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1. We shall consider that in QT = E’X [O Q t <Tl, where c = (0 d 

z= < I,, a = 1, . ..,p} there is a p-dimensional parallelepiped with 
boundary r related to the problem (see [ll): 

In [ll an economical double-layer difference 

(i) 

(Xl, . . . . + (2) 

system has been proposed 
for solving problem (l)-(2) and by the method of power inequalities it 
has been shown that this system is absolutely stable and converges in 
norm ZZi9, (a,,) at a rate depending on O( h4 + 7’) when p < 3. The purpose 
of this paper is to show that this system retains these properties even 
when p = 4, i.e. is suitable for p <4. 

2. Let 5, be a spatial net, uniform in respect of each of the vari- 
ables xo with steps h, = lcI/NoI. a = 1. . . .?, p ayd 3, an arbitrary, non- 
uniform net in the segment 0 < t ST. a = ah x Ok. We shall also use the 
notation of Cd; the norm in g*(~,,) is particularly suitable: 

11 z 11 = (2 .H)“*, H = ;I ha. (3) 
“‘h a=1 

The double-layer progressive scheme of [ll becomes 

_ 
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(4) 

(5) 

where 

y -_ yj+l, ; = yj = y (2, tj), Y;' (Y - ;)I? AaY = Y;axa, 

A= ;.I,, A = IflAa, A, = E - aac’la, 

.l==l a=1 

E is the unit operator, and y the boundary of the net ah. 

The Progressive scheme (4) for solving equation (1) has a maximum 
error of approximation 

Y = 0 (I h 1’ -I- r2), Ihl= ‘I;. 
To solve problem (4)-(S) one of the one-dimensional computational 

algorithms of variable directions q eatioaed in 111 caa be used. We 
emphasize that several computational algorithms correspond to the same 
progressive scheme. 

We shall consider the ;roblem 

2 (haZf hp2) A,A$ + Y, (6) 

P>a 

2 (290) = r, w (7) 

If y is the solution of problem (4)-(s), and II = U(X, t) is the solu- 
tion of the initial problem (l)-(2), their difference z = y - u satis- 
fies conditions (C)-(7) aud zu(x) = 0 and P = P(x, t) is the error of 
approximation of scheme (4) in solving equation (1). 

we shall seek the solution of problem (6)-(7) by a method of separa- 
tion of variables assuming 

&l- 
-c 

Tkj+lvh (z), k=(k, ,..., k& k,=i,2 ,..., N,-i,N,=l,lh,, (8) 
k 

where 

v, (2) = fivka b,), nkaza 
oka (za) = sin 1, 

a-1 a 
(9) 
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and vk (x,) is the eigenfunction of the one-dimensional problem 
a 

OL = 0, vk, to) = vk, (1,) = 0, a = 1, . . ., p, (W 

Substituting (8) in (6) and taking into account (9)-(11). we obtain 

P P 

(P - U fl (1 t; 4T,U,E,) = - 4 Br.e.++ 5 2 CT,+ TpWpf TAM, (12) 
a=1 a=1 a==1p>a 

where p = pk = Ti+‘/TkJ, y = T/h,*, 

function a in relation to ?vk}: 

and A is the Fourier coefficient of 

A = A,j+l = (Ipj+l, Vk) =z @q7,$. (13) 
@‘h 

4. F’rom (8) and (12) we find 

,j+l _ - 2 qkT&, (z) + 7 2 &..” v, (2)~ 
k k 

where 

(14) 

(15) 

Further, it vi11 be shown that 

-i<<k<& i.e.Iqkl<i if p<4. 

We assume that condition (17) is satisfied. Noting that 

from (14)-(15) we obtain 

11 Zj+lI < /[ J II+ rj+l (+)" U yj+r il. 

Hence follows the a priori estimate 

II zj+l II < II% (4 II + (+)” II yj+l Il. 
j+i 

ll Yj+lI) = 2 Ty. 
PC1 



A heat conr!uctivity equation 225 

This proves the absolute stability (for all values of yo = T/h,‘) of 

scheme (6)-(7) with respect to the initial data and the right-hand side. 

5. We shall now prove the inetauality (17) used when deriving the 
a priori estimate (19). Index k is omitted. At first we show that 

461 if pd4. (3-u 

Indeed, considering that $ < 1, we find 

$ i 2 r&&s <4q iLE.C4 &.6.* PB4 
0==1p+a a=1 a=1 

(20) follows from (21) and (16). 

