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1. To construct efficient difference schemes for parabolic and hyper- 

bolic systems, we use the principle of additivity, according to which 

the solution of the operator equation 

g + 5 -4, (0 u = f (1) 
L7=1 

is reduced to the successive solution of equations 

1 au -- 
1n at 

+ _4,u = j,, a = 1, . . ., m, i f, = 1. 
a=1 

We used the principle of additivity when constructing local one- 

dimensional schemes [ll, [21, [41. W e give here the additive schemes for 

parabolic systems of equations with several spatial variables. Relevant 

results were reported to the Soviet-American Symposium on Differential 

Equations in Novosibirsk (August, 1963) and partly discussed 

[21- [51. 
in papers 

Let G be the p-dimensional range of Variation of x = (xl, 

with limit r. The solution of the parabolic System is sought 

cylinder nT = (G + r)r,[O f t < T] without mixed derivatives 

$,5 L,u + f (CC, t)andQr = G x(0 < t < T]; 
Cl=1 

u lI‘ = P (2, t), 0 < t < T; u (T, 01 = ua (cr), I E G $ I-, 

where ug, u = (u’, . . ., u”), f = (jl, . ., j”) and p - vectors. 
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%P) 
in the 

(1) 

- 
l Zh. I’ych. Mat. 4, No. 5, 927-930, 1964. 

193 



194 A.A. Samarskii 

L,u - -g- 
i 

au ’ 

0 
k, (2, t) az, 3 

1 

ka =(kt) is the square matrix n x n. 

For editorial simplification the minor terms in L, containing &lax, 
u. will be omitted. They are taken into account without any particular 
difficulties. We will assume, as usual, that problem (1) has a unique 
solution having all the derivatives necessary for presentation. 

We present k, as the sum of two triangular matrices k, and k: and 

accordingly assume L, = L, + Li. We will assume that the matrices ka 

and ki are positive, i.e. 

for any vector 8 = (El, . . ., E,), 5 # 0. 

Let UB introduce difference nets ah for C and o, = {tj = fC E 10, T]} 

In the segment 0 < t ( T; let T&r be the limit q,, f. e. oh = Up) 

(see [21). For other notations see paper [21. We denote by y = (yl, . . ., 
i Y, ***. y”) a network vector function given for (CO,, + T,,)XO,. 

be a homogeneous difference system of 2nd order 

of approximation for the operator L$u; here ai and oi are triangular 

matrices determined by ki and ki by means of a linear positive model 
functional and-therefore, satisfying the same conditions of positiveness 

as ki and kf 

(2) 

on any net of ah. 

3. Let us introduce the Intermediate values y,,,, . . .,y(,), . . ., y(,,, Y(~+~,, 

* * -9 Y(tp+r-cr)? * - *t Y(epq assuming that y(,, = y = y (“i*‘j+r)l Y(e) = ‘j, = y (%j* tj). 

The additive scheme for problem (1) takes the form 
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a’ = 2p + 1 - a = p + 1, . . ., 2p, 

yw = Clwiths ET; I y(z, 0) = ug (5). 
(4) 

2P 

Here 0, = q, (z, t’) is the difference approximation f,, I: f, = f, and 
a=1 

the coefficients a$ = u$ (I, t*) are taken at tbe moment t* E Itj* tj*Jt 

e.g. t* = Ij+r. 

To determine yto,, a = 1, . . ., p, p + 1,. . ., 2p, the triangular three- 

point operators E - rA; have to be changed if a Q p and E -~h$,+,_, 

if a>p. This is achieved by formulae inverting three-diagonal matrices 
(one-dimensional rotation). Therefore scheme (3) is effective. To deter- 
mine y on the new row t = fj,r it is necessary to have O(nz~~) operations, 

Whf?re Np is the number of nodes of the net Oh, the same way as for the 
explicit scheme. 

Scheme (3) is absolutely stable and converges to the norm S2(oh) on 

an arbitrary non-uniform net o,,xo,. The rate of convergence was evalu- 

ated as 0 (11 h2[1 + l/z), where /Ih 1 is the mean square pitch of the net Oh. 
The conditions which ensure the maximum order of approximation here and 
below, will not be given (see cl], fd 1. 

