ALTERNATING DIRECTION ITERATIONAL SCHEMES FOR THE NUMERICAL SOLUTION OF THE DIRICHLET PROBLEM*

A.A. SAMARSKII and V.B. ANDREEV
(Moscow)

(Received 8 June 1964)

The fourth order difference scheme of approximation on the rectangular mesh $(h_{\alpha} \neq h_{\beta})$ for $\alpha \neq \beta$ will be considered for Poisson's equation. We shall prove the convergence in the mean of the schemes in question at the rate $O(|h|^4)$, for the Dirichlet problem in the p-dimensional rectangular parallelepiped (p=2,3), where

$$|h|^2 = \sum_{\alpha=1}^p h_\alpha^2,$$

whatever the ratio h_{α} between the intervals. The conditions under which the maximum principle holds for the proposed schemes on a rectangular mesh will be discussed, and they will be shown to be uniformly convergent at a rate $O(|h|^4)$ for $p \leq 4$.

An alternating directions iterational process will be considered, and the choice of sequence of iterational parameters $\{\tau_n\}$ "reasonably high" speed of convergence of the process will be discussed. The choice of optimum ratios between the terms of the sequence $\{\tau_n\}$, minimizing the number of iterations, will also be examined.

1. Given the p-dimensional parallelepiped

$$\overline{D}_p = \{x = (x_1, \ldots, x_p) : 0 \leqslant x_\alpha \leqslant l_\alpha, \quad \alpha = 1, \ldots, p\}$$

with boundary \(\Gamma\), we seek the solution in it of the problem

[•] Zh. Vych. Mat. 4, No. 6, 1025-1036, 1964.

$$Lu \equiv \sum_{\alpha=1}^{p} {}_{\alpha} u = -f(x), \qquad L_{\alpha}u = \frac{\partial^{2}u}{\partial x_{\alpha}^{2}}, \qquad (1)$$

$$u|_{\Gamma} = g(x). \qquad (2)$$

Let $\bar{\omega}_h = \{x_i = (i_1h_1, \ldots, i_ph_p) \in \bar{D}_p : i_\alpha = 0, \ldots, N_\alpha; h_\alpha = \frac{l_\alpha}{N_\alpha}, \alpha = 1, \ldots, p\}$ be a difference mesh, uniform with respect to each of directions x_α , and $\gamma = \{x_i \in \Gamma\}$ the boundary of the mesh $\bar{\omega}_h$.

Problem (1) - (2) was considered in [1] - [3] with p = 2, 3 on a difference mesh $\overline{\omega}_h$ with $h_{\alpha} = h$, $\alpha = 1$, ..., p, and difference schemes of the fourth order of approximation to the sufficiently smooth solution of equation (1) were proposed; provided the sides of the parallelepiped l_{α} , $\alpha = 1$, ..., p were comparable in size, the schemes were shown to be uniformly convergent at the rate $O(h^4)$.

An alternating directions iterational process (see (13) with $\sigma = 1$) was proposed for these schemes in $[4]^*$ with the number of iterations

$$v \simeq v_0 \lg \frac{1}{h} \lg \frac{1}{g}, \qquad (3)$$

where $\epsilon \ge 0$ is the required accuracy. The choice of optimum iterational parameters $\{\tau_n\}$ minimizing ν_0 was likewise discussed. The expression for the rate of convergence was only proved in [4] for p=2.

^{*} In [4], note 1, there is an error in the evaluation of d and ϕ . The correct expressions are

$$d = q + \frac{h^2}{12}q^2$$
, $\varphi = f + \frac{h^2}{12}(qf + Lf)$ and $q = \text{const.}$

In the present paper we consider the more general family of iterational schemes with

$$\sigma \geqslant \frac{1}{2}$$
, (4)

where σ is a parameter characterizing the iterational process. A "one-dimensional" procedure is proposed for choosing the iterational parameters $\{\tau_n\}$, minimizing ν_0 for difference schemes of the fourth order of accuracy on the rectangular mesh ($h_\alpha \neq h_\beta$ for $\alpha \neq \beta$). (Expression (3) and the optimum value of ν_0 are also obtained in passing for schemes of the 2nd order of accuracy.)

2. We consider the following difference scheme * for the approximation of problem (1) - (2):

$$\Lambda' y + \varphi = 0, \qquad y|_{y} = g(x), \tag{5}$$

where

$$\Lambda' = \Lambda + \frac{\theta}{12} \sum_{\alpha=1}^{p} h_{\alpha}^{2} \sum_{\beta \neq \alpha}^{1-p} \Lambda_{\alpha} \Lambda_{\beta}, \qquad \Lambda = \sum_{\alpha=1}^{p} \Lambda_{\alpha}, \qquad \Lambda_{\alpha} y = y_{\bar{x}_{\alpha} x_{\alpha}},$$

$$\varphi = f + \frac{\theta}{12} \sum_{\alpha=1}^{p} h_{\alpha}^{2} \Lambda_{\alpha} f, \qquad \theta = 0, 1.$$
(6₉)

Here (see [6])

$$x = x_{i} = (h_{1}i_{1}, \ldots, h_{p}i_{p}),$$

$$x^{(\pm 1_{\alpha})} = (h_{1}i_{1}, \ldots, h_{\alpha-1}i_{\alpha-1}, h_{\alpha}(i_{\alpha} \pm 1), h_{\alpha+1}i_{\alpha+1}, \ldots, h_{p}i_{p}),$$

$$y = y_{i} = y(x), \qquad y^{(\pm 1_{\alpha})} = y(x^{(\pm 1_{\alpha})}),$$

$$y_{\overline{x}_{\alpha}} = (y - y^{(-1_{\alpha})})/h_{\alpha}, \qquad y_{x_{\alpha}} = (y^{(+1_{\alpha})} - y)/h_{\alpha}.$$

