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1. Given the p-dimensional ~arallelePiPe~ G= {o<z,\< ia, a= i, 

. . . . p?. In the cylinder qr = gx[[o f t < T] we consider the problem 

The matrix (k,p) is positive definite 

d-1 a-1 

where y = const. > 0, 5 = (cl, . . . , 53, . . . , I$) is any real vector. 

2, In [11 and [21 economical splitting schemes are described for the 
solution of equation (1) with constant coefficients kap = coast., :r= = 0, 
f = f(,, t) in the cases p = 2 and p = 3. When p = 2 one intermediate 
(fractional) step was introduced, and 4 fractional steps were introduced 
for p = 3. 

Local one-dimensional schemes for p = 2 are given in E31 and a scheme 
of higher order accuracy 0 (1 hi4 + rl) is constructed in [41. In 151 a 
splitting scheme for an equation with variable coefficients is studied: 
when p > 2 the matrix (k,& satisfies a certain additional restriction 
besides (4) even in the case of constant coefficients. 
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Relor we describe econolaical difference schemes which converge only 
when the matrix (k,$ is positive definite. 

3. We introduce a rectangular net, uniform with respect to each of 

the coordinates xo. ;;h= {zl = (zp), . . ., ~2, . . ., zP tiPI ), $ = i,h,, i, = 0, 

1 t * * -9 N,), denoting the set of internal points by o,, = (zr E C, i, = i, 

. . ., N, - 1, a = I, . . ., p) and the set of boundary points of ii,, by ,‘,,, so 

that $, = a+,+ T,,. Let o, = <tj, i=O, I,,.. , k, fk = 2”) be an arbitrary non- 

uniform net on the segment 10, ~1 with step r = ri+r = fj+i - Zj. 

We shall use the notation of f61. To approximate to the operators 

we use homogeneous difference schemes of second order approximation 

(5) 

(6) 

The coefficients asp are defined in terms of k~ with the help of 
linear pattern functionals (see 1611. For example. if for our pattern 
functionala we select one-dimensional non-decreasing functionals A6 & (a&], 

- i d f Q 0, Ag 1iJ = f, A@ 1~~1 = - 0.5, we define acy3 by the formula 

uaQ (2, t) = Ap IQ (2~ . - ., ze_slv .q, + a#,, Q+~’ l . ., sp, t)l. (7) 

It follows from this and from (4) that the matrix (clap) is positive de- 
finite 

(8) 

for sufficiently small hodho. Resides this, we shall make the require- 
ment that the conditions h, <ho ensure that 

is satisfied. The choice of ho obviously depends on 

dk 
mnx -9 , 

GjT,a a=, I I Y and rl. 

We note that in the case k+ = 0 for a # p considered in [31, [61 the 

“parabolicity” condition (8) is satisfied on an arbitrary net 5,. If 



184 A.A. Sanarskii 

Sk = k rp and QY = (saBY;B I+ * the condition 

A oQ is a scheme of first order approximation. 

h, d&e is missing, but 

4. We consider first the case when (kws) is a triangular matrix, 80 
that k,s = 0 for p > a. Then 

and L+ is defined by formula (5). Let I\, and i&-q be homogeneous differ- 
ence schemes of second order approximation corresponding to La and Lo+, 
and let Aclp have the form (6) and 

The local one-dimensional alternating direction scheme has the form 

%-* = A,Y, + ynBBYp + ‘pll fx, t, Y(,-3% Ci=f * * l *t p, 

P=l 

ye = uia (x, t) when zw = 0, ya = u& (2, t) when z= = ia, 

Y (2.0) = 110 (4. 

(13) 

(14) 

(15) 

Here, as ususl, yl, . .., ya, . .., y,,_l are intermediate values (on 

the “fractional* steps ‘j + Tj+lalP)v Yp = Yj+‘t Yr, = (Ya - Y,_,)ir* 

T = Tj+l = ‘j+l - fj. 

It should be borne 
function zo is always 

.z (+I 
=a 

= (t, - z,)lh, and 

in mind that the difference derivative of the net 
taken with respect to its direction xa, so that 

so on. Therefore the expression (aoez- )_ means 
xe %a 

To find yo from (13) and (14) we have to invert the operator E - v/\o, 
and this is done by one-dimensional successive substitution formulae. 
Therefore the algorithm is economical. 

5. In the case of an arbitrary matrix (kg& equation (1) can be trans- 
formed to “triangular” form 

au 
Lu = i 2,ii, 

a-1 

- = La + ib, t, 4, at 
i,li = L,u + 2 2 2&&i (16) 

a=1 @=I 
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with the triangular natfiX (?cm& In fact. 

