The fourth order difference scheme of approximation on the rectangular mesh \((h_a
eq h_b \text{ for } a
eq b) \) will be considered for Poisson's equation. We shall prove the convergence in the mean of the schemes in question at the rate \(O(|h|^4) \), for the Dirichlet problem in the \(p \)-dimensional rectangular parallelepiped \((p = 2, 3) \), where

\[
|h|^2 = \sum_{a=1}^{p} h_a^2,
\]

whatever the ratio \(h_a \) between the intervals. The conditions under which the maximum principle holds for the proposed schemes on a rectangular mesh will be discussed, and they will be shown to be uniformly convergent at a rate \(O(|h|^4) \) for \(p \leq 4 \).

An alternating directions iterational process will be considered, and the choice of sequence of iterational parameters \(\{\tau_n\} \) "reasonably high" speed of convergence of the process will be discussed. The choice of optimum ratios between the terms of the sequence \(\{\tau_n\} \), minimizing the number of iterations, will also be examined.

1. Given the \(p \)-dimensional parallelepiped

\[
\mathcal{D}_p = \{x = (x_1, \ldots, x_p) : 0 \leq x_a \leq l_a, \ a = 1, \ldots, p\}
\]

with boundary \(\Gamma \), we seek the solution in it of the problem

\[* \text{ Zh. Vych. Mat. 4, No. 6, 1025-1036, 1964.} \]
Alternating direction iterational schemes

\[Lu = \sum_{\alpha=1}^{p} \lambda_i u = -f(x), \quad L_\alpha u = \frac{\partial^2 u}{\partial x_\alpha^2}, \quad u |_\gamma = g(x). \] (1)

Let \(\omega_h = \{ x_i = (i_1h_1, \ldots, i_ph_p) \in D_p: \ i_\alpha = 0, \ldots, N_\alpha; \ h_\alpha = \frac{l_\alpha}{N_\alpha}, \) \(\alpha = 1, \ldots, p \) be a difference mesh, uniform with respect to each of directions \(x_\alpha, \) and \(\gamma = \{ x_i \in \Gamma \} \) the boundary of the mesh \(\omega_h. \)

Problem (1) - (2) was considered in [1] - [3] with \(p = 2, 3 \) on a difference mesh \(\omega_h \) with \(h_\alpha = h, \alpha = 1, \ldots, p, \) and difference schemes of the fourth order of approximation to the sufficiently smooth solution of equation (1) were proposed; provided the sides of the parallelepiped \(l_\alpha, \alpha = 1, \ldots, p \) were comparable in size, the schemes were shown to be uniformly convergent at the rate \(O(h^4) \).

An alternating directions iterational process (see (13) with \(\sigma = 1 \)) was proposed for these schemes in [4] with the number of iterations

\[\nu = \nu_0 \log \frac{1}{h} \log \frac{1}{\varepsilon}, \] (3)

where \(\varepsilon > 0 \) is the required accuracy. The choice of optimum iterational parameters \(\{ \tau_n \} \) minimizing \(\nu_0 \) was likewise discussed. The expression for the rate of convergence was only proved in [4] for \(p = 2. \)

* In [4], note 1, there is an error in the evaluation of \(d \) and \(\varphi. \) The correct expressions are

\[d = q + \frac{h^2}{12} q^2, \quad \varphi = f + \frac{h^2}{12} (qf + Lf) \) and \(q = \text{const.} \)
In the present paper we consider the more general family of itera
tional schemes with
\[\sigma \geq \frac{1}{2}, \]
(4)
where \(\sigma \) is a parameter characterizing the iterational process. A *one-
dimensional* procedure is proposed for choosing the iterational para-
ters \(\{\tau_n\} \), minimizing \(v_0 \) for difference schemes of the fourth order
of accuracy on the rectangular mesh \(h_{\alpha} \neq h_{\beta} \) for \(\alpha \neq \beta \). (Expression
(3) and the optimum value of \(v_0 \) are also obtained in passing for schemes
of the 2nd order of accuracy.)

