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The fourth order difference scheme of approximation on the rectangular 

mesh (ha # hb for a # fi) will be considered for Poisson’s equation. 

We shall prove the convergence in the mean of the schemes in question 

at the rate o(lh[‘), f or the Dirichlet problem in the p-dimensional 
rectangular parallelepiped (p = 2, 3), where 

whatever the ratio h, between the intervals. The conditions under which 
the maximum principle holds for the proposed schemes on a rectangular 
mesh will be discussed, and they will be shown to be uniformly convergent 

at a rate O(lhl*) for p &4. 

An alternating directions iterational process will be considered, and 
the choice of sequence of iterational parameters {,,.,I “reasonably high” 
speed of convergence of the process will be discussed. The choice of 
optimum ratios between the terms of the sequence {T”?, minimizing the 
number of iterations, will also be examined. 

1. Given the p-dimensional parallelepiped 

Dp = (3 = (51, . . . , Ip) : 0 zg 5a < za, a = 1, . . . , p} 

with boundary r, we seek the solution in it of the problem 

l Zh. Vych. Mat. 4. No. 6, 1025-1036, 1964. 
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LUE &u = ---f(T), Lau = gi, iI) 
a=1 

U/r=g(x). (2) 

IJet 6.h = {Xi = (ithi, . . . , iphp) E Bp: i, = 0, ..a, 1 Y * ha=:-, a, 

a= ,..., 1 p} be a difference mesh, uniform with respect to each of 

directions xa, and y = {Xi E r} the boundary of the mesh &,. 

Problem (1) - (2) was considered in [II - [31 with p = 2, 3 on a 
difference mesh Oh with ha = h, a = 1, . . . , p, and difference schemes of 
the fourth order of approximation to the sufficiently smooth solution of 
equation (1.) were proposed; provided the sides of the parallelepiped 
1 a=l, . . . . p were comparable in size, the schemes were shown to be 
u:iformly convergent at the rate 0(h4). 

An alternating directions iterational process (see (13) with u = 1) 
was proposed for these schemes in [41* with the number of iterations 

(3) 

where E > 0 is the required accuracy. The choice of optimum iterational 
parameters {TV) minimizing v. was likewise discussed. The expression for 
the rate of convergence was only proved in 141 for p = 2. 

v / 

y,_ 

FIG. 1. 

l In 141, note 1, there is an error in the evaluation of d and 9. The 
correct expressions are 

d = Q + ; P, cp= I+h&W+Wandq= const. 
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In the present paper we consider the more general family of itera- 
tional schemes with 

c+, (4) 

where u is a parameter characterizing the iterational process. A “one- 
dimensional” procedure is proposed for choosing the iterational para- 
meters {T,,), minimizing v. for difference schemes of the fourth order 
of accuracy on the rectangular mesh ( h, # he for a # fi). (Expression 
(3) and the optimum value of vc are also obtained in passing for schemes 
of the 2nd order of accuracy.) 

2. We consider the following difference scheme * for the approxima- 
tion of problem (1) - (2): 

where 

A’Y+cp=o, Ylv=g(4, (5) 

Here (see [61) 

z = xi = (hlil, . . ., h,i,), 

d*W = (hIi,, . . ., ha-A-1, ha (L f I), ha+da+l, . . . , h&J, 

y-=yi=y(4. y(*lJ = y (d*m), 

y- 
xa 

= (y - I&- la! )/ha, yx, = (y” la) - y)/ha . 

It is easily shown (see also E51) that, for 8 = 1, scheme (5)-(6e) (in 
future scheme (5)- (6 1)) has the 4th order of approximation in I hl on the 
class of sufficiently smooth solutions of (l), so that 

* = A’u+ cp = O(lhlr). 

For 8 = 0 scheme (5)-(6(j) (scheme (5) - (60)) becomes the familiar scheme 

l Scheme (5) - (61) for f = o and p = 2 was proposed without a proof of 

convergence in [51. 
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of the second order of accuracy. 

