 0 & 2.250 \\ \end{array}$
7	1.68	3	14	1.687	2.248	20	1.67	5 2.230

1.687

Таблица З

Точное значение	Вычислен- ное значение	Точное значение	Вычислен- ное значение	31	Гочное начение	Вычислен- ное значение	Точное значение	Вычислен- ное значение
$\begin{array}{c} t = \\ 0.7294 \\ 0.6756 \\ 0.6215 \\ 0.5677 \\ 0.5140 \\ 0.4604 \\ 0.4069 \\ 0.3536 \\ 0.3004 \end{array}$	=70 0.7294 0.6758 0.6223 0.5688 0.5154 0.4621 0.4089 0.3559 0.3029	$ \begin{array}{c} 0.1944 \\ 0.1417 \\ 0.0892 \\ 0.0369 \\0.0097 \\0.0430 \\0.0762 \\0.1094 \\0.1425 \end{array} $	$ \begin{vmatrix} 0.1975 \\ 0.1450 \\ 0.0927 \\ 0.0406 \\ -0.0088 \\ -0.0426 \\ -0.0761 \\ -0.1093 \\ -0.1424 \end{vmatrix} $		t = 0.7974 0.7570 0.7166 0.6762 0.6358 0.5955 0.5553 0.5151 0.4750	$\begin{array}{c} 125\\ 0.7974\\ 0.7571\\ 0.7168\\ 0.6765\\ 0.6363\\ 0.5960\\ 0.5558\\ 0.5158\\ 0.4757\\ \end{array}$	$\begin{array}{c} 0.3949\\ 0.3550\\ 0.3151\\ 0.2754\\ 0.2357\\ 0.1962\\ 0.1567\\ 0.1173\\ 0.0781\\ \end{array}$	$ \begin{array}{c} 0.3957\\ 0.3558\\ 0.3159\\ 0.2761\\ 0.2363\\ 0.1967\\ 0.1571\\ 0.1175\\ 0.0780\\ \end{array} $
0.2473	0.2501	0.1755 0.2084	0.1754 0.2084	0	.4349	0.4357	0.0390 0.0000	0.0388

В табл. 2 приведены величины ξ , вычисленные для $j_0 = 1, 2, \ldots, 21$ для двух моментов времени t = 70 и 125. Они характеризуют величину отклонения границы раздела от плоской.

В табл. З для тех же моментов времени t приведены профили функции u, полученные из автомодельного решения и в процессе счета для $j_0 = 11$.

В заключение отметим, что в области $2(u > u^*)$

$$\frac{k_2\tau}{c_2h^2} = 400.$$

§ 4. Решение задачи с цилиндрической границей раздела фаз

Рассмотрим случай, когда граница раздела двух фаз представляет собой окружность радиуса $\xi(t)$. Зададим распределение температуры в виде

$$u_{s} = B_{s} - A_{s} \frac{r^{2}}{t_{0} - t} \quad (s = 1, 2); \quad t < t_{0}, \quad r^{2} = (x - x_{0})^{2} + (y - y_{0})^{2},$$
(18)

тогда функция $\xi(t) = a \gamma t_0 - t$.

Значение s = 1 отнесем к точкам $r > \xi(t)$, пусть для этой фазы $u < u^*$, тогда s = 2 относится к внутренним точкам круга, для которых $u > u^*$.

Из условий равенства температур и потоков, которые для нашего случая имеют вид

$$u |_{\xi+0} = u |_{\xi-0} = u^*,$$

$$c_1 - \frac{\partial u}{\partial r} \Big|_{\xi+0} - k_2 - \frac{\partial u}{\partial r} \Big|_{\xi-0} = \lambda - \frac{d\xi}{dt},$$
(19)

можно получить выражение для A_s и B_s через k_1 , k_2 , a, λ , u_0 (температуру при r = 0):

$$A_{1} = \frac{k_{2}}{k_{1}} \frac{u_{0} - u^{*}}{a^{2}} + \frac{a\lambda}{4k_{1}}, \quad A_{2} = \frac{u_{0} - u^{*}}{a^{2}}, \quad B_{1} = u^{*} + a^{2}A_{1}, \quad B_{2} = u_{0}$$

Распределение температуры в форме (18) удовлетворяет следующим дифференциальным уравнениям в полярной системе координат:

Рассмотрим эту задачу в переменных (x, y), в качестве области G выберем квадрат со стороной l (см. фиг. 3) такой, что окружность целиком расположена внутри него, а начало координат находится в одной из его вершин. Уравнение (20) перепишем в прямоугольной системе координат и воспользуемся разностной аппроксимацией полученного уравнения совместно с граничными условиями (19). Значения искомой сеточной функции на границе квадрата и в начальный момент вычисляются по формуле (18).

Для $j = j_0$ (j_0 — некоторый номер строки y, $y_{j_0} = \text{const}$) с помощью линейной интерполяции по температуре определяется величина $x(u^*, t)$, а по ней $\xi(t)$.

