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1. We shall consider that in Q-T= GX [0<t<T], where G ={0<
T, Slgn a=1,..., p} there is a p-dimensional parallelepiped with
boundary I related to the problem (see [1]):

P
du _ _ u
= ;zlL“u i@ Le=g, 1)
up= p(z, &), u (z, 0) = uy (z), z={z4 ... zp). (2)

In [1] an economical double~layer difference system has been proposed
for solving problem (1)-(2) and by the method of power inequalities it
has been shown that this system is absolutely stable and converges in
norm %, (w,) at a rate depending on O(h* + 'rz) when p < 3. The purpose
of this paper is to show that this system retains these properties even
when p = 4, i.e. is suitable for p 4.

2. Let o be a spatial net, uniform in respect of each of the vari-
with steps hy = l,/N;, @« =1, ..., p and 61. an arbitrary, non-

ables x,
uniform net in the segment 0 <t T, Q = ®, X @,. We shall also use the
notation of [1]; the norm in %, {(w,) is particularly suitable:

Jzl= ( > zﬂH)'/', a

Wp a=1

@)

f
—

bl
g

The double-layer progressive scheme of [1] becomes
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A heat conductivity equation 223

r
Ay;= Ay —:—132— D D) (P R ANy + o, (4)
a=]1f>ax
vy =K, y(z, 0 =y, (5)
where
v=v" u=yi=y ), y=0—-9k Ay =i,
P P L 2
A= DA, a=][4, A.=E—q7A,, o= (1_?;.) ,
=] a=]1

E is the unit operator, and y the boundary of the net w,.

The progressive scheme (4) for solving equation (1) has a maximum
error c¢f approximation

P 3y
¥T=0(hit+ ), |h]= (2h;> :

an=]

To solve problem (4)-(5) one of the one-dimensional computational
algorithms of variable directions mentioned in [1] can be used. We
emphasize that several computational algorithms correspond to the same
progressive scheme.

We shall consider the .roblem

P
A= Ai+ 5 D D) P+ ) AAgi + Y, (6)
a=} B>a.
z |y = 0’ z (zv 0) = 2 (I). (7)

If y is the solution of problem (4)~(5), and u = u(x, t) is the solu-
tion of the jcitial problem (1)-(2), their difference z = y — u satis-
fies conditions (6)-(7) and zy(x) = 0 and Y = Y(x, t) is the error of
approximation of scheme (4) in solving equation (1).

Ye shall seek the solution of problem (6)-(7) by a method of separa-
tion of variables assuming

=TV @), k=l .. k), kg=1,2,.. ,No— 4, N, =l /h,, (8)
k

where

nk .z,
, 9
; )

a

y
Vi@ = o, @y vy (@) =sin
a=]1
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and v (2g) is the eigenfunction of the one-dimensional problem
a

Agvy, + }7.4.’_ §a_vka =0, Vi, ©0) = Vi, (Ip =0, a=1,...,p
a
nkh
= sin? =% % a.
Sa = sin® —-

Substituting (8) in (6) and taking into account (9)-(11), we obtain

(10)

(t1)

P P P
(p— 0 J] (4 4r.0.8) = — 4 ZT,§,+% D) a0 Bl 74/ T, (12)

a=l a=1 a==1 f>a
where p = Py = T£+1/Tkj, Y
function Y in relation to ?Vk}:

4 =4, = (¥H, v,) =D v A,
@p
4. From (8) and (12) we find

zj+1 = Z qka"Vk (1‘) + T Z Bkj.fl Vk (Z'),
k k
where

P
By=Ag/8 8= 1] (1 + 410,80

a=]

P 4 P
fe=1— (4 PRAINEE I T,E,E,;)/o.

a=1 a=] Bia

Purther, it will be shown that
— 1< < fegl<t if p<é
We assume that condition (17) is satisfied. Noting that
14+ br0al, =1+ (2. — 3) > 5+ 21 >4
8> (3
from (14)-(15) we obtain
1P+ T (21T
Hence follows the a priori estimate

17 1<l (@) [+ (3)P1F 1,
' i+
1¥7 = 7.

i'=1

= T/haz, and A is the Fourier coefficient of

(13)

(14)

(15)

(16)

an

(18

(19
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This proves the absolute stability (for all values of Yo T T/haz) of
scheme (6)-(7) with respect to the initial data and the right-hand side.

5. We shall now prove the inequality (17) used when deriving the
a priori estimate (19). Index k is omitted. At first we show that

¢<1 it p<é. (20)
Indeed, considering that §B <1, we find

r P r
L3 Drkaly <F2ZD Mt <4 Pnker P <4 (21)

a=]1f+a a=1 a==]

(20) follows from (21) and (16).

The main difficulty arises in proving the result
g>—1. (22)
We derive expressions for p = 4. For p < 4 all the conclusions remain

valid and the arguments are simplified. We write in detail the expres-
sion for &:

r P P
8= [T 44 41080 =1+ 2 DvEa+4 D) D) vavelals (23)
as==1 a==]1 a=1 B>a
1—p
+8 2 VooV bababe, T 16 ﬁvaﬁa, p=4,
a;<ay<a; a==1

where

Vo =Tg— +- (24)

From (22) and (15), (16) it can be seen that the condition ¢ + 1 > 0
will be satisfied if

4 4
2P =2 —4 N1kt 5 2 D Mot Tp)bbp>0 (25)

‘a==1 a=1 B >a

Substituting expression (23) im (25) for §, we obtain

4 4 1 1—4
Fet=l 30+ 3 3 (e +5)tdet8 D vavalalafelat @29
a==] am=}l 8>a 2, <a<a;
[
+16 [ vz,
a=]

6. As well as F we shall consider the expression
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a=1 a=1 a=1f>a @, <as<ay
4
|
+4 11,
a==1

It is easy to see that F) > (2/3)* since §, <1, 1 - 1/3 § > 2/3.