Let us show that (5)- (Sl) has the 4th order of accuracy in j hi. Let 
u be a solution of problem (I)-(2) and y a solution of problem (5)-(61). 
We now obtain for the function z = y - u: 

h’z + Q = 0, 4 = 0. (7) 

We require the scalar products (see id) 

and the corresponding norms 

where 

YZ={X*Er:i,=N,; ie#O, Nf+ for p#a}, 

Y(; = (a E r : i, = 0; G3#% HP for P+=M, 

& = <xt E r : i, = N,, ip = Nh3; i8 # 0, Nb for d #a, P}, 

ah = fl)h-rr oi” = ‘J&+7:: +a+@ 
6'h = or + Y’e + Y&3 

Ya = 7: + Y;;. 

Multiplying (7) scalarly by z and applying 
(see E63 ), we obtain the energy identity 

Qreen’ s difference formula 

Using Lemmas 2 and 3 of [?I, we have 

6% 
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We consider (v, 2): 

($9 2) e II 9 II II 2 II < WJP II 4J II < d + 2 II 9 /Ia* w 

Substituting (9) and (10) in (8) and suitably fixing CO, we find that 

or, from (9), 

We have now proved: 

Theorem 1. If the condition 

is satisfied, the difference scheme (5)-(61) with p<3 
the mean at a rate O( /hi 4, so that 

II Y - ZJ II < M’ I h 14> 

where M is a positive constant independent of /hi. 

is convergent in 

Theorem 1 proves the convergence of scheme (5)-(61) in the mean on 
any sequence of rectangles uniform with respect to each mesh direction, 

provided only that ihl + 0. If we ircpose certain restrictions on the 

ratio between the intervals h, of the mesh Oh, we can prove uniform con- 

vergence for scheme (S)-(61). We expand (5)-(61) in points 

It is clear from (11) that the coefficient of y on the left-hand side is 

equal to the sum of 311 the coefficients on the right-hand side. Let h,, 
a=l, . . . . p, be such that all the coefficients of (11) are non-negative, 
i.e. 

1-P 

(7-P) *- 22 &o. 
P#G 0 

(121 
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The maximum principle (see [21) will then hold for equation (1X), and we 
can prove, by the ssme arguments as in [21*, that 

Theorem 2. If 

and conditions (12) are satisfied, the difference scheme (5) - (Sl) with 
p < 4 is uniformly convergent at a rate O( ihj 4, so that 

II Y - fJ II0 =G M’ffq, 

where Y’ is a positive constant independent of 1~1. 

For p = 2, conditions (12) become 1/$?g ht/hz < J’% For p = 3, 

the ratios hf2/?t$ and I$/ h32, which satisfy conditions (12) are given 

by the coordinates of the part of the plane inside the triangle with 

vertices A ( $ $ ), B(i, 3), C(3, 1). If p = 4, it follows from (12) 

that Theorem 2 only holds with k, = h (a = 1, . . . , 4f, which is only 
possible if the sides l,, ? = 1, . . . , 4 of the region 5, are commensur- 
able. 

‘vote 1. If D, has commensurable sides 1,, we can introduce the differ- 

ence scheme Gh with h, = ir, a = 1, . . . , p, into it. On this mesh, prob- 
lem (1) - (2) can be associated with the difference scheme 

where 

(6.) 

Scheme (5*) - (6’) with p = 2, 3 was proposed in [31, [91, where its uni- 
form convergence at a rate 0(h6) was proved. 

3. We consider the alternating directions method for the approximate 

l See [81 for the case p = 2. 



AOi = xi + cp, 4Y = g@), v@)(x) = uo(x), 03) 

where 

A = fi: A,, A, = E - mha, Ev=v, a> f, 
LX==1 
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solution of L‘roblep (5) - (68). Let u = u(*+*) be the (n + I)-th itera- 
” 

tion, ,lJ = &I) 9 r = ‘F n the iterational parameter, which will be chosen 

later, and U; = (V - i) /T. For the derivative scheme (see [al), con- 

necting v and ;, we take 

and vo(n) is the zero approximation. 

