an accurate high-orner niffenence system

FOR A HEAT CONDUCTIVITY EQUATION
 qITH SEVERAL SPACE Yariarles

A.A. SAMARSKII
(MOScom)
(Received 15 August 1963)

1. We shall consider that in $\bar{Q}_{T}=\bar{G} \times[0 \leqslant t \leqslant T]$, where $\bar{G}=\{0 \leqslant$ $\left.x_{\alpha} \leqslant l_{\alpha}, \alpha=1, \ldots, p\right\}$ there is a p-dimensional parallelepiped with boundary Γ related to the problem (see $[1]$):

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\sum_{\alpha=1}^{p} L_{\alpha} u+f(x, t), \quad L_{\alpha} u=\frac{\partial^{2} u}{\partial x_{\alpha}^{2}}, \tag{1}\\
& u_{\Gamma}=\mu(x, t), \quad u(x, 0)=u_{0}(x), \quad x=\left(x_{1}, \ldots, x_{p}\right) . \tag{2}
\end{align*}
$$

In $[1]$ an economical double-layer difference system has been proposed for solving problem (1)-(2) and by the method of power inequalities it has been shown that this system is absolutely stable and converges in norm $\mathscr{L}_{2}\left(\omega_{h}\right)$ at a rate depending on $O\left(h^{4}+\tau^{2}\right)$ when $p \leqslant 3$. The purpose of this paper is to show that this system retains these properties even when $p=4$, i.e. is suitable for $p \leqslant 4$.
2. Let $\bar{\omega}_{h}$ be a spatial net, uniform in respect of each of the variables x_{α} with steps $h_{\alpha}=l_{\alpha} / N_{\alpha}, \alpha=1, \ldots, p$ and $\bar{\omega}_{T}$ an arbitrary, nonuniform net in the segment $0 \leqslant t \leqslant T, \bar{\Omega}=\bar{\omega}_{h} \times \bar{\omega}_{\tau}$. We shall also use the notation of [1]; the norm in $\mathscr{L}_{3}\left(\omega_{h}\right)$ is particularly suitable:

$$
\begin{equation*}
\|z\|=\left(\sum_{\omega_{h}} z^{2} H\right)^{1 / 2}, \quad H=\prod_{\alpha=1}^{p} h_{\alpha} \tag{3}
\end{equation*}
$$

The double-layer progressive scheme of [1] becomes

* Zh. vych. mat., 4, No. 1, 161-165, 1964.

$$
\begin{gather*}
.4 y_{t}^{-}=\Lambda \stackrel{2}{y}+\frac{1}{12} \sum_{\alpha=1}^{p} \sum_{\beta>\alpha}\left(h_{\alpha}^{2}+h_{\beta}^{2}\right) \Lambda_{\alpha} \Lambda_{\beta} \stackrel{2}{y}+\varphi \tag{4}\\
\left.y\right|_{\gamma}=\mu, \quad y(x, 0)=u_{0}(x) \tag{5}
\end{gather*}
$$

where

$$
\begin{gathered}
y=y^{j+1}, \quad y^{2}=y^{j}=y\left(x, t_{j}\right), \quad y_{t}^{-}=(y-y) / \tau, \quad \Lambda_{\alpha} y=y_{\bar{x}_{\alpha} x_{\alpha}} \\
\Lambda=\sum_{\alpha=1}^{p} \Lambda_{\alpha}, \quad A=\prod_{\alpha=1}^{p} A_{\alpha}, \quad A_{\alpha}=E-\sigma_{\alpha} \tau \Lambda_{\alpha}, \quad \sigma_{\alpha}=\frac{1}{2}\left(1-\frac{h_{\alpha}^{2}}{6 \tau}\right),
\end{gathered}
$$

E is the unit operator, and γ the boundary of the net $\bar{\omega}_{k}$.
The progressive scheme (4) for solving equation (1) has a maximum error of approximation

$$
\Psi=O\left(|h|^{4}+\tau^{2}\right), \quad|h|=\left(\sum_{\alpha=1}^{p} h_{\alpha}^{2}\right)^{1 / 4}
$$

To solve problem (4)-(5) one of the one-dimensional computational algorithms of variable directions mentioned in [1] can be used. We emphasize that several computational algorithms correspond to the same progressive scheme.