2. We consider the following difference scheme * for the approxima-
tion of problem (1) - (2):
\[\Lambda' y + \varphi = 0, \quad y\big|_{\gamma} = g(x), \]
(5)
where
\[\Lambda' = \Lambda + \frac{\theta}{12} \sum_{\alpha=1}^{P} h_{\alpha}^2 \sum_{\beta \neq \alpha}^{1-p} \Lambda_{\alpha} \Lambda_{\beta}, \quad \Lambda = \sum_{\alpha=1}^{P} \Lambda_{\alpha}, \quad \Lambda_{\alpha} y = y_{\alpha} x_{\alpha}, \]
(6)
\[\varphi = f + \frac{\theta}{12} \sum_{\alpha=1}^{P} h_{\alpha}^2 \Lambda_{\alpha} f, \quad \theta = 0, 1. \]

Here (see [6])
\[x = x_1 = (h_1 i_1, \ldots, h_P i_P), \]
\[x^{(\pm i_\alpha)} = (h_1 i_1, \ldots, h_{\alpha-1} i_{\alpha-1}, h_\alpha (i_\alpha \pm 1), h_{\alpha+1} i_{\alpha+1}, \ldots, h_P i_P), \]
\[y = y_1 = y(x), \quad y^{(\pm i_\alpha)} = y(x^{(\pm i_\alpha)}), \]
\[y_{\alpha} = (y - y^{(i_\alpha)} / h_\alpha, \quad y_{\alpha} = (y^{(i_\alpha)} - y) / h_\alpha. \]

It is easily shown (see also [5]) that, for \(\theta = 1 \), scheme (5)-(6) (in
future scheme (5)-(6)) has the 4th order of approximation in \(|h| \) on the
class of sufficiently smooth solutions of (1), so that
\[\psi = \Lambda' u + \varphi = O(|h|^4). \]
For \(\theta = 0 \) scheme (5)-(6) (scheme (5)-(6)) becomes the familiar scheme

* Scheme (5) - (6) for \(f = 0 \) and \(\rho = 2 \) was proposed without a proof of
convergence in [5].
of the second order of accuracy.

Let us show that (5)-(61) has the 4th order of accuracy in $|h|$. Let u be a solution of problem (1)-(2) and y a solution of problem (5)-(61).

We now obtain for the function $z = y - u$:

$$\Lambda'z + \psi = 0, \quad z|_\gamma = 0. \quad (7)$$

We require the scalar products (see [8])

$$(y, v) = \sum_{\omega_h} yvH, \quad (yv)_a = \sum_{c^+} yvH, \quad (y, v)_{a,\beta} = \sum_{c^+} yvH$$

and the corresponding norms

$$\|v\| = \sqrt{(v, v)}, \quad \|v_x^a\| = \sqrt{(v_x^a, v_x^a)}, \quad \|v_{x-x}^a\| = \sqrt{(v_{x-x}^a, v_{x-x}^a)}$$

where

$$H = \prod_{a=1}^p h_a, \quad \gamma^+_a = \{x_i \in \Gamma: i_a = N_a; i_\beta \neq 0, N_\beta \text{ for } \beta \neq a\},$$

$$\gamma^-_a = \{x_i \in \Gamma: i_a = 0; i_\beta \neq 0, N_\beta \text{ for } \beta \neq a\},$$

$$\gamma^+_{a\beta} = \{x_i \in \Gamma: i_a = N_a, i_\beta = N_\beta; i_\delta \neq 0, N_\delta \text{ for } \delta \neq a, \beta\},$$

$$\omega_h = \omega_h - \gamma, \quad \omega^+_a = \omega_h + \gamma^+_a, \quad \omega^+_{a+\beta} = \omega^+_a + \gamma^+_a + \gamma^+_{a\beta},$$

$$\gamma^+_a = \gamma^+_a + \gamma^-_a.$$
We consider \((\psi, z)\):

\[
(\psi, z) \leq \|\psi\| z \leq (M_0 I)^v \|\psi\| \leq c_0 I + \frac{M_0}{4c_0} \|\psi\|^2.
\]

(10)

Substituting (9) and (10) in (8) and suitably fixing \(c_0\), we find that

\[
I \leq \frac{9M_0}{(4-p)} \|\psi\|^2,
\]

or, from (9),

\[
\|z\| \leq \frac{3M_0}{4-p} \|\psi\|.
\]

We have now proved:

Theorem 1. If the condition

\[
\|\psi\| \leq M|h|^4,
\]

is satisfied, the difference scheme (5)-(6) with \(p \leq 3\) is convergent in the mean at a rate \(O(1/h^4)\) so that

\[
\|y - u\| \leq M'|h|^4, \quad M' = M \frac{3M_0}{4-p},
\]

where \(M\) is a positive constant independent of \(|h|\).