4. We will now consider problem (1) for a parabolic system of equa- 
tions with mixed dertvatives 

P 

au= 
at x L,pu + f (G I), L,gu = g- 

a, P=1 a t 
k,p (x3 2) $ f 

P ) 
u ‘r = FL (2, t) u (5% 0) = u0 (4, 

(5) 

where k,@ = (k$ (CC, t)) are 

G, the region composed of 
tbe coordinate planes. We 
each I,, a = 1, . . ., p, and 

We take (k& = (kwp-) i- t%p*f* where kaOF tire triangular along a and 

the square matrices p x p with squares n x n, 

parallelepipeds with boundaries parallel to 
will assume that the net oh is uniform along 
the following conditions are satisfied: 

(6) 

cl = const.> 0. (7) 



p of the matrix, k,,_ = /s,,+ =$-k,,. Vie make the operator LaPIF cor- 

respond to the difference scheme of the 2nd order of approximation. e.g. 
for the type (see [31, [11, 

&@Y@) = $ &QYqJ, + @pi YqJ; I 9 =ap = %fi CT t*1, 
u. IL 

l*Eltjs tj+ll* 

To solve problem (5) we use a scheme of the same type as in (3) 

where aI = 2p + 1 - CZ, & = 2p + 1 - & E = 1, 23 - - *t P; 

y(a) = Y@,, = p with ZE T,“, Y (2, 0) = ue (x). 

(8) 

(9) 

(10) 

To determine y. 2p of the one-dimensional parabolic system has to be 
solved by a matrix rotation method. 0 (&VP) operations are required. It 

was shown that scheme (9) is stable and converges to the norm 8,(oh) at 

a rate of 0 (IhI* + v/r) under one additional condition: /I, steps of the 

net ah are so small, Ih [ < ho, 1 h 1 = ( 2 hi)“* that for a$ and s$ 
0-I 

inequality (7) is satisfied in which k$ is replaced by stat and c1 by 

a constant c;<O.5$. If /cap= k,@ (t). condition ]hl <hh, is not required. 

A more efficient scheme is given below with O(nWp) operations which 
uses only one-dimensional rotation. 

5. Matrices xT= (k&J are the elements of matrices (kap_) and (k,@+). 

We present them in the form of the sum of triangular matrices xF = 

2% + %X and x$* = k$+ ~0 if s>f,x$+-k$& = 0 if s< i, k$* - -& k$* 

is-t The operator Lap with matrix (k,gQ will be denoted by Lb* aPf’ The 

difference scheme GA corresponds to this. Let 

(index i will be omitted from the left, writing down the equations for 
the vectors). 

The efficient additive scheme takes the form 
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y(a) = ytak) = cc with ET;, G3+, k = 1, 2, 3; y (2, 0) = ug (z), 

where a = 1, 2, . . ., p, ak = kp + 1, . . ., (k + 1) p, k = 1, 2,3; ak =(k +I) p + 

l--a, pk = (k + 1) p + 1 - 8, c$,, approximate functions fak, CX, = a, 

k = 0. 1. 2. 3, 

y@) = i = y (5, tj), 
YMP) = Y = Y (I ‘j+l)* 

Only 4p - 1, the intermediate value of ytcrkj is introduced. To determine 

the vector y on the layer t = tj+l, four triangular-three-point operators 

E- T, II e&, have to be changed successively by Oh which requires 
B 

0 (GN,) operations. 

Let the following conditions be satisfied 

i $i o1 I, k:@:#, > ci i 5 (f:)2, cl = const.> 0. (12) 
9 I i=l o=l 

Then, by virtue of (6) it will be satisfied also for matrices (kt$). 

From the definition of (a$$) and from (12) it follows (see [31) that 

with a sufficiently small 1 h 1 < h, (c;). 

By methods described in paper 12J it can be shown that scheme (11) 

under condition (13) is absolutely stable to the norm 8,(q,) and con- 

verges at a rate of 0(Jhj2 + v/;). If the coefficients kap do not de- 

pend on X, the condition ] h I< h, becomes superfluous. 

Remark 1. The methods of separation make it possible to reduce the 

many-dimensional problem (see, e.g. [Sl) of (1.) or (5) to p one-dimen- 

sional systems, for the solution of which, e.g. matrix rotation has to 

be used. For the separation scheme the requirements as regards the 
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coefficients of the equation are much more rigid than for additive 

schemes (9). 

Remark 2. The principle of additivity makes it possible to write down 

efficient schemes also for second order hyperbolic systems (see [41). 

‘Translated by E. Semere 
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