For 6 = 0, scheme (13) was proposed and investigated in [loI (see 
also [II] - cl31 ). One of the alternating directions algorithms (see [41, 

[71, M - [X31) may be used for determining v from (13); some of these 
only operate for 6 = 0. Let us prove, for instance, the algorithm pro- 
posed in [71 

A,ql~= A’; + cp, &wtaf = w(,_~), a = 2, . . ., p, 

(14) 
qo) = 0 for =Er,. a = I,..., p, 0 = ; + 71qP) * 

Notice that the algorithm proposed in 1121 follows from (14) on carrying 

out the substitution W(a) = (U(a) - 6) /r in (14); however, (14) is more 

economic, and in addition, the W(a), a = 1, . . . , p, always satisfy the 
zero boundary conditions. 

4. Let us consider the convergence of the iterational process (13). 

We obtain for w = v - y, where y is a solution of problem (5) - (66), 
and v a solution of problem (13) 

Awi = A’;, WlY = 0, w@’ (x) = uo(x) - Y(X). (15) 

We apply Fourier’s method for finding the solution of problem (15). Let 

p, =&(x) and ha = hk,, k, = 1, 
eigenfunctions and eigenvalues of 
difference problem 

. . .( N ,.,-1, a=1 ,..., p, be the 

the one-dimensional Stuns-Liouville 

Aa&z+haPa=0. Pa (0) = pa(&) = 0. (16) 
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The problem 

now has the solution 

a * 

CL = Pk (4 = LfI Pka (GY), h. = hk = r; hka’ k = (k,, * * ., kp)* 
a-1 a4 

The eigenvalues of problem (15) are easily obtained: 

but we shall only require the maxims and minimum of them in what 
follows. 

We shall seek the solution of problem (16) in the form 

w = w(n+l) = 2 % n+lpk @) 3 (19) 
k k 

Substituting (19) in (15) and recalling that -the fWiCtionS i+(x) art? 

orthogonal, we get 

ak, W-i = Pk, n+@k, nc WI 

where 

Pk,nil, = l-‘[X-$5 h:? i.hJ fi (1 +a&J1. We) 
a=1 Pea US1 

We obtain from (201 

n+l 

ak.n+l = @k,o II b,e+ 
.¶=I 

and hence, from (19) 

nt1 

w(M) = 2 ak,O n Pk,rpkr 

where 

(23) 
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Theorem 3. When conditions (4) are satisfied, the iterational process 
(13) with p = 2, 3 is convergent in the mean whatever the parameters -rh 
satisfying 

0 < 0 < rn ,( c2, (24) 

where cl and c2 are constants independent of n. 

From (22), to prove the theorem we have to show that A,+1 + 0 as 
n --f 00. But to do this. it is sufficient to show that 

IPk,sl~ P < 19 (25) 

where p is a constant independent of n, since we then have from (23) 

&+i < P 
n+i. BY (18)s 

It follows from this, and (213), that 

Pk,s<l- ( (2’30) 

Pk.‘> 1 - TA fi (1 + csTXJ1> 1 75 
a=1 -KjzX+ (27) 

On now using condition (24), we find that 

If%rl~ P9 

where 

p-max 
{I ( 

i--P l- 1+9-5_)c,bJJ p (1 + ac,hJ’( 9 11 -&I] * 
a=4 

i.e. p is independent of n. Recalling (4), we find that in fact p < 1. 
(Theorem 3 was proved for 8 = 0 in [lo]. ) 

Note 2. The iterational scheme for problem (5.) - (I??) is 

Auy = A”; + q*, V I, = g (2). w(O) (z) = DO(Z), (13.1 

while the corresponding function is 
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Recalling (18). it can easily be seen from (21*) that, with (4) aud (241, 
the upper bound for the function P*~,~+* is of the same form 8s for the 

function p~,,,+~ with 8 = 1. Theorem 1 therefore holds for scheme (139 
also. 

5. To estimate the rate of convergence (number of iterations) of the 
iterational process (13), we require a more exact upper bound for 

IPk, WI ’ 

Lenma f. For the function pk, %+i, defined by (216) with 

we have 

where 

For, by the theorem on the arithmetic mean and geometric menn (see 
[I41, p. 29). we have 

fi (1 +a%%,)\< (I+?)? 
a=1 

We find from this and (260) that 

whatever the positive up. 