We shall consider the roblem

$$
\begin{gather*}
A z_{i}^{\dot{-}}=\Lambda_{z}^{2}+\frac{1}{12} \sum_{\alpha=1}^{p} \sum_{\beta>\alpha}\left(h_{\alpha}^{2}+h_{\beta}^{2}\right) \Lambda_{\alpha} \Lambda_{\beta}^{2}+\Psi \tag{6}\\
\left.z\right|_{\gamma}=0, \quad z(x, 0)=\varepsilon_{0}(x) \tag{7}
\end{gather*}
$$

If y is the solution of problem (4)-(5), and $u=u(x, t)$ is the solution of the initial problem (1)-(2), their difference $z=y$ - usatisfies conditions (6)-(7) and $z_{0}(x)=0$ and $\Psi=\Psi(x, t)$ is the error of approximation of scheme (4) in solving equation (1).

We shall seek the solution of problem (6)-(7) by a method of separation of variables assuming

$$
\begin{equation*}
z^{j+1}=\sum_{k} T_{k}^{j+1} V_{k}(x), \quad k=\left(k_{1}, \ldots, k_{p}\right), \quad k_{\alpha}=1,2, \ldots, N_{\alpha}-1, N_{\alpha}=l_{\alpha} / h_{\alpha} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{k}(x)=\prod_{\alpha=1}^{p} v_{k_{\alpha}}\left(x_{\alpha}\right), \quad v_{k_{\alpha}}\left(x_{\alpha}\right)=\sin \frac{\pi k_{\alpha} x_{\alpha}}{l_{\alpha}}, \tag{9}
\end{equation*}
$$

and $v_{k_{\alpha}}\left(x_{\alpha}\right)$ is the eigenfunction of the one-dimensional problem

$$
\begin{gather*}
\Lambda_{\alpha} v_{k_{\alpha}}+\frac{4}{h_{\alpha}^{2}} \xi_{\alpha} v_{k_{\alpha}}=0, \quad v_{k_{\alpha}}(0)=v_{k_{\alpha}}\left(l_{\alpha}\right)=0, \quad \alpha=1, \ldots, p \tag{10}\\
\xi_{\alpha}=\sin ^{2} \frac{\pi k_{\alpha} h_{\alpha}}{2 l_{\alpha}} \tag{11}
\end{gather*}
$$

Substituting (8) in (6) and taking into account (9)-(11), we obtain

$$
\begin{equation*}
(p-1) \prod_{\alpha=1}^{p}\left(1+4 \gamma_{\alpha} \sigma_{\alpha} \xi_{\alpha}\right)=-4 \sum_{\alpha=1}^{p} r_{\alpha} \xi_{\alpha}+\frac{4}{3} \sum_{\alpha=1}^{p} \sum_{\beta>\alpha}\left(\gamma_{\alpha}+\gamma_{\beta}\right) \xi_{\alpha} \xi_{\beta}+\tau A / T^{j}, \tag{12}
\end{equation*}
$$

where $\rho=\rho_{k}=T j_{k}^{+1} / T_{k}{ }^{j}, \gamma_{\alpha}=\tau / h_{\alpha}{ }^{2}$, and A is the Fourier coefficient of function Ψ in relation to $\left\{v_{k}\right\}$:

$$
\begin{equation*}
A=A_{k}^{j+1}=\left(\Psi^{j+1}, V_{k}\right)=\sum_{\omega_{h}} \Psi^{j+1} V_{k} H \tag{13}
\end{equation*}
$$

4. From (8) and (12) we find

$$
\begin{equation*}
z^{j+1}=\sum_{k} q_{k} T_{k}^{j} V_{k}(x)+\tau \sum_{k} B_{k}^{j+1} V_{k}(x) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{k}=A_{k} / \delta, \quad \delta=\prod_{\alpha=1}^{p}\left(1+4 \gamma_{\alpha} \sigma_{\alpha} \xi_{\alpha}\right) \tag{15}\\
& q_{k}=1-\left(4 \sum_{\alpha=1}^{p} \gamma_{\alpha} \xi_{\alpha}-\frac{4}{3} \sum_{\alpha=1}^{p} \sum_{\beta+\alpha} \gamma_{\alpha} \xi_{\alpha} \xi_{\beta}\right) / \delta \tag{16}
\end{align*}
$$