It is easily shown (see also [5]) that, for $\theta = 1$, scheme $(5) - (6\theta)$ (in future scheme $(5) - (6\theta)$) has the 4th order of approximation in |h| on the class of sufficiently smooth solutions of (1), so that

$$\psi = \Lambda' u + \varphi = O(|h|^4).$$

For $\theta = 0$ scheme (5)-(6 θ) (scheme (5)-(6 θ)) becomes the familiar scheme

^{*} Scheme (5) - (6¹) for f = 0 and p = 2 was proposed without a proof of convergence in [5].

of the second order of accuracy.

Let us show that (5)- (6_1) has the 4th order of accuracy in |h|. Let u be a solution of problem (1)-(2) and y a solution of problem (5)- (6_1) . We now obtain for the function z = y - u:

$$\Lambda' z + \psi = 0, \qquad z|_{\gamma} = 0. \tag{7}$$

We require the scalar products (see [6])

$$(y,v) = \sum_{\omega_h} yvH$$
, $(yv]_{\alpha} = \sum_{\omega_h^{+\alpha}} yvH$, $(y,v]_{\alpha,\beta} = \sum_{\omega_h^{+\alpha+\beta}} yvH$

and the corresponding norms

$$\|v\| = V(\overline{v,v}), \quad \|v_{\overline{x}_a}\| = V(\overline{v_{\overline{x}_a}, v_{\overline{x}_a}}]_a, \quad \|v_{\overline{x}_a\overline{x}_b}\| = V(\overline{v_{\overline{x}_a\overline{x}_b}, v_{\underline{x}_a\overline{x}_b}}]_{a,b},$$

where

$$H = \prod_{\alpha=1}^{p} h_{\alpha},$$

$$\gamma_{\alpha}^{+} = \{x_{i} \in \Gamma : i_{\alpha} = N_{\alpha}; i_{\beta} \neq 0, N_{\beta} \text{ for } \beta \neq \alpha\},$$

$$\gamma_{\alpha}^{-} = \{x_{i} \in \Gamma : i_{\alpha} = 0; i_{\beta} \neq 0, N_{\beta} \text{ for } \beta \neq \alpha\},$$

$$\gamma_{\alpha\beta}^{+} = \{x_{i} \in \Gamma : i_{\alpha} = N_{\alpha}, i_{\beta} = N_{\beta}; i_{\delta} \neq 0, N_{\delta} \text{ for } \delta \neq \alpha, \beta\},$$

$$\omega_{h} = \overline{\omega}_{h} - \gamma, \qquad \omega_{h}^{-\alpha} = \omega_{h} + \gamma_{\alpha}^{+}, \qquad \omega_{h}^{+\alpha+\beta} = \omega_{h}^{+\alpha} + \gamma_{\beta}^{+} + \gamma_{\alpha\beta}^{+},$$

$$\gamma_{\alpha} = \gamma_{\alpha}^{+} + \gamma_{\alpha}^{-}.$$

Multiplying (7) scalarly by z and applying Green's difference formula (see [6]), we obtain the energy identity

$$I = \frac{1}{12} \sum_{\alpha=1}^{\nu} h_{\alpha}^{2} \sum_{\beta=a}^{1-\nu} \|z_{\bar{x}_{\alpha}\bar{x}_{\beta}}\|^{2} + (\psi, z), \qquad I \equiv \sum_{\alpha=1}^{p} \|z_{\bar{x}_{\alpha}}\|^{2}.$$
 (8)

Using Lemmas 2 and 3 of [7], we have

$$||z||^{2} \leqslant \frac{l_{\alpha}^{2}}{4} ||z_{\bar{x}_{\alpha}}||^{2}, \qquad ||z||^{2} \leqslant M_{0}I, \qquad M_{0} = \frac{1}{4} \left(\sum_{\alpha=1}^{p} \frac{1}{l_{\alpha}^{2}}\right)^{-1}$$

$$n_{\alpha}^{2} ||^{2} z_{\bar{x}_{\alpha}\bar{x}_{\beta}}||^{2} \leqslant 4 ||z_{\bar{x}_{\beta}}||^{2}, \qquad \frac{1}{12} \sum_{\alpha=1}^{p} h_{\alpha}^{2} \sum_{\beta \neq \alpha}^{1} ||z_{\bar{x}_{\alpha}\bar{x}_{\beta}}||^{2} \leqslant \frac{p-1}{3} I.$$

$$(9)$$

We consider (ψ, z) :

$$(\psi, z) \leqslant \|\psi\| \|z\| \leqslant (M_0 I)^{1/2} \|\psi\| \leqslant c_0 I + \frac{M_0}{4c_0} \|\psi\|^2.$$
 (10)

Substituting (9) and (10) in (8) and suitably fixing c_0 , we find that

$$I \leqslant \frac{9M_0}{(4-p)^2} \|\psi\|^2,$$

or, from (9),

$$||z|| \leqslant \frac{3M_0}{4-p} ||\psi||.$$

We have now proved:

Theorem 1. If the condition

$$\|\psi\|\leqslant M|h|^4,$$

is satisfied, the difference scheme (5)-(6₁) with $p \le 3$ is convergent in the mean at a rate $O(|h|^4)$ so that

$$||y-u|| \leqslant M' |h|^4, \qquad M' = M \frac{3M_0}{4-n},$$

where M is a positive constant independent of |h|.