Theorem 1 proves the convergence of scheme (5)-(6) in the mean on any sequence of rectangles uniform with respect to each mesh direction, provided only that \(|h| \to 0\). If we impose certain restrictions on the ratio between the intervals \(h_\alpha\) of the mesh \(\omega_h\), we can prove uniform convergence for scheme (5)-(6). We expand (5)-(6) in points

\[
\frac{7-p}{3} \sum_{\alpha=1}^{p} \frac{1}{h^2_\alpha} y = \frac{1}{6} \sum_{\alpha=1}^{p} \left((7-p) \frac{1}{h^2_\alpha} - \sum_{\beta=1}^{1-p} \frac{1}{h^2_\beta} \right) (y^{(+1\alpha)} + y^{(-1\alpha)}) +
\]

\[
+ \frac{1}{12} \sum_{\alpha=1}^{p-1} \sum_{\beta=\alpha+1}^{p} \frac{1}{h^2_\alpha} + \frac{1}{h^2_\beta} \left(y^{(+1\alpha,+1\beta)} + y^{(+1\alpha,-1\beta)} + y^{(-1\alpha,+1\beta)} + y^{(-1\alpha,-1\beta)} \right) + \varphi.
\]

It is clear from (11) that the coefficient of \(y\) on the left-hand side is equal to the sum of all the coefficients on the right-hand side. Let \(h_\alpha\), \(\alpha = 1, \ldots, p\), be such that all the coefficients of (11) are non-negative, i.e.

\[
(7-p) \frac{1}{h^2_\alpha} - \sum_{\beta=\alpha+1}^{p} \frac{1}{h^2_\beta} \geq 0.
\]

(12)
The maximum principle (see [2]) will then hold for equation (11), and we can prove, by the same arguments as in [2]*, that

Theorem 2.

If

$$
\| \psi \|_0 = \max_{\omega_h} |\psi| \leq M|h|^4
$$

and conditions (12) are satisfied, the difference scheme (5) - (6) with \(p \leq 4 \) is uniformly convergent at a rate \(O(h^4) \) so that

$$
\| y - u \|_0 \leq M'h|^4,
$$

where \(M' \) is a positive constant independent of \(|n| \).

For \(p = 2 \), conditions (12) become \(1/\sqrt{5} \leq h_1/h_2 \leq \sqrt{5} \). For \(p = 3 \), the ratios \(h_1^2/h_2^2 \) and \(h_2^2/h_3^2 \), which satisfy conditions (12) are given by the coordinates of the part of the plane inside the triangle with vertices \(A(\frac{1}{3}, \frac{1}{3}), B(1, 3), C(3, 1) \). If \(p = 4 \), it follows from (12) that Theorem 2 only holds with \(h_\alpha = h \ (\alpha = 1, \ldots, 4) \), which is only possible if the sides \(l_\alpha, \alpha = 1, \ldots, 4 \) of the region \(D_p \) are commensurable.

Note 1. If \(D_p \) has commensurable sides \(l_\alpha \), we can introduce the difference scheme \(\check{\omega}_h \) with \(h_\alpha = h, \alpha = 1, \ldots, p \), into it. On this mesh, problem (1) - (2) can be associated with the difference scheme

$$
\Lambda^*y + \varphi^* = 0, \quad y|_\Gamma = g(z),
$$

where

$$
\Lambda^* = \Lambda + \frac{h^4}{6} \sum_{a=1}^{p-1} \sum_{\beta=\alpha+1}^{p} \Lambda_\alpha \Lambda_\beta + \frac{h^6}{30} \sum_{a=1}^{p-2} \sum_{\beta=\alpha+1}^{p-1} \sum_{\delta=\beta+1}^{p} \Lambda_\alpha \Lambda_\beta \Lambda_\delta,
$$

$$
\varphi^* = f + \frac{h^2}{12} Lf + \frac{h^4}{360} \left(L^4f + 2 \sum_{a=1}^{p} \sum_{\beta=\alpha+1}^{p} L_\alpha L_\beta f \right).
$$

Scheme (5*) - (6*) with \(p = 2, 3 \) was proposed in [3], [9], where its uniform convergence at a rate \(O(h^6) \) was proved.

3. We consider the alternating directions method for the approximate

* See [8] for the case \(p = 2 \).
solution of problem (5) - (66). Let \(u = v^{(n+1)} \) be the \((n + 1)\)-th iteration, \(\nu = v^{(n)} \), \(\tau = \tau_n \) the iterational parameter, which will be chosen later, and \(\nu_i = (\nu - \nu) / \tau \). For the derivative scheme (see [4]), connecting \(\nu \) and \(\tilde{\nu} \), we take

\[
Au_i = A\tilde{\nu} + \varphi, \quad \nu|_\gamma = g(x), \quad \nu^{(0)}(x) = v_0(x),
\]

(13)

where

\[
A = \prod_{\alpha=1}^{p} A_\alpha, \quad A_\alpha = E - \sigma \tau A_\alpha, \quad Ev = v, \quad \sigma > \frac{1}{2},
\]

and \(v_0(x) \) is the zero approximation.