Further, it ill be shown that

$$
\begin{equation*}
-1<q_{k} \leqslant 1, \text { i. e. }\left|q_{k}\right| \leqslant 1 \quad \text { if } p \leqslant 4 \tag{17}
\end{equation*}
$$

We assume that condition (17) is satisfied. Noting that

$$
\begin{gather*}
1+4 \Upsilon_{\alpha} \sigma_{\alpha} \xi_{\alpha}=1+\left(2 \Upsilon_{\alpha}-\frac{1}{3}\right) \xi_{\alpha} \geqslant \frac{2}{3}+2 \Upsilon_{\alpha} \geqslant \frac{2}{3}, \\
\delta \geqslant\left(\frac{2}{3}\right)^{p} \tag{18}
\end{gather*}
$$

from (14)-(15) we obtain

$$
\left\|z^{j+1}\right\| \leqslant\left\|s^{j}\right\|+\tau_{j+1}\left(\frac{3}{2}\right)^{p}\left\|\Psi^{j+1}\right\|
$$

Hence follows the a priori estimate

$$
\begin{gather*}
\left\|z^{j+1}\right\| \leqslant\left\|z_{0}(x)\right\|+\left(\frac{3}{2}\right)^{p}\left\|\Psi^{j+1}\right\| \tag{19}\\
\left\|\Psi^{j+1}\right\|=\sum_{j=1}^{j+1} \tau_{j^{\prime}}
\end{gather*}
$$

This proves the absolute stability (for all values of $\gamma_{\alpha}=\tau / h_{\alpha}{ }^{2}$) of scheme (6)-(7) with respect to the initial data and the right-hand side.
5. Me shall now prove the inequality (17) used when deriving the a priori estimate (19). Index k is omitted. At first we show that

$$
\begin{equation*}
q \leqslant 1 \quad \text { if } p \leqslant 4 \tag{20}
\end{equation*}
$$

Indeed, considering that $\xi_{\beta}<1$, we find

$$
\begin{equation*}
\frac{4}{3} \sum_{\alpha=1}^{p} \sum_{\beta+\alpha} r_{\alpha} \xi_{\alpha} \xi_{\beta}<\frac{4(p-1)}{3} \sum_{\alpha=1}^{p} r_{\alpha} \xi_{\alpha} \leqslant 4 \sum_{\alpha=1}^{p} r_{\alpha} \xi_{\alpha}, \quad p \leqslant 4 \tag{21}
\end{equation*}
$$

(20) follows from (21) and (16).

The main difficulty arises in proving the result

$$
\begin{equation*}
q>-1 \tag{22}
\end{equation*}
$$

We derive expressions for $p=4$. For $p<4$ all the conclusions remain valid and the arguments are simplified. We write in detail the expression for δ :

$$
\begin{align*}
& \delta=\prod_{a=1}^{p}\left(1+4 \gamma_{\alpha} \sigma_{a} \xi_{\alpha}\right)=1+2 \sum_{\alpha=1}^{p} v_{\alpha} \xi_{\alpha}+4 \sum_{a=1}^{p} \sum_{\beta>\alpha} v_{\alpha} v_{\beta} \xi_{a} \xi_{\beta} \tag{23}\\
&+8 \sum_{a_{1}<a_{3}<a_{3}}^{1-p} v_{a_{3}} v_{a_{3}} v_{a_{2}} \xi_{a_{1}} \xi_{a_{1}} \xi_{a_{3}}+16 \prod_{\alpha=1}^{p} v_{\alpha} \xi_{\alpha}, \quad p=4,
\end{align*}
$$

Where

$$
\begin{equation*}
v_{a}=\gamma_{a}-\frac{1}{8} . \tag{24}
\end{equation*}
$$

From (22) and (15), (16) it can be seen that the condition $q+1>0$ will be satisfied if

$$
\begin{equation*}
2 F=2 \delta-4 \sum_{\alpha=1}^{4} \tau_{\alpha} \xi_{\alpha}+\frac{4}{3} \sum_{a=1}^{4} \sum_{\beta>a}\left(r_{\alpha}+\gamma_{\beta}\right) \xi_{\alpha} \xi_{\beta}>0 . \tag{25}
\end{equation*}
$$