Theorem 1 proves the convergence of scheme (5)- (6_1) in the mean on any sequence of rectangles uniform with respect to each mesh direction, provided only that $|h| \to 0$. If we impose certain restrictions on the ratio between the intervals h_{α} of the mesh ω_h , we can prove uniform convergence for scheme (5)- (6_1) . We expand (5)- (6_1) in points

$$\frac{7-p}{3} \sum_{\alpha=1}^{p} \frac{1}{h_{\alpha}^{2}} y = \frac{1}{6} \sum_{\alpha=1}^{p} \left[(7-p) \frac{1}{h_{\alpha}^{2}} - \sum_{\beta \neq \alpha}^{1-p} \frac{1}{h_{\beta}^{2}} \right] (y^{(+1_{\alpha})} + y^{(-1_{\alpha})}) + \\
+ \frac{1}{12} \sum_{\alpha=1}^{p-1} \sum_{\beta=\alpha+1}^{p} \left(\frac{1}{h_{\alpha}^{2}} + \frac{1}{h_{\beta}^{2}} \right) (y^{(+1_{\alpha}, +1_{\beta})} + y^{(+1_{\alpha}, -1_{\beta})} + y^{(-1_{\alpha}, +1_{\beta})} + y^{(-1_{\alpha}, -1_{\beta})}) + \varphi.$$
(11)

It is clear from (11) that the coefficient of y on the left-hand side is equal to the sum of all the coefficients on the right-hand side. Let h_{α} , $\alpha = 1, \ldots, p$, be such that all the coefficients of (11) are non-negative, i.e.

$$(7 - p) \frac{1}{h_{\alpha}^{2}} - \sum_{\beta \neq \alpha}^{1-p} \frac{1}{h_{\beta}^{2}} \geqslant 0.$$
 (12)

The maximum principle (see [2]) will then hold for equation (11), and we can prove, by the same arguments as in [2]*, that

Theorem 2. If

$$\|\psi\|_0 = \max_{\omega_h} |\psi| \leqslant M|h|^4$$

and conditions (12) are satisfied, the difference scheme (5) - (6₁) with $p \le 4$ is uniformly convergent at a rate $O(|h|^4)$ so that

$$\parallel y - u \parallel_0 \leq M' \mid h \mid^4,$$

where M' is a positive constant independent of |n|.

For p=2, conditions (12) become $1/\sqrt{5} \leqslant h_1/h_2 \leqslant \sqrt{5}$. For p=3, the ratios h_1^2/h_2^2 and h_1^2/h_3^2 , which satisfy conditions (12) are given by the coordinates of the part of the plane inside the triangle with vertices $A(\frac{1}{3}, \frac{1}{3})$, B(1, 3), C(3, 1). If p=4, it follows from (12) that Theorem 2 only holds with $h_{\alpha}=h$ ($\alpha=1,\ldots,4$), which is only possible if the sides l_{α} , $\alpha=1,\ldots,4$ of the region D_p are commensurable.

Note 1. If D_p has commensurable sides l_{α} , we can introduce the difference scheme $\overline{\omega}_h$ with $h_{\alpha} = h$, $\alpha = 1, \ldots, p$, into it. On this mesh, problem (1) - (2) can be associated with the difference scheme

$$\Lambda^* y + \varphi^* = 0, \quad y|_{\gamma} = g(x),$$
 (5*)

where

$$\Lambda^{*} = \Lambda + \frac{h^{2}}{6} \sum_{\alpha=1}^{p-1} \sum_{\beta=\alpha+1}^{p} \Lambda_{\alpha} \Lambda_{\beta} + \frac{h^{4}}{30} \sum_{\alpha=1}^{p-2} \sum_{\beta=\alpha+1}^{p-1} \sum_{\delta=\beta+1}^{p} \Lambda_{\alpha} \Lambda_{\beta} \Lambda_{\delta},$$

$$\Phi^{*} = f + \frac{h^{2}}{12} L f + \frac{h^{4}}{360} \left(L^{2} f + 2 \sum_{\alpha=1}^{p-1} \sum_{\beta=\alpha+1}^{p} L_{\alpha} L_{\beta} f \right).$$
(6*)

Scheme (5^*) - (6^*) with p=2, 3 was proposed in [3], [9], where its uniform convergence at a rate $O(h^6)$ was proved.

3. We consider the alternating directions method for the approximate

[•] See [8] for the case p = 2.

solution of problem (5) - (60). Let $v = v^{(n+1)}$ be the (n+1)-th iteration, $v = v^{(n)}$, $\tau = \tau_n$ the iterational parameter, which will be chosen later, and $v_{\tilde{l}} = (v - v)/\tau$. For the derivative scheme (see [4]), connecting v and v, we take

$$Av_{\bar{i}} = \Lambda' \dot{v} + \varphi, \quad v|_{\gamma} = g(x), \quad v^{(0)}(x) = v_0(x),$$
 (13)

where

$$A = \prod_{\alpha=1}^{p} A_{\alpha}, \qquad A_{\alpha} = E - \sigma \tau \Lambda_{\alpha}, \qquad Ev = v, \qquad \sigma > \frac{1}{2}$$

and $v_0(x)$ is the zero approximation.