For \(\theta = 0 \), scheme (13) was proposed and investigated in [10] (see also [11] - [13]). One of the alternating directions algorithms (see [4], [7], [10] - [13]) may be used for determining \(\nu \) from (13); some of these only operate for \(\theta = 0 \). Let us prove, for instance, the algorithm proposed in [7]

\[
A_\alpha w_{(\alpha)} = A\tilde{\nu} + \varphi, \quad \Lambda_\alpha w_{(\alpha)} = w_{(\alpha-1)}, \quad \alpha = 2, \ldots, p,
\]

(14)

\[
w_{(\alpha)} = 0 \text{ for } x \in \gamma_\alpha, \quad \alpha = 1, \ldots, p, \quad \nu = \tilde{\nu} + \tau w_{(p)}.
\]

Notice that the algorithm proposed in [12] follows from (14) on carrying out the substitution \(w_{(\alpha)} = (v_{(\alpha)} - \nu) / \tau \) in (14); however, (14) is more economic, and in addition, the \(w_{(\alpha)}, \alpha = 1, \ldots, p, \) always satisfy the zero boundary conditions.

4. Let us consider the convergence of the iterational process (13).

We obtain for \(\omega = \nu - y \), where \(y \) is a solution of problem (5) - (66), and \(\nu \) a solution of problem (13)

\[
Aw_i = A\tilde{\nu}, \quad \omega|_\gamma = 0, \quad \omega^{(0)}(x) = v_0(x) - y(x).
\]

(15)

We apply Fourier's method for finding the solution of problem (15). Let \(\mu_\alpha = \mu_{k_\alpha}(x) \) and \(\lambda_\alpha = \lambda_{k_\alpha} \), \(k_\alpha = 1, \ldots, N_\alpha - 1, \alpha = 1, \ldots, p, \) be the eigenfunctions and eigenvalues of the one-dimensional Sturm-Liouville difference problem

\[
\Lambda_\alpha \mu_\alpha + \lambda_\alpha \mu_\alpha = 0, \quad \mu_\alpha(0) = \mu_\alpha(l_\alpha) = 0.
\]

(16)
The problem

\[\Lambda \mu + \lambda \mu = 0, \quad \mu|_\gamma = 0 \]

(17)

now has the solution

\[\mu = \mu_k(x) = \prod_{a=1}^{p} \mu_{k_a}(x_a), \quad \lambda = \lambda_k = \sum_{a=1}^{p} \lambda_{k_a}, \quad k = (k_1, \ldots, k_p). \]

The eigenvalues of problem (15) are easily obtained:

\[\lambda_{k_a} = \frac{4}{h_{a}^2} \sin^2 \frac{k_a \pi a}{2}, \quad k_a = 1, \ldots, N_a - 1, \]

(18)

but we shall only require the maximum and minimum of them in what follows.

We shall seek the solution of problem (16) in the form

\[w = w^{(n+1)} = \sum_k a_{k,n+1} \mu_k(x), \quad \bar{w} = \sum_k a_{k,n} \mu_k(x). \]

(19)

Substituting (19) in (15) and recalling that the functions \(\mu_k(x) \) are orthogonal, we get

\[a_{k,n+1} = \rho_{k,n+1} a_{k,n}, \]

(20)

where

\[\rho_{k,n+1} = 1 - \tau \left[\frac{\lambda - \theta}{12} \sum_{a=1}^{p} h_{a} \sum_{\beta \neq a}^{1-p} \lambda_{a} \lambda_{\beta} \right] \prod_{a=1}^{p} (1 + \sigma \lambda_{a})^{-1}. \]

(21a)

We obtain from (20)

\[a_{k,n+1} = a_{k,0} \prod_{s=1}^{n+1} \rho_{k,s}, \]

and hence, from (19)

\[w^{(n+1)} = \sum_k a_{k,0} \prod_{s=1}^{n+1} \rho_{k,s} \mu_k, \]

(22)

\[\|w^{(n+1)}\| = \left(\sum_k \left[a_{k,0} \prod_{s=1}^{n+1} \rho_{k,s} \mu_k \right]^2, 1 \right)^{1/2} \leq \|w^{(0)}\|, \]

where

\[R_{n+1} = \max_k \prod_{s=1}^{n+1} \rho_{k,s}. \]

(23)
Theorem 3. When conditions (4) are satisfied, the iterative process (13) with \(p = 2, 3 \) is convergent in the mean whatever the parameters \(\tau_h \) satisfying

\[
0 < c_1 \leq \tau_n \leq c_2,
\]

where \(c_1 \) and \(c_2 \) are constants independent of \(n \).