It follows from (27) that, to complete the proof of Lemma 
to show that 

-1+ (l+el+) rA <I-&* 

(i+?) 
To this end, we consider the function 

1, we have 

(31) 
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the fact that this is positive being equivalent to (31). We transform 
F p,l to the form 

Given (28), the fact that F,,l is positive is now obvious. Given (28), 
the fact that F2,1 is positive is equivalent to the numerator being 
positive, and this can easily be proved by considering its minimum. When 
investigating F,,, ,,, we shall be satisfied with a crude estimate. In fact, 

we shall estimate separately pa/ (1 + a) p and pa / (1 f pa). Now, 

and the lemma follows from this and (28). 

The eXpressiOn involving pk, n+l, established by Lemma 1 holds under 

strcnger restrictions on o (except for 
Theorem 3. For p = 2 it is possible to 
ent from (29) for pk. n+ir which holds 

Lemma 2. Given the function 

al + aa - aalas 
P h aa> = 1 --x (I + al)(l + aa) , 

the case p = 3, 3 = 1) then does 
obtain an estimate rather differ- 
for o>%. 

X>,G, a>& a,>G. 

If the condition 

is satisfied, we have 

24 < 2, (32) 

The first inequality ma-y be proved immediately 

P@ar aa) > 
l--2(~-~)aa+a2,>o for xB2. 

(I+ aala 

We consider the difference 

J 
P (h 01) P (u2, (3) - P8 (al, 4 = (1 + al)a (1 + aa)a , 

where 

J = [ (1 + 42 + xoci2 - 2x4 [ (1 + a# + ma22 - 2xa2] _ 
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- [(I + ai) (1 + a2) + xaaia2 - ~(a, + a2)]2. 

Removing the brackets and collecting like terms, we get 

J =x(2- ~+a)(ai-a2)~. 

This leads us to (33), provided (32) is satisfied. 

A fairly -simple corollary of Lemma 2 is 

Lemma 3. If p = 2, we have for the 
provided condition (4) is satisfied 

function pk, n+i defined by (218), 

where 

(35) 

For, it follows from Lemma 2 that 

since ~k,,~+r> 0 for o > t . But we have, by (18). 

(This lemma was proved in [121 for 0 = 0 and u = 1. ) 

Finally, we require 

Lerruna 4. Given 

OCm<M. (W 

The maximum of the function p(a) defined by (30) and (35) in the interval 
[JR, Ml is now equal to 

P, = max p(a) = 
m<oiM 

=max[l-_(l+8~)(i~~)1,, l-~(l+e+j(i$&~]* (37) 
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For. it follows from 

I 
1 

p” (a) = + (1 + t) q-) p ';;--,'$yy i = 
<O for a<p--ls 

1 
>O for a>-_i 

P 

that ;(a) takes its maximum value at either the left- or the right-hand 
end of the interval [m, d. 

6. We shall now estimate the rate of convergence of the iterational 
process (13). To be more precise, we shall find a sequence of iterations1 
parameters {T,? such that a “reasonably high” rate of convergence is ob- 
tained. It follows from Theorem 3 that the parameter I, may vary within 
fairly wide limits. We shall therefore try to find a sequence {T,,? such 
that, given any value of h, there is at least one value of T such that 

IPk,n+il < P -K 1, where p is independent of both rz and Ih(. If we then 

perform the cycle of iterations (13) with the given system of parameters, 
we shall obtain, in view of (22) - (23). a p-l times reduction in the 
norm of the error. It is desirable for the total number of parameters in 
the sequence {TV? to be “not very great” (obviously, in the worst case 
we can avoid a number of parameters equal to the number of distinct 
eigenvalues A), i. e. for one parameter T to be “stipulated” by a whole 
series of eigenvalues and not just one. In fact, let the sequence of 

intervals (Q,,-i), &), n = 1,. . ., no, cover the interval [hi, AN-i], where 

(38) 

the coordinates SC,,) and the number no being subject to definition. Let 
fn “stipulate” the Ak which satisfy 

i.e. for the k given by (39), the functions pk, n+i satisfy (25) with a 

p independent of either n or IhI. This means in our case, by Lemmas 1 
and 4, that 

pm < TA&~) G WJ~ ~2 WJ&Q G PM, 

where n <M are positive constants independent of either n or l/al. If m 
and h! are chosen, let 

Pm = az,&n-i,, PM = m&n). (40) 

It now follows from this and (38) that 
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Ig $$ Ig-lq < no < lg & lg-‘q + 1. 