For $\theta = 0$, scheme (13) was proposed and investigated in [10] (see also [11] - [13]). One of the alternating directions algorithms (see [4], [7], [10] - [13]) may be used for determining v from (13); some of these only operate for $\theta = 0$. Let us prove, for instance, the algorithm proposed in [7]

$$A_1 w_{(1)} = \Lambda' \tilde{v} + \varphi, \qquad \Lambda_{\alpha} w_{(\alpha)} = w_{(\alpha-1)}, \qquad \alpha = 2, ..., p,$$

$$w_{(\alpha)} = 0 \text{ for } x \in \gamma_{\alpha}, \qquad \alpha = 1, ..., p, \qquad v = \tilde{v} + \tau w_{(p)}.$$
(14)

Notice that the algorithm proposed in [12] follows from (14) on carrying out the substitution $w_{(\alpha)} = (v_{(\alpha)} - v)/\tau$ in (14); however, (14) is more economic, and in addition, the $w_{(\alpha)}$, $\alpha = 1, \ldots, p$, always satisfy the zero boundary conditions.

4. Let us consider the convergence of the iterational process (13).

We obtain for w = v - y, where y is a solution of problem (5) - (6θ) , and v a solution of problem (13)

$$Aw_{\tilde{t}} = \Lambda' \dot{w}, \quad w|_{\gamma} = 0, \quad w^{(0)}(x) = v_0(x) - y(x).$$
 (15)

We apply Fourier's method for finding the solution of problem (15). Let $\mu_{\alpha} = \mu_{k_{\alpha}}(x)$ and $\lambda_{\alpha} = \lambda_{k_{\alpha}}$, $k_{\alpha} = 1, \ldots, N_{\alpha} - 1$, $\alpha = 1, \ldots, p$, be the eigenfunctions and eigenvalues of the one-dimensional Sturm-Liouville difference problem

$$\Lambda_{\alpha}\mu_{\alpha} + \lambda_{\alpha}\mu_{\alpha} = 0, \quad \mu_{\alpha}(0) = \mu_{\alpha}(l_{\alpha}) = 0.$$
 (16)

The problem

$$\Lambda \mu + \lambda \mu = 0, \quad \mu|_{\gamma} = 0 \tag{17}$$

now has the solution

$$\mu = \mu_k(x) = \prod_{\alpha=1}^p \mu_{k_\alpha}(x_\alpha), \qquad \lambda = \lambda_k = \sum_{\alpha=1}^p \lambda_{k_\alpha}, \qquad k = (k_1, \ldots, k_p).$$

The eigenvalues of problem (16) are easily obtained:

$$\lambda_{k_{\alpha}} = \frac{4}{h_{\alpha}^2} \sin^2 \frac{k_{\alpha} \pi h_{\alpha}}{2l_{\alpha}}, \qquad k_{\alpha} = 1, \dots, N_{\alpha} - 1, \tag{18}$$

but we shall only require the maximum and minimum of them in what follows.

We shall seek the solution of problem (16) in the form

$$w = w^{(n+1)} = \sum_{k} a_{k,n+1} \mu_{k}(x), \qquad \tilde{w} = \sum_{k} a_{k,n} \mu_{k}(x).$$
 (19)

Substituting (19) in (15) and recalling that the functions $\mu_h(x)$ are orthogonal, we get

$$a_{k, n+1} = \rho_{k, n+1} a_{k, n}, \tag{20}$$

where

$$\rho_{k,n+1} = 1 - \tau \left[\lambda - \frac{\theta}{12} \sum_{\alpha=1}^{p} h_{\alpha}^{2} \sum_{\beta \neq \alpha}^{1-p} \lambda_{\alpha} \lambda_{\beta} \right] \prod_{\alpha=1}^{p} (1 + \sigma \tau \lambda_{\alpha})^{-1}. \tag{21}_{\theta}$$

We obtain from (20)

$$a_{k,n+1} = a_{k,0} \prod_{s=1}^{n+1} \rho_{k,s},$$

and hence, from (19)

$$w^{(n+1)} = \sum_{k} a_{k,0} \prod_{s=1}^{n+1} \rho_{k,s} \mu_{k},$$

$$\|w^{(n+1)}\| = \left(\sum_{k} \left[a_{k,0} \prod_{s=1}^{n+1} \rho_{k,s} \mu_{k}\right]^{2}, 1\right)^{1/s} \leqslant R_{n+1} \|w^{(0)}\|,$$
(22)

where

$$R_{n+1} = \max_{k} \prod_{s=1}^{n+1} \rho_{k,s}. \tag{23}$$

Theorem 3. When conditions (4) are satisfied, the iterational process (13) with p=2, 3 is convergent in the mean whatever the parameters τ_h satisfying

$$0 < c_1 \leqslant \tau_n \leqslant c_2, \tag{24}$$

where c_1 and c_2 are constants independent of n.