The main difficulty arises in proving the result 

q>--l. (22) 

We derive expressions for p = 4. For p < 4 all the conclusions remain 
valid and the arguments are simplified. We write in detail the expres- 
sion for 6: 

where 

1 va=~o--. 
6 

From (22) and (15), (16) it can be seen 
will be satisfied if 

that the condition q + 1 > 0 

Substituting expression (23) in (25) for 6, we obtain 

6. As well as F we shall consider the expression 
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It is easy to see that F, > 

We derive the difference 

4 

(213)” since !& < 1, 1 - l/3 4, > 2/3. 

l-4 

-1 P>a a <?<a, ( 8va,va1vas + ij+ Ea,Ea,Ea, + 1 
I I 

+i6iv.C.-&fiEa 
a==1 a=1 

and show that it is non-negative if 

Indeed, observing that va> 0, i .$,<d_ 2 L,4a,Ea,* we at once 
k-1 =4aa-ca8 

obtain F - F1 > 0, i.e. F >F1 > (2/3)‘. 

bet all values of y, < l/6. i.e. l/6 < vo < 0. a = 1, . . . , P. Then 
the following inequality is valid: 

F>F,+4 i 2 T.~~E.E,-~-~>(~)‘-~=~>O. 
a=1 P>a 

i.e. F > 0. 

Various combinations of signs are possible for va and v F, a f p. For 
example, let vl < 0 and v, 2 0, ‘I = 2. 3, 4, i.e. yi < l/6, Iv1 1 < l/6, 
and y, > l/6, a > 1. Writing i.~o = v&o and considering that lPl/ < l/6. 
we obtain 

and consequently F - F, > 6/3(~,~&&, + Y~Y~!.&~ + Y~Y~$<~) ’ 0. 

It is easy to be convinced that with any other combination of signs 
of vo, a = 1, . . . , 4. F > 0. Thus it is proved that inequality (16) is 
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satisfied with any ya value. a = 1, . . . , 4, and consequently the 
0 priori estimate (19) is correct for p < 4. 

Theorem f. The progressive scheme (4)-(S) is absolutely stable in the 
norm Z$ (6+,) with respect to the initial data and the right-hand side, 
so that for any values of T and ha, a = 1. 2, . . . , p, for the solution 
of problem (g)-(T) the a priori evaluation is correct 

IIzj+q<,z cc, 0,11+ (+)pll~j+lll, if P f4. (27) 

Theorem 2. L,et the solution of problem (L)-(2) satisfy conditions 
such that system (4)-(S) has a maximum order of approximation, or more 
precisely 

A’PU=O(lhl3+Ow). cw 
Then the progressive scheme (4)-(S) with p < 4 for an arbitrary 

sewence of nets R has fourth order accuracy in respect of 1 h( and 
second order accuracy in respect of T: 

uyf+’ -& II = O ( I h I’) + O (II+ llj+l)* (29) 

where 

y=-1 

Theorem 1 has been proved above. Theorem 2 follows from Theorem L and 
condition (28) for the error of approximation Y’ of scheme (41-(s). It is 
easy to see that condition (28) will be satisfied if u(x, t) E C(6), 

f(%# t) E c(4). 

Thus. the double-layer scheme (4)-(s) is applicable for the same 
number of dimensions (p (4) as the triple layer scheme (see [21). It is 
obvious that scheme (4)-(S) is more economical (requires fewer arith- 
metical operations for finding y = yj+’ ) compared with the scheme of 

[zl, and that it converges for any values of y,, a = 1, . . . , p whereas 
the scheme of [21 restricts y, = y in the form y >const. > 0. In c21 
the case of a quadratic net ha = hp = h was studied. With a non-quadratic 
net (ha f hp ) the scheme of paper [21 b ecomes considerably more coapli- 
cated. Scheme (4)-(J) in [ll was generalized for the case of an equation 
with variable coefficients. 

8. As in [ll it is easy to write down accurate high-order difference 
schemes 0( 1 hl’ + TV) for a differential equation of hyperbolic type. We 
shall consider in gT the following problem: 
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u IF = p b, t), u b, 0) = u, (4, !$ (2, 0) = ;;-, (2). (31) 

The initial scheme 0 (Ih(4 f 74) takes the form 

where y = 8i, ; = y*, y” = y*-‘, yr= (y - 2y’ +$/ra, iT is the uniform net 

(‘j+l = 7 = const.). 

This can be made to correspond to several progressive schemes of the 
same order of accuracy. For example we give a progressive scheme 

(33) 

a==1p>a 

1 

P 

Yl,=Pv Y (2, 0) = no (21, Y+ T) = k (I) - 0.57 2 L,u, f f (x, 0) , (34) 1 

where 

A= fiA=, A, = E - +A,, 
rrpl 

To define y = yj+’ from here the following 
is suitable: 

La-1 J 

I haa 
Qa=T-m’ 

variable direction algorithm 

AlW(l) = a, A,w(,) = w(~_~), a = 2, . . ., P, Y = ii -I- Typ,)* (35) 

At the limit (if z E y) w(o) are defined by conditions 

w(a) = A,+l. - -A,++’ for z= = 0, zcI = 1, (36) 

(cp. with [ll). 

If uo = 0.5, a = 1, . . . . 
scheme O(lhj* 

p, scheme (33) is converted into a known 
+ 7*). 

For scheme (33)-(34) theorems similar to Theorems 1 and 2, are valid. 

Tr ans lated by E. Semere 
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