Был произведен расчет ряда вариантов этой задачи с различными параметрами. Общими для вариантов были $t_0 = 64$, $u^* = 0$, $u_0 = 1$, a = 0.2, l = 4, $h_x = h_y = h$, $c_1 = 2$, $c_2 = 1.25$, $k_1 = 0.5$, $k_2 = 0.75$

В табл. 4 представлены точные и считаемые (3 итерации) ξ для $j_0 = 16$ для варианта с $\lambda = 1$, $\Delta = 0.15$, h = 4/30, $\tau = 0.5$.

В табл. 5 представлена величина ξ для всех строк j = 1, 2, ..., 34 в момент времени t = 30 для того же варианта.

T.	a	б	л	и	ц	a	·	2
----	---	---	---	---	---	---	---	---

						1.4					
1	t	Точное значение	Вычис знач	сленное аение		t		Точное значени	e B	ычислен значени	ное е
1 2 3	0 20 30	1.4697 1.327 1.166	1. 1. 1.	4690 324 158		40 50		0.980 0.748		0.968 0.72	8 4
			•				·	Та	блица	a 5	
	№ строки	8	9	10	11	12	13	14	15	16	
	ξ	1.161	1.160	1.157	1.161	1.158	1.159	1.151	1.155	1.158	

Картина симметрична относительно j = 16 и i = 16, т. е. относительно прямых, параллельных осям координат и проходящих через центр окружности.

§ 5. Выводы

Из приведенных таблиц видно, что метод вполне пригоден для практических целей. Отличительными чертами этого метода являются логическая простота и возможность использования большого шага по времени.

Из анализа результатов, которые не приведены в настоящей статье, можно сделать еще несколько замечаний относительно предложенного метода. Это прежде всего касается выбора той или иной δ-образной функции

			Табл	ица 6
	1		Варианты	<u> </u>
t=30	Точные значения	без итерац ии	3 итерации	7 итераций
Ę U	1.166	1.149 0.985	1.151 0.992	$\begin{array}{c}1.151\\0.992\end{array}$

(в виде «ступеньки», «пика», параболы и т. п.). Результаты слабо зависели от способа выбора функпий; правда, лучше выбирать δ-образную функцию, не имеющую острого максимума, как, например, в случае «пика». С нашей точки зрения, проще и естествен-

нее выбирать «ступеньку». Область определения δ -образной функции выбирается таким образом, чтобы она охватывала 2—3 счетные точки. Этого можно добиться, оценив характерные градиенты температур. Так, в наших вариантах задачи с цилиндрической границей раздела фаз предпочтительнее $\Delta = 0.15$, так как при слишком малых Δ может возникнуть немонотонность в сглаживании, а при слишком больших — сильное расхождение с исходной задачей. Процесс выбора Δ можно автоматизировать. В наших примерах коэффициенты в уравнении теплопроводности были постоянными. Однако этого требовать вовсе не обязательно, и никаких усложнений методики при этом не возникает.

Итерации, которые применяются для решения задачи, сходятся быстро. В табл. 6 представлены значения ξ и U для одной строки и одного момента времени в варианте без итераций, с 3 и 7 итерациями.

Уменьшение шага по пространству в 1.5 раза давало лучшие результаты, чем уменьшение шага по времени в 2 раза. Вообще анализ показывает, что, по-видимому, схема имеет порядок точности $O(\tau) + O(h^2)$.

В заключение приносим благодарность И. В. Фрязинову за полезные обсуждения и замечания.

Поступила в редакцию 26.08.1964

Цитированная литература

- 1. С. Л. Каменомостская. О задаче Стефана. Матем. сб., 1961, 53(95), № 4, 489—514.
- 2. L. W. Ehrlich. A numerical method of solving a heat flow problem with moving boundary. J. Assoc. Comput. Machinery, 1958, 5, № 2, 161-176.
- 3. А. А. Самарский. Об одном экономичном разностном методе решения многомерного параболического уравнения в произвольной области. Ж. вычисл. матем. и матем. физ., 1962, 2, № 5, 787—811.
- 4. А. А. Самарский. Локально-одномерные разностные схемы на неравномерных сетках. Ж. вычисл. матем. и матем. физ., 1963, 3, № 3, 431-466.
- 5. О. А. Олейник. Об одном методе решения общей задачи Стефана. Докл. АН СССР, 1960, 135, № 5, 1054—1057.
- 6. А. А. Самарский. Уравнения параболического типа с разрывными коэффициентами и разностные методы их решения. Тр. Всес. совещания по диффер ур-ниям (Ереван, ноябрь 1958). Ереван, Изд-во АН АрмССР, 1960, 148—160.
- 7. А. А. Самарский. Однородные разностные схемы для нелинейных уравнений параболического типа. Ж. вычисл. матем. и матем. физ., 1962, 2, № 1, 25—56.
- А. Н. Тихонов, А. А. Самарский. Уравнения математической физики. Изд. 2-е. М., Гостехиздат, 1953.