From (22), to prove the theorem we have to show that $R_{n+1} \to 0$ as $n \to \infty$. But to do this, it is sufficient to show that

$$|\rho_{k,s}| < \rho < 1, \tag{25}$$

where ρ is a constant independent of n, since we then have from (23) $R_{n+1} \leqslant \rho^{n+1}$. By (18),

$$h_{\alpha}^2 \lambda_{\alpha} \lambda_{\beta} < 4 \lambda_{\beta} \text{ and } \frac{1}{12} \sum_{\alpha=1}^p h_{\alpha}^2 \sum_{\beta=1\alpha}^{1-p} \lambda_{\alpha} \lambda_{\beta} < \frac{p-1}{3} \sum_{\alpha=1}^p \lambda_{\alpha} = \frac{p-1}{3} \lambda.$$

It follows from this, and (21θ) , that

$$\rho_{k,s} < 1 - \left(1 + \theta \frac{1-p}{3}\right) \tau \lambda \prod_{\alpha=1}^{p} (1 + \sigma \tau \lambda_{\alpha})^{-1}, \qquad (26_{\theta})$$

$$\rho_{k,s} > 1 - \tau \lambda \prod_{\alpha=1}^{p} (1 + \sigma \tau \lambda_{\alpha})^{-1} > 1 - \frac{\tau \lambda}{1 + \sigma \tau \lambda}. \tag{27}$$

On now using condition (24), we find that

$$|\rho_{R,s}| < \rho$$

where

$$\rho = \max\left\{ \left| 1 - \left(1 + \theta \frac{1-p}{3}\right) c_1 \lambda \prod_{\alpha=1}^{p} \left(1 + \sigma c_2 \lambda_{\alpha}\right)^{-1} \right|, \left| 1 - \frac{c_2 \lambda}{1 + \sigma c_2 \lambda} \right| \right\},\,$$

i.e. ρ is independent of n. Recalling (4), we find that in fact $\rho \le 1$. (Theorem 3 was proved for $\theta = 0$ in [10].)

Note 2. The iterational scheme for problem (5^*) - (6^*) is

$$Av_{\vec{l}} = \Lambda^{\bullet} \dot{v} + \varphi^{\bullet}, \quad v|_{\gamma} = g(x), \quad v^{(0)}(x) = v_0(x),$$
 (13°)

while the corresponding function is

$$\rho_{k,n+1}^{\bullet} = 1 - \tau \left[\lambda - \frac{h^2}{6} \sum_{\alpha=1}^{p-1} \sum_{\beta=\alpha+1}^{p} \lambda_{\alpha} \lambda_{\beta} + \frac{h^4}{30} \sum_{\alpha=1}^{p-2} \sum_{\beta=\alpha+1}^{p-1} \sum_{\gamma=\beta+1}^{p} \lambda_{\alpha} \lambda_{\beta} \lambda_{\gamma} \right] \prod_{\alpha=1}^{p} (1 + \sigma \tau \lambda_{\alpha})^{-1}.$$
(21*)

Recalling (18), it can easily be seen from (21*) that, with (4) and (24), the upper bound for the function $\rho^*_{k,n+1}$ is of the same form as for the function $\rho_{k,n+1}$ with $\theta = 1$. Theorem 1 therefore holds for scheme (13*) also.

5. To estimate the rate of convergence (number of iterations) of the iterational process (13), we require a more exact upper bound for $|\rho_{k,\;n+1}|$.

Lemma 1. For the function $\rho_{k, n+1}$, defined by (21θ) with

$$\sigma > \sigma_{p,0}, \qquad \sigma_{2,1} = \frac{5}{9}, \qquad \sigma_{3,1} = \frac{1}{2}, \qquad \sigma_{p,0} = \frac{1}{2} \left[1 + \left(\frac{p-1}{p} \right)^{p-1} \right]$$
 (28)

we have

$$|\rho_{h, n+1}| < \overline{\rho}(a), \tag{29}$$

where

$$0 < \overline{\rho}(a) = 1 - \frac{1}{\sigma} \left(1 + \theta \frac{1-p}{3} \right) \frac{pa}{(1+a)^p}, \quad a = \frac{\sigma \tau \lambda}{p} > 0.$$
 (30)

For, by the theorem on the arithmetic mean and geometric mean (see [14], p. 29), we have

$$\prod_{\alpha=1}^{p} (1 + \sigma \tau \lambda_{\alpha}) \leqslant \left(1 + \frac{\sigma \tau \lambda}{p}\right)^{p}.$$

We find from this and (26a) that

$$\rho_{k,n+1} < 1 - \left(1 + \theta \frac{1-p}{3}\right) \frac{\tau \lambda}{\left(1 + \frac{\sigma \tau \lambda}{p}\right)^p} = \bar{\rho} (a)$$

whatever the positive σ_p .

It follows from (27) that, to complete the proof of Lemma 1, we have to show that

$$-1 + \left(1 + \theta \frac{1-p}{3}\right) \frac{\tau \lambda}{\left(1 + \frac{\sigma \tau \lambda}{p}\right)^p} < 1 - \frac{\tau \lambda}{1 + \sigma \tau \lambda}. \tag{31}$$

To this end, we consider the function

$$F_{p,\theta} = 2\sigma - \frac{pa}{1 + pa} - \left(1 + \theta \frac{1-p}{3}\right) \frac{pa}{(1+a)^p},$$

the fact that this is positive being equivalent to (31). We transform $F_{p,\,1}$ to the form

$$F_{2,1} = 2\sigma - \frac{10}{9} + \frac{2}{9} \frac{a^3 - 5a^2 + 5a + 5}{(a+1)^3(2a+1)}$$
, $F_{3,1} = 2\sigma - 1 + \frac{a^3 + 2a + 1}{(a+1)^3(3a+1)}$.