(41) 

(42) 

Using Lemma 4, we arrive from (41), (42) and (22) - (23) at 

Lemma 5. If a cycle of no iterations is carried out in accordance with * . 
method (13) with a system of parameters iv,,) given by (41). then, if con- 
ditions (28) are satisfied, 

a z(*) u < P, a z(O) 0, (43) 

where pP is given by (37). 

A simple consequence of Lemma 5 is 

7’heorem 4. In order to reduce the norm L, of the error lla(@11 by a 

factor I/E with the aid of method (13). it is sufficient, if conditions 
(28) are satisfied, to perfons a cycle of no Iterations with the system 
of parameters IT,,) given by (41) k. times, where no Is given by (42), 
and k. by 

The following asymptotic formula holds here for the total 
iterations v = noko: 

v5=v, lgr ” lg 8, 
N-l 

number of 

Note 3. We have by (18): 

If i is the p-dimensional cube with side 1 and the mesh Oh is square, 
i. e. ha = h, a = 1, . . . , p, then 

0 (h’) and lg -k- = 0 (lg h). 
‘N-1 
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The constructions used in the proofs of Lemma 5 and Theorem 4 are 
based on Lema 1 and therefore hold only if conditions (23) are satisfied. 

P 

- 

2 

- 

3 

- 

- 

. 

- 

1 - 

TABLE 1 

+ * / / jo.*,i 3.425 0.277 0.547 

p /3.939~0*~6/0.07*0~0.6oL 

o + /*.707(0.415/0.*719j0.111 

+ / 3.425 / 0.277 /0.0766~ 0.547 

1 1 + /10.577~0.135~0.0850~0.815 

0 / g j4.~2~0.153~.107~0.588 

Pe a I I 
I i 

2 

0 1 

i I 
3 I 0 I 1 

- 

I - 

- 

- 
1 2 

I 

TABLE 2 

"lrnl(II. 

7.958 0.237 0.0563 0.793 

4.957.4.254 0.0645 0.677 

2.253~ 0.12+078$~ 0.921 

We can prove with p = 2, from Lemma 3, and by analogy with till : 

Theorem 5. In the case p = 2, in order to reduce the norm Lz of the 

error llz(O)il by a factor I/E with the aid of method (13). it is suffi- 

cient, given any ~90.5, to carry out a cycle of no iterations with the 
system of parameters 

(46) 

ke times, where k, is given by (44), while 

and 

c = ruin hk,, 
l 

ka 
c’ = rnax AR,. 

ka 

The following asymptotic formula holds here for the total number of 
iterations v = nokg 
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Notice that, in a square region and on a square mesh, (46) is the 
881118 as (41), (47) as (42) and (48) as (45). 

Note 4. Using Note 1, it is easily shown that Theorem 4 also holds 
for the iterational scheme (13’). 

We now consider the minimization of the coefficient vo. Using (37) 
and (41), it is clear from (45) and (48) that, with 6 fixed, v. is a 
function of the three variables m, M and u. Since q and pP are always 
less than unity, v. will decrease with q and p,,. Hence, if pP is fixed, 
v will be a minimum if q is a minimum. But it follows from (41) that q 

is a minimum if the first and second terms on the right-hand side of 
(37) are the same, i.e. m/ (I+ m)P = M/ (1 + M)P. Hence 

It is clear from (37) that pP is an increasing function with respect 
to u. Hence, for v. to be as small as possible, u must also be a minimum. 
After M and u have been fixed, v. remains a function of m only and its 
minimum can be found numerically to any degree of accuracy. Table 1 gives 
the numerical values of the parameters occurring in ve, optimum with re- 
spect to m for minimum u. 

Table 2 gives for comparison the same parameters for u = 1. (The 
values of the parameters were obtained in [121 for p = 2 and 0 = 0, and 
in [41 for p = 2, 3 and 6 = 1. The numbers quoted there correspond to 
natural logarithms In (45) and (47). whereas we use logarithms to base 
10. ) 

Translated by D.E. Brown 
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