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BY aIlslogY with MI [21, [31, an economical (in the sense of number of 
operations) difference scheme of the second order of accuracy (alternat- 
ing triangular scheme) is proposed for the solution of a system of ordi- 
nary differential equations of the first order. The scheme can be used 
as an iterative process for the solution of a system of linear algebraic 
equations. All the results can be extended to the case of linear operator 
equations. 

1. We take Cauchy’ s problem for the system of equations 

$ + Au = f ft), O<rdT, u (0) = &, (1) 

where u = u (t) = (ul(t), . . ., id&)), f (8) = (II (t), . . ., 1, (f)) are vectors, 

A = A (1) = (aik (I)) is a square nXn matrix. 

Let O,= {fj =iz) be a net with interval T on the closed interval 
[O. ~1. Several difference schemes can be used for the solution of prob- 
lem (1). We shall compare them as regards the number of arithmetical 
operations q, expended in passing from the laser tj to the layer tj+l, 

i.e. in determining the vector yjtl from a given yj. For the explicit 

scheme yjil = yj + t (f - Ay)’ we have g = 2sa + 2R; but in accuracy it 

is of first order. The implicit scheme yj+l + 0.5r(Ay)ii1 = #- 

0.5 I (Ay)j + 0.5 v (fj+ fj+.‘) has the second order of accuracy, but for this 

q = 0 (n’). We shall describe a scheme as economic when g = 0 (ns) for 
it. as in the case of an explicit scheme. 

l Zh. uych. mat., 4. No. 3. 580-585, 1964. 

283 



264 A.A. Sorarokii 

2. We shall assume that the matrix A can be represented as the sum 
of two triangular positive definite matrices: 

A =&+A,, AI = (a$, A, = (I&), aik = 0, k > i; ai( + a$ = aiiv (2) 

(Aaf, eomr~ Cl = cola > 0, a = 1,2, (3) 

where are the scalar product and norm, 6 

Is an arbitrary real vector. If A is a symmetric matrix, we naturally 

Put ai = la:4 =ai,/Z; the symmetry conditlons now yield 

(&,AIv) = (A, E. v). i. e. A; = A,, A; = A,. 

We consider the following two-interval difference scheme: 

~+AA,y+ri,j 
7 

= f (t), Y (0) = b, 

i?+A+y+&j=f (t), 
t f 

” 
where t = td+lr t = t,j, i*= t,j+a, Y = r(t), ;= Yii), 

(4) 

(5) 

i =y (3, A, = A, 01, -4-i = As (i), d, = Al (2). 

To find y, given $, we must invert the triangular matrix E + zA,, 

and to find 9 we must invert the triangular matrix E + TA,: This is 

possible for any z > 0, if a; >O, and 0 (nx) operations are required, 
I.e. scheme (5) is economic. We write down the computation formulae as 

& + f (ii 
Y 

Yi = 

- 1: - a& yi - vi) 

i + ra; 
i = 1, . . ., n, 

k=i+l 
t-1 / (6) 

i 
i 

= Yi + f Vi - vi - a;i vi - ii+) 

I + rati 
9 u; = 

ZJ aik yk, y&O) = u(+ I 
k=l I 

If, In addition to the vector &, we store the vector ;:, to find yi 

(in one step) we have to use 9= na+ 771 arithmetical operations: on 

storing vi and Yit we can also find $4 by using only 9 = nB + 7n 

operations. In the explicit scheme, one step requires 9 = 2na + 2n 

operatlons. Thus, with n > 5 tbe proposed two-step scheme requires 
fewer operations than even the explicit scheme with the interval T. In 
addition. as will be shown below, scheme (5) has the second order of 
accuracy. 
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3. Let us find the error of approximation of the scheme. Let II be the 
solution of problem (l), y the solution of problem (5). We have for 
z=y-u: 

2 + TA,Z = E’ - &L*, Z*+T~l~=2-TAlZ-~*r2(0)=0, (7) 

where cp1, $s are local approximation errors. The total approximation 

error of scheme (5) is 

If A, 0) u, $ E C(‘* l) (0, 2’1, then Cp= 0 (?). 03) 

We can write I),, a = 1,2, as 

We shall assume in future that conditions (8) are fulfilled. 