Given (28), the fact that $F_{3,1}$ is positive is now obvious. Given (28), the fact that $F_{2,1}$ is positive is equivalent to the numerator being positive, and this can easily be proved by considering its minimum. When investigating $F_{p,0}$, we shall be satisfied with a crude estimate. In fact, we shall estimate separately $pa/(1+a)^p$ and pa/(1+pa). Now,

$$F_{p,0} > 2\sigma - 1 - \left(\frac{p-1}{p}\right)^{p-1}$$
,

and the lemma follows from this and (28).

The expression involving $\rho_{h, n+1}$, established by Lemma 1 holds under stronger restrictions on σ (except for the case p=3, $\theta=1$) then does Theorem 3. For p=2 it is possible to obtain an estimate rather different from (29) for $\rho_{h, n+1}$, which holds for $\sigma \geqslant \frac{1}{2}$.

Lemma 2. Given the function

$$\rho(a_1, a_2) = 1 - \varkappa \frac{a_1 + a_2 - \alpha a_1 a_2}{(1 + a_1)(1 + a_2)}, \qquad \varkappa \geqslant 0, \quad \alpha \geqslant 0, \quad a_\alpha > 0.$$

If the condition

$$\varkappa \leqslant 2,$$
 (32)

is satisfied, we have

$$\rho(a_{\alpha}, a_{\alpha}) \geqslant 0, \quad \rho^{2}(a_{1}, a_{2}) \leqslant \rho(a_{1}, a_{1}) \rho(a_{2}, a_{2}).$$
 (33)

The first inequality may be proved immediately

$$\rho(a_{\alpha}, a_{\alpha}) \geqslant \frac{1 - 2(\varkappa - 1) a_{\alpha} + a_{\alpha}^{2}}{(1 + a_{\alpha})^{2}} \geqslant 0 \text{ for } \varkappa \leqslant 2.$$

We consider the difference

$$\rho(a_1, a_1) \rho(a_2, a_2) - \rho^2(a_1, a_2) = \frac{J}{(1+a_1)^2(1+a_2)^2},$$

where

$$J = [(1 + a_1)^2 + \kappa a a_1^2 - 2\kappa a_1][(1 + a_2)^2 + \kappa a a_2^2 - 2\kappa a_2] -$$

$$-[(1+a_1)(1+a_2)+\kappa\alpha a_1a_2-\kappa(a_1+a_2)]^2.$$

Removing the brackets and collecting like terms, we get

$$J = \varkappa(2 - \varkappa + \alpha) (a_1 - a_2)^2.$$

This leads us to (33), provided (32) is satisfied.

A fairly simple corollary of Lemma 2 is

Lemma 3. If p = 2, we have for the function $\rho_{k, n+1}$ defined by (21_{θ}) , provided condition (4) is satisfied

$$(\rho_{k,n+1})^2 \leqslant \prod_{\alpha=1}^2 \bar{\rho}(\alpha_{\alpha}), \tag{34}$$

where

$$\overline{\rho}(a_{\alpha}) = 1 - \frac{1}{\sigma} \left(1 - \frac{\theta}{3} \right) \frac{2a_{\alpha}}{(1 + a_{\alpha})^3} , \qquad a_{\alpha} = \sigma \tau \lambda_{\alpha}. \tag{35}$$

For, it follows from Lemma 2 that

$$(\rho_{k,n+1})^2 \leqslant \prod_{\alpha=1}^2 \rho_{k_{\alpha},n+1}, \qquad \rho_{k_{\alpha},n+1} = 1 - \frac{2\tau \lambda_{\alpha} - \theta \frac{h_{\alpha}^2}{6} \tau \lambda_{\alpha}^2}{(1 + \sigma \tau \lambda_{\alpha})^2},$$

since $\rho_{k_{\alpha},n+1} > 0$ for $\sigma > \frac{1}{a}$. But we have, by (18),

$$\frac{h^2}{6} \tau \lambda_{\alpha}^2 \leqslant \frac{2}{3} \tau \lambda_{\alpha} \text{ and } \rho_{k_{\alpha}, n+1} \leqslant \overline{\rho} (a_{\alpha}).$$

(This lemma was proved in [12] for $\theta = 0$ and $\sigma = 1$.)

Finally, we require

Lemma 4. Given

$$0 < m < M. \tag{36}$$

The maximum of the function $\rho(a)$ defined by (30) and (35) in the interval [m, M] is now equal to

$$\rho_{p} = \max_{m \leq a \leq M} \bar{\rho}(a) = \\
= \max \left[1 - \frac{1}{\sigma} \left(1 + \theta \frac{1 - p}{3} \right) \frac{pm}{(1 + m)^{p}}, 1 - \frac{1}{\sigma} \left(1 + \theta \frac{1 - p}{3} \right) \frac{pM}{(1 + M)^{p}} \right]. \tag{37}$$

For, it follows from

$$\overline{\rho'}(a) = \frac{1}{\sigma} \left(1 + \theta \frac{1-p}{3} \right) p \frac{(p-1)a-1}{(1+a)^{p+1}} = \begin{cases} \leqslant 0 & \text{for } a \leqslant \frac{1}{p-1}, \\ > 0 & \text{for } a \geqslant \frac{1}{p-1} \end{cases}$$

that $\vec{\rho}(a)$ takes its maximum value at either the left- or the right-hand end of the interval [m, M].