We derive the difference

4 1—4
F—F =4 2 2 T,TBEQE,; + Z (Sva,va.va, + 517) Ea.Ea,Ea. +

a=1 f>a 2, <ay< Ty
4 4
1
+16 [] vt — 5 ] &
a=1 a=]1

and show that it is non-negative if
'\"}%, a=1,...,p.
4

Indeed, observing that v,>0, H E“<71f— Z 45054z, We at once
a=1 @ <X <Ay
obtain F - F, > 0, i.e. F>F > (/D"

Let all values of y, < 1/6, i.e. 1/6 <v, <0, a=1, ..., p. Then
the following inequality is valid:

4
4 2 2\¢ 14 _ 2
F>F + 4 Z Z TQTBEQaB—Z—i_gi>(§-> —ﬁ=8_1>0,
a=1f>a

i.e. F > o.

Various combinations of signs are possible for v and vy, « 7 (. For
example, let v, < 0 and v, >0, « = 2, 3, 4, i.e. v, < 1/6, ]Vll < 1/6,
and vy, 2> 1/6, a > 1. Writing uy = v §, and considering that }ull < 1/8,

we obtain

4 4
D (Bteltaltat g Bafala) +16 [ b o [T &>

<Xy <Xy - a=] am]

> (8——- %)p-,u,p.. + (-2-1,-7 - 51?) §aGabe— -g—ix (ratts + pabte + Batty) +
+2‘—7 By (Bas + Eabe + Bl

and consequently F - F| 2 8/3(Y,736,8; + 7,7, 8,8, t v37, 838 > 0.

It is easy to be convinced that with any other combination of signs
of vo, « =1, ..., 4, F> 0. Thus it is proved that inequality (16) is
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satisfied with any y, value, a = 1, ..., 4, and consequently the
a priori estimate (19) is correct for p < 4.

Theorem 1. The progressive scheme (4)-(5) is absolutely stable in the
norm 52,(61) with respect to the initial data and the right-hand side,
so that for any values of T and ha' a=1, 2, ..., p, for the solution
of problem (6)-(7) the a priori evaluation is correct

< @ O 1+ ($PI¥] 12 p <l (27)

Theorem 2. Let the solution of problem (1)-(2) satisfy conditions
such that system (4)-(5) has s maximum order of approximation, or more
precisely

I¥l=0(hY+ O (v). (28)

Then the progressive scheme (4)-(5) with p << 4 for an arbitrary
sequence of nets Q has fourth order accuracy in respect of h' and
second order accuracy in respect of T:

Iyt —uP1 =0 (1h19 + 0 (|7 1;,). (29)

where

1
19 G = 2) 7375
el
Theorem 1 has been proved above. Theorem 2 follows from Theorem 1 and
condition (28) for the error of approximation Y of scheme (41-(5). It is
easy to see that condition (28) will be satisfied if u(zx, t) € C(G),
f(x, t) € c(4),

Thus, the double~layer scheme (4)-(5) is applicable for the same
number of dimensions (p < 4) as the triple layer scheme (see [2}). It is
obvious that scheme (4)-(5) is more economical (requires fewer arith-
metical operations for finding y = y1+1) compared with the scheme of
[2]. and that it converges for any values of Yoo €= 1, ..., p Whereas
the scheme of [2] restricts Yo = Y in the form y 2> const. > 0. In [2]
the case of a quadratic net ha = hp = h was studied. With & non-quadratic
net (ha # ) the scheme of paper [2] becomes considerably more compli-
cated. Scheme (4)-(5) in [1] was generalized for the case of an equation
with variable coefficients.

8. As in [1] it is easy to write down accurate high-order difference
schemes O(lhl‘ + 72) for a differential equation of hyperbolic type. We
shall consider in QT the following problem:

b4
& ‘ '
o =a§=}1 Lu+f(z09, (#0€Q;, Lu= %5’2’ (30)



228 A.A. Samarskii

vp=p(n0, 4@ =@ FE0 =1 (31)

The initial scheme O (|h|¢+ 13) takes the form

P p
. ¥ 1 1 M
Yp=05A0+y)— 5 X kYt 2 D) A A Ay +o (32

a=1 a==] B>a

j=1

where y=yj+1, §=y’, §=y ' Yp= (y — 2yv+3\})/1:’, o is the uniform net

(Tj+1 = 7T = const.).

This can be made to correspond to several progressive schemes of the
same order of accuracy. For example we give a progressive scheme

P
Ayz=y-+ D) (05 — o) Ty + 05TA @ + 9) + (33)

a=]1

P
+ D D (1 — o, — o) PA ALY HTO=D[y],
a=1B>a

p
vh=t Y@&)=y@), y:(=9= ug (z) — 0.5% [ Z Lyug + f (=, 0)] » (34)

where

P
h. 2
a= ][4, 4,=E— w0, a,=-;_—._°.‘_.
a==1

To define y = yj+1 from here the following variable direction algorithm
is suitable:

Ay =0, A =y a=2,...p Y=Y+ Wy (35)
At the limit (if zx € v) ® x) 8re defined by conditions

Wy = Agyy- - - Apht for =0, z, =1, (36)

(cp. with [1]).

1f Oy = 0.5, «a =1, ..., p, scheme (33) is converted into a known
scheme O(Ihl2 + 12).

For scheme (33)-(34) theorems similar to Theorems 1 and 2, are valid.

Trans lated by E. Semere
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