4. We turn to the derivation of the a priori Inequalities for the 
solution of problem (7). Let (z. c) be the scalar product and 112 (1 = 

v=) the related norm. We introduce the norm 

11 g II: = II z 119 + T) (I A, z H ‘, a = i, 2. (9) 

Lemma i. We have the inequalities 

2f (A, z. I)>, a, II 2 II:, 
2c,z 

‘0’ 1 + T’(IA,()a * (10) 

II z + ~4 z IP 2 (1 t- a,) II 4: , II z - %A, 2 IP 6 (1 - aJ 1) t I& a = i, 2. (ii) 

It is sufficient to prove (10). It follows from (3) and (9) that 

lld%(1 + +llA,IP)Il~I,‘B(i +rallAojP) $ (Aa x, 2). 

On rewriting the first of equations (7) in the form x +rAlr f oh= 
” 
z -s;i,;, evaluating the squares of the norms of both sides and wing 

Lemma 1, we obtain 
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Let A; be the operator adjoint to Al; llOI 

(A,~, 3rJ = b+P,J < II 4ll~;csr,ll. 

We sum (12) snd (13) and use the inequality 

- 22 (s, 91 + (PO) d Co~II~ IP + $7 II $1 -I- % II ‘9 27’ (~3 A; (‘4s - WI 6 

~c,~ll~/P+~~~II~;~~~-(PJI1I, 

where Co = &/(i •/- z* fi Al 11 2, = a,/~. Te now obtain 

($3) 

(14) 

(15) 

It follows from (15) and the initial condition z(O) = 0 that 

We have thus proved 

Theorem 1. Given the auxiliary condition (3). inequality (17) holds 
for the solution of problem (7). 

Thcorca 2. If conditions (3) and (8) are fulfilled, scheme (5) is of 
the second order of accuracy: 

where 

To 

imply 

5. 

11 +?[I 6 M?, j=1,2,. . . , 

11 is a positive constant independent of T. 

prove Theorem 2, it is sufficient to shcw that conditions (8’) 

/lyP II = 0 ($), then use Theorem 1. 

All the above results (except for formulae (6)) retain their force 

if A,, A2 are arbitrary linear operators in Hilbert space H satisfying 
(3). If A, are self-adjoint operators, scheme (5) is a generalization of 

the familiar algorithm of alternating directions for the two-dimensional 
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equation of heat conduction. With a slight modification of the argu- 
ments, the method described above csn be used to show that the algorithm 
[4] is convergent for an arbitrary region at the rate 0 (ha + z’ hAis), 

where h is the Interval of the spatial net. 

It can be shorn In particular, by using Theorem 1, that the alter- 
nating method [S] for the one-dimensional equation of heat conduction 
is convergent at a rate 0 (x*/h’ + ha). 

An economic method for solrtng a system of equations of the parabolic 

type: 

u = (u,, . . ., u,,h k = (k,,h 

(18) 

u-i + Aly + A,j = 0, 
7 

A,y = - (o-y&, Asy = - (a+~;$. 

was proposed in [I]. In this case the algorithm (5) yields a higher 
order of accuracy 0 (dklr + ha). 

Problem (1) can also be solved by using the scheme 

which is an analogue of the locally one-dimensional scheme Ltd. This 
scheme is of the first order of accuracy and Is economic. 

It should be noted that condition (3) implies no loss of generality, 

If we bear in mind tlm t requirement u = I&, where p = const. > 0 is 

arbitrary. He only need to require that (A, f, f) > - con&. 0 f p, a = I, 2, 
const. > 0. 

Condition (3) is necessary for Sections 6 and 7. 

6. Given the system of n linear algebraic equations 

Au=A,u+A,u=~, A = (au), (20) 

where Al, A2 are triangular positive definite matrices. 

Scheme (5) can be used as an Iterative process for solving equations 
(20). taking ,j as the iteration number j. 

Let us take the following iteration scheme: 
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(D+AJy=(D-AA,);+f. Y (0) = Y,, (21) 

(D +A,) y = (D-AA,) y + I $i > 0, (22) 

where y. is the arbitrary Initial approximation, D is a diagonal matrix, 

$ = yrf is the iteration number 2i, y = yu’+‘, $ = y*‘. If the itera- 

tions are found In accordance with scheme (21), taking y = pl, i= *, 

i=O,i , . . ., in the case i/r,, = a,,/2 we obtain the Nlkrasov-Seidel 
method [7] (the “downwards” algorithm). Along with (21), we can consider 

the *upwards” algorithm (22) (taking ; = yj+l, v = $, i = 0, 1, . . . ). It 
follows from the analogue of formula (6) that the alternating triangular 
algorithm (21)-(22) Is more economic than each of algorithms (21) and 
(22) separately. 