Substituting expression (23) in (25) for δ, we obtain

$$
\begin{align*}
P=1-\frac{1}{3} \sum_{a=1}^{4} \xi_{\alpha}+\sum_{\alpha=1}^{4} \sum_{\beta>\alpha}\left(4 \gamma_{\alpha} \gamma_{\beta}\right. & \left.+\frac{1}{9}\right) \xi_{\alpha} \xi_{\beta}+8 \sum_{a_{2}<a_{2}<\alpha_{2}}^{1-4} v_{a_{2}} v_{a_{2}} v_{a_{3}} \xi_{\alpha_{1}} \xi_{a_{2}} \xi_{\alpha_{2}}+ \tag{26}\\
& +16 \prod_{\alpha=1}^{4} v_{\alpha} \xi_{\alpha} .
\end{align*}
$$

6. As well as F we shall consider the expression

$$
\begin{aligned}
F_{1}=\prod_{\alpha=1}^{4}\left(1-\frac{1}{3} \xi_{\alpha}\right)=1-\frac{1}{3} \sum_{\alpha=1}^{4} \xi_{\alpha} & +\frac{1}{9} \sum_{\alpha=1}^{4} \sum_{\beta>\alpha} \xi_{\alpha} \xi_{\beta}-\frac{1}{27} \sum_{\alpha_{1}<\alpha_{1}<\alpha_{1}} \xi_{\alpha_{1}} \xi_{a_{3}} \xi_{\alpha_{1}}+ \\
& +\frac{1}{81} \prod_{\alpha=1}^{4} \xi_{\alpha} .
\end{aligned}
$$

It is easy to see that $F_{1}>(2 / 3)^{4}$ since $\xi_{\alpha}<1,1-1 / 3 \xi_{\alpha}>2 / 3$.
We derive the difference

$$
\begin{aligned}
F-F_{1}=4 \sum_{\alpha=1}^{4} \sum_{\beta>\alpha} \gamma_{\alpha} \gamma_{\beta} \xi_{\alpha} \xi_{\beta} & +\sum_{\alpha_{1}<\alpha_{2}<\alpha_{3}}^{1-4}\left(8 v_{\alpha_{2}} v_{\alpha_{2}} v_{\alpha_{2}}+\frac{1}{27}\right) \xi_{a_{1}} \xi_{\alpha_{3}} \xi_{\alpha_{2}}+ \\
& +16 \prod_{\alpha=1}^{4} v_{\alpha} \xi_{\alpha}-\frac{1}{81} \prod_{\alpha=1}^{4} \xi_{\alpha}
\end{aligned}
$$

and show that it is non-negative if

$$
r_{\alpha} \geqslant \frac{1}{6}, \quad \alpha=1, \ldots, p
$$

Indeed, observing that $\nu_{\alpha} \geqslant 0, \prod_{\alpha=1}^{4} \xi_{\alpha}<\frac{1}{4} \sum_{a_{1}<\alpha_{2}<a_{1}} \xi_{\alpha_{1}} \xi_{\alpha_{2}} \xi_{\alpha_{2}}$, we at once obtain $F-F_{1}>0$, i.e. $F \geqslant F_{1}>(2 / 3)^{4}$.

Let all values of $\gamma_{\alpha}<1 / 6$, i.e. $1 / 6<v_{\alpha}<0, \alpha=1, \ldots, p$. Then the following inequality is valid:

$$
F>F_{1}+4 \sum_{\alpha=1}^{4} \sum_{\beta>\alpha} r_{\alpha} r_{\beta} \xi_{\alpha} \xi_{\beta}-\frac{4}{27}-\frac{2}{81}>\left(\frac{2}{3}\right)^{4}-\frac{14}{81}=\frac{2}{81}>0
$$

i.e. $F>0$.

Various combinations of signs are possible for v_{α} and $v_{\beta}, \alpha \neq \beta$. For example, let $v_{1}<0$ and $v_{\alpha} \geqslant 0, \alpha=2$. 3. 4, i.e. $\gamma_{1}<1 / 6$. $\left|v_{1}\right|<1 / 6$. and $\gamma_{\alpha} \geqslant 1 / 6, \alpha>1$. Writing $\mu_{\alpha}=v_{\alpha} \xi_{\alpha}$ and considering that $\left|\mu_{1}\right|<1 / 6$, we obtain