From (22), to prove the theorem we have to show that \(R_{n+1} \to 0 \) as \(n \to \infty \). But to do this, it is sufficient to show that

\[
|\rho_{k,s}| < \rho < 1,
\]

where \(\rho \) is a constant independent of \(n \), since we then have from (23)

\[R_{n+1} \leq p^{n+4}. \]

By (18),

\[
h_a^2 \lambda_a < \lambda_a \quad \text{and} \quad \frac{1}{12} \sum_{a=1}^{p} h_a^2 \sum_{\beta=1}^{1-p} \lambda_a \lambda_\beta < \frac{p-1}{3} \sum_{a=1}^{p} \lambda_a = \frac{p-1}{3} \lambda.
\]

It follows from this, and (21a), that

\[
\rho_{k,s} < 1 - \left(1 + \theta \frac{1-p}{3}\right) \tau \lambda \prod_{a=1}^{p} \left(1 + \sigma \lambda_a \right)^{-1}, \quad (26a)
\]

\[
\rho_{k,s} > 1 - \tau \lambda \prod_{a=1}^{p} \left(1 + \sigma \lambda_a \right)^{-1} > 1 - \frac{\tau \lambda}{1 + \sigma \lambda}. \quad (27)
\]

On now using condition (24), we find that

\[
|\rho_{k,s}| < \rho,
\]

where

\[
\rho = \max \left\{ \left|1 - \left(1 + \theta \frac{1-p}{3}\right) c_1 \lambda \prod_{a=1}^{p} \left(1 + \sigma \lambda_a \right)^{-1}\right|, \left|1 - \frac{c_2 \lambda}{1 + \sigma \lambda}\right| \right\},
\]

i.e., \(\rho \) is independent of \(n \). Recalling (4), we find that in fact \(\rho < 1 \).

(Theorem 3 was proved for \(\theta = 0 \) in [10].)

Note 2. The iterative scheme for problem (5) - (6) is

\[
A v_T = \Lambda v + q^*, \quad v \mid_{\gamma} = g(x), \quad v^{(0)} (x) = v_0 (x), \quad (13^a)
\]

while the corresponding function is

\[
\rho_{k,n+1} = 1 - \left[\lambda - \frac{a}{6} \sum_{a=1}^{p-1} \sum_{\beta=1}^{p-1} \lambda_a \lambda_\beta + \frac{h_s}{30} \sum_{a=1}^{p-2} \sum_{\beta=1}^{p-1} \sum_{\gamma=1}^{p-1} \lambda_a \lambda_\beta \lambda_\gamma \right] \prod_{a=1}^{p} \left(1 + \sigma \lambda_a \right)^{-1} \quad (21^a)
\]
Recalling (18), it can easily be seen from (21*) that, with (4) and (24),
the upper bound for the function \(\rho_{h,n+1}^* \) is of the same form as for the
function \(\rho_{h,n+1} \) with \(\theta = 1 \). Theorem 1 therefore holds for scheme (13*)
also.

5. To estimate the rate of convergence (number of iterations) of the
iterational process (13), we require a more exact upper bound for
\(|\rho_{h,n+1}| \).

Lemma 1. For the function \(\rho_{h,n+1} \), defined by (21g) with

\[
\sigma > \sigma_p, \quad \sigma_{1,1} = \frac{5}{6}, \quad \sigma_{2,1} = \frac{1}{2}, \quad \sigma_{p,0} = \frac{1}{2} \left[1 + \left(\frac{p-1}{p} \right)^{p-1} \right]
\]

we have

\[
|\rho_{h,n+1}| < \bar{\rho}(a),
\]

where

\[
0 < \bar{\rho}(a) = 1 - \frac{1}{\sigma} \left(1 + \frac{1-p}{3} \right) \frac{pa}{(1+a)^p}, \quad a = \frac{\sigma \lambda}{p} > 0.
\]

For, by the theorem on the arithmetic mean and geometric mean (see
[14], p. 29), we have

\[
\prod_{a=1}^{p} (1 + \sigma \lambda a) \leq \left(\frac{1}{1 + \frac{\sigma \lambda}{p}} \right)^p.
\]

We find from this and (26g) that

\[
\rho_{h,n+1} < 1 - \left(1 + \frac{1-p}{3} \right) \frac{\tau \lambda}{\left(1 + \frac{\sigma \lambda}{p} \right)^p} = \bar{\rho}(a)
\]

whatever the positive \(\sigma_p \).