6. We shall now estimate the rate of convergence of the iterational process (13). To be more precise, we shall find a sequence of iterational parameters $\{\tau_n\}$ such that a "reasonably high" rate of convergence is obtained. It follows from Theorem 3 that the parameter τ_n may vary within fairly wide limits. We shall therefore try to find a sequence $\{\tau_n\}$ such that, given any value of λ , there is at least one value of τ such that $|\rho_k, n+1| < \rho < 1$, where ρ is independent of both n and |h|. If we then perform the cycle of iterations (13) with the given system of parameters, we shall obtain, in view of (22) - (23), a ρ^{-1} times reduction in the norm of the error. It is desirable for the total number of parameters in the sequence $\{\tau_n\}$ to be "not very great" (obviously, in the worst case we can avoid a number of parameters equal to the number of distinct eigenvalues λ), i.e. for one parameter τ to be "stipulated" by a whole series of eigenvalues and not just one. In fact, let the sequence of intervals $(\xi_{(n-1)}, \xi_{(n)})$, $n=1,\ldots,n_0$, cover the interval $[\lambda_i, \lambda_{N-1}]$, where

$$\xi_{(0)} = \lambda_1, \quad \xi_{(n_0-1)} < \lambda_{N-1}, \quad \xi_{(n_0)} > \lambda_{N-1},$$
 (38)

the coordinates $\xi_{(n)}$ and the number n_0 being subject to definition. Let τ_n "stipulate" the λ_k which satisfy

$$\xi_{(n-1)} \leqslant \lambda_k \leqslant \xi_{(n)},\tag{39}$$

i.e. for the k given by (39), the functions $\rho_{k, n+1}$ satisfy (25) with a ρ independent of either n or |h|. This means in our case, by Lemmas 1 and 4, that

$$pm \leqslant \tau_n \sigma \xi_{(n-1)} \leqslant \tau_n \sigma \lambda_h \leqslant \tau_n \sigma \xi_{(n)} \leqslant pM$$

where $m \le M$ are positive constants independent of either n or |h|. If m and M are chosen, let

$$pm = \sigma \tau_n \xi_{(n-1)}, \quad pM = \sigma \tau_n \xi_{(n)}. \tag{40}$$

It now follows from this and (38) that

$$\xi_{(n)} = q^{-n}\lambda_1, \qquad \tau_n = \frac{pm}{\sigma} \lambda_1^{-1} q^{n-1}, \qquad q = \frac{m}{M},$$
 (41)

$$\lg \frac{\lambda_1}{\lambda_{N-1}} \lg^{-1} q \leqslant n_0 \leqslant \lg \frac{\lambda_1}{\lambda_{N-1}} \lg^{-1} q + 1.$$
 (42)

Using Lemma 4, we arrive from (41), (42) and (22) - (23) at

Lemma 5. If a cycle of n_0 iterations is carried out in accordance with method (13) with a system of parameters $\{\tau_n\}$ given by (41), then, if conditions (28) are satisfied,

$$\|z^{(n_0)}\| \leqslant \rho_p \|z^{(0)}\|,$$
 (43)

where ρ_p is given by (37).

A simple consequence of Lemma 5 is

Theorem 4. In order to reduce the norm L_2 of the error $\|z^{(0)}\|$ by a factor $1/\epsilon$ with the aid of method (13), it is sufficient, if conditions (28) are satisfied, to perform a cycle of n_0 iterations with the system of parameters $\{\tau_n\}$ given by (41) k_0 times, where n_0 is given by (42), and k_0 by

$$k_0 \geqslant \lg \varepsilon \lg^{-1} \rho_{\mathcal{P}}.$$
 (44)

The following asymptotic formula holds here for the total number of iterations $v = n_0 k_0$:

$$v \simeq v_0 \lg \frac{\lambda_1}{\lambda_{N-1}} \lg \epsilon, \qquad v_0 = \frac{1}{\lg q \lg \rho_p}.$$
 (45)

Note 3. We have by (18):

$$\frac{\lambda_1}{\lambda_{N-1}} = \frac{\sum_{\alpha=1}^{p} \frac{1}{h_{\alpha}^2} \sin^2 \frac{\pi h_{\alpha}}{2l_{\alpha}}}{\sum_{\alpha=1}^{p} \frac{1}{h_{\alpha}^2} \cos^2 \frac{\pi h_{\alpha}}{2l_{\alpha}}}.$$

If \overline{D} is the p-dimensional cube with side l and the mesh ω_h is square, i.e. $h_{\alpha} = h$, $\alpha = 1, \ldots, p$, then

$$\frac{\lambda_1}{\lambda_{N-1}} = \operatorname{tg}^2 \frac{\pi h}{2l} = O(h^2) \text{ and } \operatorname{lg} \frac{\lambda_1}{\lambda_{N-1}} = O(\operatorname{lg} h).$$

The constructions used in the proofs of Lemma 5 and Theorem 4 are based on Lemma 1 and therefore hold only if conditions (28) are satisfied.