Changing the order of summation in the second term on the right-hand 

side, replacing a by p and p by a and noting that 

we obtain 

It follows from this and (1) that (16) holds, where .&au= & = (‘as%) 3 

L, is given by formula (11) with a new expression ;, for the coefficient 

of &k/ax,, which we do not give. and 

ias = 0.5 UQ + kr,,J. (17) 

We have assumed here the existence of the derivatives ~k~=l~z~ and 

akpK iax, for a # 2. We note that the symmetry of the 

assumed. 

matrix (k& is not 

6. If the matrix (k,$ is symmetric, kaaR -= k+, and there is another 

scheme which is suitable. We introduce the intermediate values y ,...,yp, 

yP+l, . . . , yzp_l and represent L,r,~ in the form of the sum 

where (k&) and (k&) are, reSPeCtiVf?lY, left and right triangular 

matrices (kia A= 0 when p > z, kzs = 0 when ? <a). Let haa and A& be 

the corresponding homogeneous difference schemes. We consider the foflow- 
ing local one-dimensional economical scheme: 

(1% 

(19’) 

a’ :- 2/, _‘_ 1 - c(, 6 = 2p $ I- p, a’=p+ 1, . . ., 2p, Yzt, = Y9 
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ya = yo, = u& (x, t) when xa = 0; ya = yae = ut (2, t) when x, = I,, 

cc = 1, . . .) p, (20) 

y (2, 0) = u. (4 (Y,n = yi”,, (21) 

Here the boundary conditions are taken in the simplest form ya = ya’ for 

z E ?$:, r = 'j+l. It would be simplest of all to put ‘p* = 0 for a = 2, 

. ..I 2P, qJ1 = cp (x, t, A. It is clear from (lQ)-(20) that as before it is 
sufficient to invert the operator E - 0.5tl\, to find ya, a = 1, 

We note that by analogs with [sI the lower terms containing 
can conveniently be referred to the previous layer. 

. . . ) 2P. 

au/a+ 

7. We pass now to the question of the stability and convergence of 
the scheme (13)-(15). Let u be the solution of the initial problem (l)- 
(3). Y the solution of the difference problem (13)-(15). Putting 

ya = uj+l + za for a = 1,. . ., p, ye = y’ = uf + 2, we obtain for the net 

function t, the problem 

a-1 

zi II = A:2 + $,I A;z = A,z + 2 Aapzp + dorza-l, a = 1, . . ., p, 
P=1 (22) 

% =Owhenx,,=O, xa=la, a (I, 0) = 0, 1 da I< c*, c* = const.> 0, 

where ya is the local error of approximation, equal to 

qa=~;uj+l-6a11Li, a,,= I8 
’ { 

a = 1, 
I 0, a# 1; 

y = (U'+l - U') I Tj+l. 

It is not difficult to put ya in the form of the sum 

(24) 

since A# and I& have second order approximation. 

The question of the stability and convergence of the scheme (13)-(15) 
as usual reduces to the a priori estimate of the solution of problem (22) 
with the additional condit Ions (23)- (24). 

8. Lemma 1. Let zo be a net function which satisfies the boundary 
conditions (22). If conditions (8) and (9) are satisfied. then 
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- f: (A;& za) > T1 
a=1 

2 a&l~ali’- iif e ban’* 

where M = const. > 0 does not depend on the 

We write the energy identity for problem 
a scalar multiplication of equation (221 by 
and sum over a= 1, . . . . p (see Cd 1 

a21 

net. 

(25) 

(22). To do this we perform 

2 Zar apply Qreen’ 8 formula 

where 

J = 2 5 (a,,, 
a=1 

1; la-2 5 y (haf.$zpr fJ* 
a a=1 p=l 

(271 

using Green’s difference formula and the fact that sr, = 0 for 2, = 0, 
2, = 1, when a f p we find 

-P 

- G&pzpY e,) = 2 (ff =p 2 j;., 

Therefore the expression for J takes the form 

It follows from this and from (8) and (9) that 

Therefore instead 

wlP~+~ 5 

of (26) we can write 

We have the estimate 

where Ml is a positive constant nbich depends on 

inaxIb,j. Lemma (25) follows from this and from 

=*VT 

9. Lemma 2. Let ;ih satisfy the conditim 
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$ 3&o. 
a==1 

Then 

The lemma is proved in [61. 

Noting that 

and using Lemmas 1 and 2 we can transform inequality (29) for suffi- 

ciently small T <TO to the form 

(33) 

(34) 

where M are positive constants which do not depend on the net. We now 

apply Lemma 4a from [?I 

11 zj+l I/ < M I 2 (2, 0) 11 + M’ $q, 

where 

ill -= i,:tX zY [I$ Q”*. 

We have thus proved the following theorem. 