It follows from (27) that, to complete the proof of Lemma 1, we have
to show that

\[
-1 + \left(1 + \frac{1-p}{3} \right) \frac{\tau \lambda}{\left(1 + \frac{\sigma \lambda}{p} \right)^p} < 1 - \frac{\tau \lambda}{1 + \sigma \lambda}.
\]

To this end, we consider the function

\[
F_{p,0} = \Sigma - \frac{pa}{1+pa} \left(1 + \frac{1-p}{3} \right) \frac{pa}{(1+a)^p},
\]
the fact that this is positive being equivalent to (31). We transform
\(F_{p,1} \) to the form
\[
F_{3,1} = 2\sigma - 1 + \frac{a^3 + 2a + 1}{(a + 1)^3(3a + 1)}, \quad F_{3,1} = 2\sigma - 1 + \frac{a^3 + 2a + 1}{(a + 1)^3(3a + 1)}.
\]
Given (28), the fact that \(F_{3,1} \) is positive is now obvious. Given (28),
the fact that \(F_{2,1} \) is positive is equivalent to the numerator being
positive, and this can easily be proved by considering its minimum. When
investigating \(F_{p,0} \), we shall be satisfied with a crude estimate. In fact,
we shall estimate separately \(pa/(1+a)p \) and \(pa/(1+pa) \). Now,
\[
F_{p,0} > 2\sigma - 1 - \left(\frac{p-1}{p} \right)^{p-1},
\]
and the lemma follows from this and (28).

The expression involving \(\rho_k, n+1 \), established by Lemma 1 holds under
stronger restrictions on \(\sigma \) (except for the case \(p = 3, \theta = 1 \)) then does
Theorem 3. For \(p = 2 \) it is possible to obtain an estimate rather differ-
ent from (29) for \(\rho_k, n+1 \), which holds for \(\sigma \geq \frac{1}{2} \).

Lemma 2. Given the function
\[
\rho(a_1, a_2) = 1 - x \frac{a_1 + a_2 - a_1 a_2}{(1 + a_1)(1 + a_2)}, \quad x \geq 0, \quad a \geq 0, \quad a_a > 0.
\]
If the condition
\[
x \leq 2,
\]
is satisfied, we have
\[
\rho(a_a, a_a) > 0, \quad \rho^2(a_1, a_2) \leq \rho(a_1, a_1) \rho(a_2, a_2).
\]
The first inequality may be proved immediately
\[
\rho(a_a, a_a) > \frac{1 - 2(x - 1) a_a + a_a^2}{(1 + a_a)^3} \geq 0 \quad \text{for } x \leq 2.
\]
We consider the difference
\[
\rho(a_1, a_1) \rho(a_2, a_2) - \rho^2(a_1, a_2) = \frac{J}{(1 + a_1)^3(1 + a_2)^3},
\]
where
\[
J = [(1 + a_1)^2 + x a_1 a_2 - 2x a_1] [(1 + a_2)^2 + x a_2 a_1 - 2x a_2] -
\]
Alternating direction iteration schemes

\[- \left[(1 + a_1)(1 + a_2) + \kappa a_1 a_2 - \kappa (a_1 + a_2) \right]^2.\]

Removing the brackets and collecting like terms, we get

\[J = \kappa (2 - \kappa + \alpha)(a_1 - a_2)^2. \]

This leads us to (33), provided (32) is satisfied.

A fairly simple corollary of Lemma 2 is

Lemma 3. If \(p = 2 \), we have for the function \(\rho_{k,n+1} \) defined by (219), provided condition (4) is satisfied

\[(\rho_{k,n+1})^2 \leq \prod_{a=1}^{2} \bar{\rho}(a_a), \tag{34} \]

where

\[\bar{\rho}(a_a) = 1 - \frac{1}{\sigma} \left(1 - \frac{\theta}{3} \right) \frac{2a_a}{(1 + a_a)^3}, \quad a_a = \sigma \lambda_a. \tag{35} \]

For, it follows from Lemma 2 that

\[(\rho_{k,n+1})^2 \leq \prod_{a=1}^{2} \rho_{k_a, n+1}, \quad \rho_{k_a, n+1} = 1 - \frac{2\tau \lambda_a - \theta \frac{h^2}{6} \tau \lambda_a^2}{(1 + \sigma \lambda_a)^3}, \]

since \(\rho_{k_a, n+1} > 0 \) for \(\sigma > \frac{1}{2} \). But we have, by (18),

\[\frac{h^2}{6} \tau \lambda_a^2 \leq \frac{2}{3} \tau \lambda_a \text{ and } \rho_{k_a, n+1} \leq \bar{\rho}(a_a). \]

(This lemma was proved in [12] for \(\theta = 0 \) and \(\sigma = 1 \).)