TABLE 1								TABLE 2						
p	8	σ	٧	m	q	ρ	p	e	σ	v	m	q	P	
2	1	1/2	3.425	0.277	0.0766	0.547		1	1	7.958	0.237	0.0563	0.793	
		5 9	3.939	0.296	0.0710	0.601								
	0	1/2	1.707	0.415	0.1719	0.171	2	0	1	4.957	-0.254	0.0645	0.677	
		3 4	3.425	0.277	0.0766	0.547								
3	1	1 2	10.577	0.135	0.0850	0.815	3	1	í	22.258	0.128	0.0 786	0.911	
	0	13 18	4.432	0.153	0.1070	0.586		0	1	6.648	0.142	0.0938	0.714	

We can prove with p = 2, from Lemma 3, and by analogy with [11]:

Theorem 5. In the case p=2, in order to reduce the norm L_2 of the error $||z^{(0)}||$ by a factor $1/\epsilon$ with the aid of method (13), it is sufficient, given any $\sigma \geqslant 0.5$, to carry out a cycle of n_0 iterations with the system of parameters

$$\tau_n = \frac{m}{5} c_* q^{n-1} \tag{46}$$

 k_0 times, where k_0 is given by (44), while

$$\lg \frac{c^*}{c} \lg^{-1} \frac{1}{q} \leqslant n_0 < \lg \frac{c^*}{c} \lg^{-1} \frac{1}{q} + 1$$
 (47)

and

$$c_* = \min_{k_{\alpha}} \lambda_{k_{\alpha}}, \qquad c^* = \max_{k_{\alpha}} \lambda_{k_{\alpha}}.$$

The following asymptotic formula holds here for the total number of iterations $v = n_0 k_0$:

$$v = v_0 \lg \frac{c^*}{c_*} \lg \frac{1}{\epsilon}, \qquad v_0 = \frac{1}{\lg q \lg \rho_p}. \tag{48}$$

Notice that, in a square region and on a square mesh, (46) is the same as (41), (47) as (42) and (48) as (45).

Note 4. Using Note 1, it is easily shown that Theorem 4 also holds for the iterational scheme (13*).

We now consider the minimization of the coefficient ν_0 . Using (37) and (41), it is clear from (45) and (48) that, with θ fixed, ν_0 is a function of the three variables m, M and σ . Since q and ρ_p are always less than unity, ν_0 will decrease with q and ρ_p . Hence, if ρ_p is fixed, ν will be a minimum if q is a minimum. But it follows from (41) that q is a minimum if the first and second terms on the right-hand side of (37) are the same, i.e. $m/(1+m)^p = M/(1+M)^p$. Hence

$$M_2 = \frac{1}{m}, \quad M_3 = \frac{\sqrt{(3+m)^3 + 4/m} - (3+m)}{2}.$$

It is clear from (37) that ρ_p is an increasing function with respect to σ . Hence, for ν_0 to be as small as possible, σ must also be a minimum. After M and σ have been fixed, ν_0 remains a function of m only and its minimum can be found numerically to any degree of accuracy. Table 1 gives the numerical values of the parameters occurring in ν_0 , optimum with respect to m for minimum σ .

Table 2 gives for comparison the same parameters for $\sigma=1$. (The values of the parameters were obtained in [12] for p=2 and $\theta=0$, and in [4] for p=2, 3 and $\theta=1$. The numbers quoted there correspond to natural logarithms in (45) and (47), whereas we use logarithms to base 10.)

Translated by D.E. Brown

REFERENCES

- MIKELADZE, Sh.E., Numerical integration of partial differential equations, Izv. Akad. Nauk SSSR, Ser. Mat., No. 6, 819-842, 1934.
- MIKELADZE, Sh.E., Numerical methods of integrating partial differential equations (Chislennye metody integrirovaniya differentsial'-nykh uravnenii s chastnymi proizvodnymi). Moscow, Akad. Nauk SSSR, 1936.
- 3. MIKELADZE, Sh.E., Numerical solution of the differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f(x, y, z)$. Dokl. Akad. Nauk SSSR, 14, No. 4, 177-180, 1937.

- SAMARSKII, A.A. and ANDREEV, V.B., Difference scheme of high accuracy for an elliptic equation with several spatial variables. Zh. Vych. Mat. 3, No. 6, 1006-1013, 1963.
- GREENSPAN, D., On "best" nine-point Laplace difference analogues on rectangular grids, Quart. J. Mech. Appl. Math., 12, No. 1, 111 -116, 1959.
- SAMARSKII, A.A., Locally uniform difference schemes on nonuniform meshes. Zh. Vych. Mat. 3, No. 3, 431-466, 1963.
- 7. SAMARSKII, A.A., Schemes of improved accuracy for the multidimensional equation of heat conduction, Zh. Vych. Mat. 3, No. 5, 812-840, 1963.
- BADAGADZE, V.V., Numerical solution of second order elliptic equations, Soobshch. Akad. Nauk Gruz SSR, 30, No. 6, 689-696, 1963.
- MIKELADZE, Sh.E., Numerical solution of Laplace and Poisson equations, Izv. Akad. Nauk SSSR, Ser. Mat., No. 2, 271-292, 1938.
- D'YAKONOV, E.G., Solution of some multi-dimensional problems of mathematical physics by means of the mesh method, Diss. kand. fizmatem. n., Matem. in-t Akad. Nauk SSSR, Moscow, 1962.
- 11. PEACEMAN, D.W. and RACHFORD, H.H., The numerical solution of parabolic and elliptic differential equations, J. Soc. Industr. Appl. Math., 3, No. 1, 28-41, 1955.
- 12. DOUGLAS, H. and RACHFORD, H.H., On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82, No. 2, 421-439, 1956.
- 13. DOUGLAS, J., Alternating direction methods for three space variables, Numer. Math., 4, No. 1, 41-63, 1962.
- 14. HARDY, G.H., LITTLEWOOD, D. and POLYA, G., Inequalities, Cambridge Univ. Press, 1934.