(35) 

(36) 

Theorem f. The difference scheme (13)-(15) for sufficiently small 

lht < ho and T < TO is stable in the mean with respect to the right-hand 

side and the initial data. If the conditions securing maximum order of 

approximation (23) and (24) are satisfied, the scheme (13)-(15) converges 

at the rate 0 (1 11 I2 -i-r/T?), so that 

10. Theorem 1 is also valid for the scheme (141,(?I). The condition 
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/fii < ho is missing if the coefficients k* are constant or if the scheme 

&pY = (a,pY;s&* Qa@ = k Cl@’ with first order approximation is used to 

approximate to L @. We note that a different approximation was used in 

111, [51 for Lo+. 

The condition ‘r <TO is missing if ro E 0 or the dfvision of L into a 

sum is done so that L, contains the derivative au I ax,_,; then & con- 

tains the term y. 
“a-1. 

, which is taken on the preceding “fractional” Step, 

i.e., is calculated from the values of yo_1 (see [d). 

The estimate 0 (I hia + $“?) for L = y - u is probably too crude and 

is associated with the method of proof used; even for a diagonal matrix 

(A,& when k,* = 0 for a # p we have not succeeded in getting rid of 

0 (l/p) Meanwhile the maximum principle in this case gives 11 z& = 

0 (I hi2 + ll~l!& II"& = mzf y = f*. 

Since in the general case the maximum principle for the scheme (13) 

does not apply. the method of [31 enables us to obtain only the estimate 

0 (1 h ja + 2*/l/q;), where 11, = ,rnncpha (see bl). The scheme (13)-(15) was 
\ . 

experimentally verified for p = 2 on VariOUS netS ah X 9; it was shown 

that it can have first order accuracy on arbitrary sequences of non- 
uniform nets. 

When p = 2 we can write a number of difference schemes 131 (three- 

parameter family of schemes). We cannot consider these schemes in detail 

on this note. The results are still valid if in (1) we replace &~/at by 

CCX. t) au/a,, where C(X, t) >, cl > 0. 

11. We have been describing the case when the region of change of the 

space variables (~1, . . . . x,) is a parallelepiped. All our results can 

be applied without change to the case of regions G formed by parallele- 

pipeds with boundaries parallel to the coordinate planes. The construc- 

tion and study of local one-dimensional algorithms suita!.!@ for arbitrary 

regions (; is of interest. 

We have also assumed that the space net q, is uniform in each of the 

variables. The study of similar schemes on non-uniform nets q, would be 

of interest. we note that in this case there would probably appear certain 

restrictions on ha/k,+, because of the condition for the matrix (a& to 

be positive definite. 

We have restricted ourselves to the study. of the first boundary problem. 
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An algorithm for the third boundary problem can be constructed similarly. 

12. The term “local one-dimensional scheme” applied to this case means 
that in order to find ya we obtain one-dimensional algebraic problems. 
In fact the schemes (13) and (19). like our other economical schemes [31, 
[61. i81, are concrete realizations of the general principle of con- 
structing econoaical schemes for the equations 

?!!=.u+j, deU=Lu+f 
at ata , 

which uses only the additive property of the operator L 

where L, are linear non-bounded operators. 

Schemes constructed on the basis of this principle are called addi- 
tive schemes. The operators L, in [31, [d, [81 are one-dimensional 
elliptic operators; in this work L, has a more complex form. For addi- 
tive echemes to be applicable it is sufficient that the difference 

approximations ho of the operator La should be positive definite oper- 
ators on the net Oh. A description can be giVt?n for Operator equations. 
In this direction, in particular, it is not difficult to obtain economi- 
‘cal schemes for systems of parabolic equations of general form assuming 

that in (1) a is a vector u = (u(i), . . ., uti), . . ., dn)), and (A& = (k,$) is 

a cell matrix whose elements are the matrices k,$ with respect to i, j. 

In this case 2p - 1 (or 4p - 1) intermediate values yo, a = 1, 2, . . . , 

2P - 1, Y(2p) = Yl ‘+l are introduced. The basic requirement which is then 

made in the algorithm for determining the vector ya is that the operator 
A, should be a three-point operator with respect to space and that the 
matrix of coefficients should be triangular. For all local additive 
schemes estimate (37) holds. The region G here is arbitrary if the oper- 
ator L does not contain mixed derivatives, and the region G has the 
special form indicated in Para. 11, if L does contain mixed derivatives. 

13. For hyperbolic equations containing mixed 

g = Lu + f, 

where LU Is (1). in the cases p = 2 and p = 3 it is not difficult to 
write similar schemes which are a generalization of the schemes of [81 

derivatives, 

(39) 

for an equation with a diagonal coeffidient matrix. 

In this case the local one-dimensional schemes converge at the rate 

0([/1)~+7) or 0()h12tr2/Jhk). The splitting method enables us to construct 
three-layer schemes 0(lh(4 + v’) (see [41) with more strict requirements on the, 



Economical difference schemes 191 

smoothness of the coefficients of the differential equation (38). on the 
assumption that C is a parallelepiped. 

Translate? by Il. Fainstein 
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