$$
\begin{aligned}
& \sum_{a_{1}<\alpha_{3}<\alpha_{0}}\left(8 \mu_{\alpha_{2}} \mu_{\alpha_{3}} \mu_{\alpha_{4}}+\frac{1}{27} \xi_{\alpha_{1}} \xi_{a_{2}} \xi_{\alpha_{4}}\right)+16 \prod_{a=1}^{4} \mu_{a}-\frac{1}{81} \prod_{a=1}^{4} \xi_{\alpha}> \\
&>\left(8-\frac{8}{3}\right) \mu_{1} \mu_{3} \mu_{4}+\left(\frac{1}{27}-\frac{1}{81}\right) \xi_{2} \xi_{3} \xi_{4}-\frac{4}{3} \xi_{1}\left(\mu_{2} \mu_{3}+\mu_{2} \mu_{4}+\mu_{3} \mu_{4}\right)+ \\
&+\frac{1}{27} \xi_{1}\left(\xi_{2} \xi_{3}+\xi_{2} \xi_{4}+\xi_{3} \xi_{4}\right)
\end{aligned}
$$

and consequently $F-F_{1} \geqslant 8 / 3\left(\gamma_{2} \gamma_{3} \xi_{2} \xi_{3}+\gamma_{2} \gamma_{4} \xi_{2} \xi_{4}+\gamma_{3} \gamma_{4} \xi_{3} \xi_{4}\right)>0$.
It is easy to be convinced that with any other combination of signs of $v_{\alpha}, \alpha=1, \ldots, 4, F>0$. Thus it is proved that inequality (16) is
satisfied with any γ_{α} value, $\alpha=1, \ldots, 4$, and consequently the a priori estimate (19) is correct for $p \leqslant 4$.

Theorem 1. The progressive scheme (4)-(5) is absolutely stable in the norm $\mathscr{L}_{2}\left(\omega_{h}\right)$ with respect to the initial data and the right-hand side, so that for any values of T and $h_{\alpha}, \alpha=1,2, \ldots, p$, for the solution of problem (6)-(7) the a priori evaluation is correct

$$
\begin{equation*}
\left\|z^{j+1}\right\| \leqslant\|z(x, 0)\|+\left(\frac{3}{2}\right)^{p}\left\|\Psi^{j+1}\right\|, \quad \text { if } \quad p \leqslant 4 \tag{27}
\end{equation*}
$$

Theorem 2. Let the solution of problem (1)-(2) satisfy conditions such that system (4)-(5) has a maximum order of approximation, or more precisely

$$
\begin{equation*}
\|\Psi\|=O\left(|h|^{4}\right)+O\left(\tau^{2}\right) \tag{28}
\end{equation*}
$$

Then the progressive scheme (4)-(5) with $p \leqslant 4$ for an arbitrary sequence of nets $\bar{\Omega}$ has fourth order accuracy in respect of $|h|$ and second order accuracy in respect of T :

$$
\begin{equation*}
\left\|y^{j+1}-u^{j+1}\right\|=O\left(|h|^{4}\right)+O\left(\left\|\tau^{2}\right\|_{j+1}\right) \tag{29}
\end{equation*}
$$

where

$$
\left\|\tau^{2}\right\|_{j+1}=\sum_{j^{\prime}=1}^{j+1} \tau_{j^{\prime}}^{2} \tau_{j^{\prime}}
$$

Theorem 1 has been proved above. Theorem 2 follows from Theorem 1 and condition (28) for the error of approximation Ψ of scheme (41-(5). It is easy to see that condition (28) will be satisfied if $u(x, t) \in C^{(6)}$, $f(x, t) \in C^{(4)}$.

Thus, the double-layer scheme (4)-(5) is applicable for the same number of dimensions ($p \leqslant 4$) as the triple layer scheme (see [2]). It is obvious that scheme (4)-(5) is more economical (requires fewer arithmetical operations for finding $y=y^{j+1}$) compared with the scheme of [2], and that it converges for any values of $\gamma_{\alpha}, \alpha=1, \ldots, p$ whereas the scheme of [2] restricts $\gamma_{\alpha}=\gamma$ in the form $\gamma>$ const. >0. In [2] the case of a quadratic net $h_{\alpha}=h_{\beta}=h$ was studied. With a non-quadratic net $\left(h_{\alpha} \neq h_{\beta}\right)$ the scheme of paper $[2]$ becomes considerably more complicated. Scheme (4)-(5) in [1] was generalized for the case of an equation with variable coefficients.
8. As in [1] it is easy to write down accurate high-order difference schemes $O\left(|h|^{4}+T^{2}\right)$ for a differential equation of hyperbolic type. We shall consider in \bar{Q}_{T} the following problem:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\sum_{\alpha=1}^{p} L_{\alpha^{u}}+f(x, t), \quad(x, t) \in Q_{T}, \quad L_{\alpha^{u}}=\frac{\partial^{2} u}{\partial x_{\alpha}^{2}}, \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\left.u\right|_{\Gamma}=\mu(x, t), \quad u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=\bar{u}_{0}(x) \tag{31}
\end{equation*}
$$