Finally, we require

Lemma 4. Given

\[0 < m < M. \tag{36} \]

The maximum of the function \(\bar{\rho}(a) \) defined by (30) and (35) in the interval \([m, M]\) is now equal to

\[\rho_p = \max_{m \leq a \leq M} \bar{\rho}(a) = \max \left[1 - \frac{1}{\sigma} \left(1 + \theta \frac{1-p}{3} \right) \frac{pm}{(1+m)^p}, 1 - \frac{1}{\sigma} \left(1 + \theta \frac{1-p}{3} \right) \frac{pM}{(1+M)^p} \right]. \tag{37} \]
For, it follows from

$$\tilde{\rho}(a) = \frac{1}{a} \left(1 + \frac{1-p}{3} \right) \rho \left(\frac{p-1}{p-1} \right) \frac{a-1}{(1+a)^{p+1}} = \begin{cases} \leq 0 & \text{for } a \leq \frac{1}{p-1} \\ \geq 0 & \text{for } a > \frac{1}{p-1} \end{cases}$$

that $\tilde{\rho}(a)$ takes its maximum value at either the left- or the right-hand end of the interval $[m, M]$.

6. We shall now estimate the rate of convergence of the iterational process (13). To be more precise, we shall find a sequence of iterational parameters $\{\tau_n\}$ such that a "reasonably high" rate of convergence is obtained. It follows from Theorem 3 that the parameter τ_n may vary within fairly wide limits. We shall therefore try to find a sequence $\{\tau_n\}$ such that, given any value of λ, there is at least one value of τ such that $|\rho_{k,n+1}| < \rho < 1$, where ρ is independent of both n and $|h|$. If we then perform the cycle of iterations (13) with the given system of parameters, we shall obtain, in view of (22) - (23), a p^{-1} times reduction in the norm of the error. It is desirable for the total number of parameters in the sequence $\{\tau_n\}$ to be "not very great" (obviously, in the worst case we can avoid a number of parameters equal to the number of distinct eigenvalues λ), i.e. for one parameter τ to be "stipulated" by a whole series of eigenvalues and not just one. In fact, let the sequence of intervals $(\xi_{(n-1)}, \xi_{(m)})$, $n = 1, \ldots, n_0$, cover the interval $[\lambda_1, \lambda_{N-1}]$, where

$$\xi_{(0)} = \lambda_1, \quad \xi_{(n-1)} < \lambda_{N-1}, \quad \xi_{(m)} > \lambda_{N-1},$$

(38)

the coordinates $\xi_{(n)}$ and the number n_0 being subject to definition. Let τ_n "stipulate" the λ_k which satisfy

$$\xi_{(n-1)} < \lambda_k < \xi_{(n)},$$

(39)

i.e. for the k given by (39), the functions $\rho_{k,n+1}$ satisfy (25) with a p independent of either n or $|h|$. This means in our case, by Lemmas 1 and 4, that

$$pm \leq \tau_n \sigma \xi_{(n-1)} \leq \tau_n \sigma \lambda_k \leq \tau_n \sigma \xi_{(n)} \leq pM,$$

where $m < M$ are positive constants independent of either n or $|h|$. If m and M are chosen, let

$$pm = \sigma \tau_n \xi_{(n-1)}, \quad pM = \sigma \tau_n \xi_{(n)}.$$

(40)

It now follows from this and (38) that
Alternating direction iterative schemes

\[\xi(n) = q^{-n} \lambda_1, \quad \tau_n = \frac{pm}{c} \lambda_1^{1/q-1}, \quad q = \frac{m}{M}, \quad (41) \]

\[\lg \frac{\lambda_1}{\lambda_{N-1}} \lg q \leq n_0 \leq \frac{\lambda_1}{\lambda_{N-1}} \lg q + 1. \quad (42) \]

Using Lemma 4, we arrive from (41), (42) and (22) - (23) at

Lemma 5. If a cycle of \(n_0 \) iterations is carried out in accordance with method (13) with a system of parameters \(\{\tau_n\} \) given by (41), then, if conditions (28) are satisfied,

\[\|z^{(n_0)}\| \leq \rho \|z^{(0)}\|, \quad (43) \]

where \(\rho \) is given by (37).