If Al, A2 are linear self-adjoint operators in Hilbert space ,Y, the 
method (21)-(22) is a generalization of the iterative method [41 for 
solving the Dirichlet difference problem. 

7. To prove the’ convergence of the iterations, we need to obtain an 
upper bound for the solution of the Cauchy problem 

(D + A,) I = (D - A,) i, (D + ,432 = (D -A,) z, 2 (0) = a (23) 

for the error z = y - u, where u is the exact solution of (20), >, y, i 
are the iteration numbers 2j + 2. 2j + 1 and 2j(j = 0, 1, . ..) respect- 

ively. If v4( = const. =v, we shall utilize the norm (9) for the upper 
bound of x; in the general case, when D = (I/Q) is a diagonal matrix, 
we shall understand by fl xc the expression 

Thocrcm 3. If Al, .42 satisfy condition (3), the alternating triangu- 
lar scheme (21)-(22) is convergent at the rate of a geometric progres- 
sion 

UYti - ub< ill y*+I) - ulk, O<P<i, i = 4, 2, . * -9 (25) 

with any positive definite diagonal matrix D. 

It is sufficient to perform the proof for T,, = const. = v. By Lemma 

1, we obtain from (23): 



An cconoaical algorithz 

where ugis given by (10). Hence ze eliminate 1 II%: 

Since O<q<i for r>O, we alrays have pa < i. On Introducing 

cz = msz ( RAl!, RAIDr we obtain 

(27) 

The minimum of p is obtained with 

v = v. = l/c, (25) 

and is eaual to &,,a = (i - ~))/(i i- u), where vl = c&,. Condition (29) may 

conveniently he employed in practice. In the general case u = 25%&i + 

+, where zr = yn v{i, 
v* = “1”’ %; 

for the proof, we rrite eaua- 

tinpc: (231 in the form 

the square of the usual norm of both sides is evaluated, and the analogue 
of Lemma 1 is applied: 

2 (z, 4~) a @a II z I&, a, = 2c, A, II’ (~7 ‘1, a = 9, 2. 

S. lVote 1. For each of the algorithms (21) and (22) individually, an 

upper bound of the form IlzE~P~II~l~, i s obtained. where p. = (1 - aa)/ 

(1 + o&J, a = i, 2. This implies, in particular, the convergence of the 

Nekrasov-Seidel method for any matrix A, represented as the sum of tro 

positive-definite triangular matrices ror which ai = ai = a,,/& The 

Nekrasov method is generally speaking convergent at the same rate as the 
corresponding alternating-triangular algorithm (21)-(22) (cf. [Al, Chap. 
II, &ction 34). but method (21)-(22) is more economic, since a2 + 7n operations 
instead or 2n2 + 5n are required in this case for the evaluation of one iteration. 

Note 2. Theorem 3 holds if AI, A2 are arbitrary positive-definite 
linear operators in Hilbert space H. 

Note 3. Let A, (a = I, 2) be a self-adjoint finite-dimensional linear 

operator in ii, Ap), kc’ its minimum and maximum eigenvalues, 
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In particular, for the Dirichlet difference problem in the square 

(O< x.Bi, a = 1.2) 

and the iterations [4.] are convergent at the rate 

so that the number of iterations + l/h. This is the same as the formula 
[8], obtained by another method. It can be shown that the iterative 
scheme [41 can be extended to an arbitrary region. 

9. In the case of the system of second order equations 

$+ A (:)u = f (4, u (0) = us, 2g (0) = ii; 

the alternating-triangular scheme has the form 

(30) 

(31) 

where 

yLi = yr, ;ii = $2, +i = (#+I _ 2# + yj-i)/va, 

; = Tsj-i, i. = uo + riio + 0.5 ra (A (0) u, - f (0)). 

If A is a symmetric matrix, Ai = At, the scheme has the second order of 
accuracy. 

Translated by D.E. Brown 
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