The initial scheme $O\left(|h|^{4}+\tau^{2}\right)$ takes the form

$$
\begin{equation*}
y_{\overline{t t}}=\dot{0} .5 \Lambda(y+\stackrel{y}{y})-\frac{1}{12} \sum_{\alpha=1}^{p} h_{\alpha}^{2} \Lambda_{\alpha} y_{\overline{t t}}+\frac{1}{12} \sum_{\alpha=1}^{p} \sum_{\beta>\alpha}\left(h_{\alpha}^{2}+h_{\beta}^{2}\right) \Lambda_{\alpha} \Lambda_{\beta} \check{y}+\varphi \tag{32}
\end{equation*}
$$

Where $y=y^{j+1}, \check{y}=y^{j}, \quad \stackrel{\check{y}}{y}=y^{j-1}, \quad y_{\bar{t}}=(y-2 \check{y}+\stackrel{\check{y}}{y}) / \tau^{2}, \quad \bar{\omega}_{T}$ is the uniform net $\left(\tau_{j+1}=T=\right.$ const. $)$.

This can be made to correspond to several progressive schemes of the same order of accuracy. For example we give a progressive scheme
$A y_{\bar{t}}=\tilde{y}_{\bar{t}}+\sum_{a=1}^{p}\left(0.5-\sigma_{a}\right) \tau \Lambda_{a} \tilde{y}_{\bar{t}}+0.5 \tau \Lambda\left(\tilde{y}^{+}+\tilde{y}\right)+$

$$
+\sum_{\alpha=1}^{p} \sum_{\beta>\alpha}\left(1-\sigma_{\alpha}-\sigma_{\beta}\right) \tau^{s} \Lambda_{\alpha} \Lambda_{\beta} \check{y}+\tau \varphi=\Phi[\check{y}]
$$

$\left.y\right|_{Y}=\mu, \quad y(x, 0)=u_{0}(x), \quad y_{t}^{\frac{1}{t}}(x, \tau)=\bar{u}_{0}(x)-0.5 \tau\left[\sum_{a=1}^{p} L_{\alpha} u_{0}+f(x, 0)\right]$,
where

$$
A=\prod_{\alpha=1}^{p} A_{\alpha}, \quad A_{\alpha}=E-\tau^{2} \sigma_{\alpha} \Lambda_{\alpha}, \quad \sigma_{\alpha}=\frac{1}{2}-\frac{h_{\alpha}^{2}}{12 \tau^{2}}
$$

To define $y=y^{j+1}$ from here the following variable direction algorithm is suitable:

$$
\begin{equation*}
A_{1} w_{(1)}=\Phi, \quad A_{\alpha} w_{(\alpha)}=w_{(\alpha-1)}, \quad a=2, \ldots, p, \quad y=\check{y}+\tau w_{(p)} \tag{35}
\end{equation*}
$$

At the limit (if $x \in Y$) ${ }^{\mathscr{L}}(\alpha)$ are defined by conditions

$$
\begin{equation*}
w_{(\alpha)}=A_{\alpha+1} \ldots A_{p} \mu_{\frac{1}{t}}^{j+1} \quad \text { for } \quad x_{\alpha}=0, \quad x_{\alpha}=l_{\alpha} \tag{36}
\end{equation*}
$$

(cp. With [1]).
If $\sigma_{\alpha}=0.5, \alpha=1, \ldots, p$, scheme (33) is converted into a known scheme $O\left(|h|^{2}+T^{2}\right)$.

For scheme (33)-(34) theorems similar to Theorems 1 and 2, are valid.

REFERFNCES

1. Samarskii, A.A., Zh. vych. mat., 3. No. 5, 812-840, 1963.
2. Douglas, J. and Gunn, J., Math. Comput., 17, No.81. 71-80. 1963