A simple consequence of Lemma 5 is

Theorem 4. In order to reduce the norm \(L_2 \) of the error \(\|z^{(0)}\| \) by a factor \(1/\varepsilon \) with the aid of method (13), it is sufficient, if conditions (28) are satisfied, to perform a cycle of \(n_0 \) iterations with the system of parameters \(\{\tau_n\} \) given by (41) \(k_0 \) times, where \(n_0 \) is given by (42), and \(k_0 \) by

\[k_0 \geq \lg \varepsilon \lg -1 \rho. \quad (44) \]

The following asymptotic formula holds here for the total number of iterations \(v = n_0 k_0 \):

\[v \asymp v_0 \frac{\lambda_1}{\lambda_{N-1}} \lg \varepsilon, \quad v_0 = \frac{4}{\lg q \lg \rho}. \quad (45) \]

Note 3. We have by (18):

\[\frac{\lambda_1}{\lambda_{N-1}} = \sum_{\alpha=1}^{p} \frac{1}{h_{\alpha}^2} \sin^2 \frac{\pi h_{\alpha}}{2l_{\alpha}}. \]

If \(\tilde{D} \) is the \(p \)-dimensional cube with side \(l \) and the mesh \(\omega_h \) is square, i.e. \(h_{\alpha} = h, \alpha = 1, \ldots, p \), then

\[\frac{\lambda_1}{\lambda_{N-1}} = \lg \frac{\pi h}{2l} = O(h^2) \text{ and } \lg \frac{\lambda_1}{\lambda_{N-1}} = O(\lg h). \]
The constructions used in the proofs of Lemma 5 and Theorem 4 are based on Lemma 1 and therefore hold only if conditions (23) are satisfied.

We can prove with \(p = 2 \), from Lemma 3, and by analogy with [11]:

Theorem 5. In the case \(p = 2 \), in order to reduce the norm \(L_2 \) of the error \(\|x^{(0)}\| \) by a factor \(1/\varepsilon \) with the aid of method (13), it is sufficient, given any \(\sigma \geq 0.5 \), to carry out a cycle of \(n_0 \) iterations with the system of parameters

\[
\tau_n = \frac{m}{c} c_q^n q^{-1} \quad (46)
\]

\(k_0 \) times, where \(k_0 \) is given by (44), while

\[
\lg \frac{c^*}{c_0} - \lg -1 \frac{1}{q} \leq n_0 < \lg \frac{c^*}{c_0} - \lg -1 \frac{1}{q} + 1 \quad (47)
\]

and

\[
c_0 = \min_{k_0} \lambda_{k_0}, \quad c^* = \max_{k_0} \lambda_{k_0}.
\]

The following asymptotic formula holds here for the total number of iterations \(\nu = n_0 k_0 \):

\[
\nu = \nu_0 \lg \frac{c^*}{c_0} \lg \frac{1}{\varepsilon}, \quad \nu_0 = \frac{1}{\lg q \lg p}.
\]
Notice that, in a square region and on a square mesh, (46) is the same as (41), (47) as (42) and (48) as (45).

Note 4. Using Note 1, it is easily shown that Theorem 4 also holds for the iterational scheme (13').

We now consider the minimization of the coefficient v_0. Using (37) and (41), it is clear from (45) and (48) that, with θ fixed, v_0 is a function of the three variables m, M and σ. Since q and ρ_p are always less than unity, v_0 will decrease with q and ρ_p. Hence, if ρ_p is fixed, v will be a minimum if q is a minimum. But it follows from (41) that q is a minimum if the first and second terms on the right-hand side of (37) are the same, i.e. $m / (1 + m)^p = M / (1 + M)^p$. Hence

$$M_2 = \frac{1}{m}, \quad M_3 = \frac{V(3+m)^4 + 4/m - (3+m)^2}{2}.$$

It is clear from (37) that ρ_p is an increasing function with respect to σ. Hence, for v_0 to be as small as possible, σ must also be a minimum. After M and σ have been fixed, v_0 remains a function of m only and its minimum can be found numerically to any degree of accuracy. Table 1 gives the numerical values of the parameters occurring in v_0, optimum with respect to m for minimum σ. Table 2 gives for comparison the same parameters for $\sigma = 1$. (The values of the parameters were obtained in [12] for $p = 2$ and $\theta = 0$, and in [4] for $p = 2$, 3 and $\theta = 1$. The numbers quoted there correspond to natural logarithms in (45) and (47), whereas we use logarithms to base 10.)

Translated by D.E. Brown

REFERENCES

3. MIKELADZE, Sh. E., Numerical solution of the differential equation $\partial^2 u / \partial x^2 + \partial^2 u / \partial y^2 + \partial^2 u / \partial z^2 = f(x, y, z)$. Dokl. Akad. Nauk SSSR, 14, No. 4, 177-180, 1937.

