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1. Given the p-dimensional parallelepiped G ={0< 1z, <l, a=1,
vy p}. In the cylinder @r = GX[0 <t <T] we consider the problem

ou LA du L du
=22 E( kap (=, 3)3—33) + ) ral= V%, ti@tuw=Lutfi (1)

a=x} 8=1 a==3
u]x¢=0 = u;a (x: i), u ‘xagla = ura (xi t)i X = 1! MRS P; (2)

u (1‘, 0) = Up (Z), r = (x].’ .oy :t,p). (3)

The matrix (khg) is positive definite

P P
D ke lz D EE =T N EL, (20 € T @)
a,f=1 a==1
where y = const. > 0, € = (§;, ..., &9, ..., §p) is any real vector.

2. In [1] and [2] economical splitting schemes are described for the
solution of equation (1) with constant coefficients #&,, = const., ;r, =0,
f = f(x,¢) in the cases p = 2 and p = 3. When p = 2 one intermediate
(fractional) step was introduced, and 4 fractional steps were introduced

for p = 3,

Local one-dimensional schemes for p = 2 are given in [3] and a scheme
of higher order accuracy O (Jhj* 4+ 7% is constructed in (4], 1n [5] a
splitting scheme for an equation with variable coefficients is studied:
when p > 2 the matrix (k,5) satisfies a certain additional restriction
besides (4) even in the case of constant coefficients.

* Zh. vych. mat., 4, No. 4, 753-759, 1964.
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Economical difference schemes 183

Below we describe economical difference schemes which coanverge only
when the matrix (k,g) 1is positive definite.

3. We introduce a rectangular net, uniform with respect to each of
— : i i i . .
the coordinates xg, o, ={z; = (&, ...,z .., zgp) ), 2t = ighy, i =0,
1,...,N,}, denoting the set of internel points by @, = {z; € G, i, = 1,
cewN,—1,a=1,...,p} and the set of boundary points of Bh by Yh. S0
that ©, = o, + T, Let o ={t, i=0,1,.. ,k =T} be an arbitrary non-

uniform net on the segment [0, Tl with step = Tiyy = b4y — ¥

We shall use the notation of [6}. To approximate to the operators

a du
Lagt = 3z, | ban = 0 52, ©)
a [
we use homogeneous difference schemes of second order approximation

Ay =75 [‘“ﬂﬁyia %, +(“:‘?§) y"a)ia] Bt ©

The coefficients ayy are defined in terms of kyn with the help of
linear pattern functionals (see [6]). For example, if for our pattern
functionals we select one-dimensional non-decreasing functionals Ay [p(sg)],
—1< <0, 44 [1]=1, Ap lsg] = — 0.5, we define a3 by the formula

Q“B (1’, t) == AB [kﬂ'B (Il, PR z‘a__l, zs + Cpha. Za_’_l, .. ovy ’ﬂ' t)]. (7)

It follows from this and from (4) that the matrix (“09) is positive de-
finite

P P
D tgplba=m N E, m=cmst>0 (1, <1, ®)
a,f=1 a=1

for sufficiently small hy < hy. Besides this, we shall make the require-
ment that the conditions hy < hp ensure that

P P
(+1p)
) oap” b =T D g o)
a=1

a,B=1
is satisfled. The choice of h, obviously derends on

ok, p
*s

max
¢r.a

, T and 714

We note that in the case ko = 0 for a # P considered in (3], [6] tne
"parabolicity” condition (8) is satisfied on an arbitrary net ;h- 1f
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Cgg = kpp 8nd  Agpy = (aasy;ﬁ)xu. the condition k, <%, is missing, but

1\‘,‘a is a scheme of first order approximation.

4, We consider first the case when (kaQ is a triangular matrix, so
that kyg =0 for B > o Then

p a-1
N Lygu = Lyu + D) Lygu = Lyu, (10)
p=1 p=1

a3 du du
Lot = Lgs = 5 (kea @0 g3 ) + e (200 s (1)

and Laﬁ is defined by formula (5). Let Aa and Aqﬁ be homogeneous differ~
ence schemes of second order approximation corresponding to Ly and Laﬁv
and let Auﬂ have the form (6) and

Ay = (8,4 (2, 1) y;"),u 4 b, (=, 1) v .= 0.5 (y;‘ + ¥e,)- (12)

The local one-dimensional alternating direction scheme has the form

a—1

y‘"‘ == Aayg + 2 AgByB + Py {z, ¢, ya..l}) a=14,...,p 13)
=1
Yy = U, (7, 1) when r, = 0, Yg = U, (7, 1) whenz, = I, (14)
y (z, 0) = uy (2). (15)
Here, as usual, y1, ..., yqo -+, Yp.1 are intermediate values (on

the "fractional" steps t; + 1j+ia/p), Yp = AL yt', = (Yg — Ya_p)/T

T = “J"’l = ‘]“"l —— t]-

It should be borne in mind that the difference derivative of the net
function :z4 is always taken with respect to its direction x5, so that

z, = {zg:)__ 2,)/h, and so on. Therefore the expression (E“Bz-';s)-;a means

2, e zi1B)
= B <)
(aa‘az:?ﬁ);'.:‘l = a,p < ........]?0......_.)_ .

Ta

To find yy from (13) and (14) we have to invert the operator £ - TA,,
and this is done by one-dimensional successive substitution formulae,
Therefore the algorithm is economical.

5. In the case of an arbitrary matrix (kaﬂ) equation (1) can be trans-
formed to "triangular" form

P a-1
%:i =Lu+ f(x, t, ), Lu= 2 Lyu, Lju=Lu+2 2 L g (16)
a=1 B=1
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with the triangular matrix (}caﬁ). In fact,
p P P P ,
a3 du a du
22?9‘5;(«19615) ZZax (aﬂaxﬁ)+2201¢(kﬂﬂaxﬂ)'
a=] B==] =1 =1 @==] B==a
Changing the order of summation in the second term on the right-hand
side, replacing o by  and P by « and noting that

a(k au) _q_(k _gg__) Fga ou  Okga du

.5:;:‘; Ba 3z, | = Bz pa dzg + oz, oz 8:: oz, dzg°’
we obtain
p P . P P a1 ok ok
du g Ba du Ba du
ZE (“Bax)—':EZ?};(ﬁ“ax )+ZZ(6:¢ ax 83: a:c)
=1 f=a A a=] B=1 a=1 =1 B B

A o (. B
It follows from this and (1) that (16) holds, where L,u= 35— (kaﬂgf—),
a 8

L, is given by formula (11) with a new expression ;u for the coefficient
of Jufdzx,, which we do not give, and

kyp = 0.5 (kg + kgo)- (7
We have assumed here the existence of the derivatives dkg,/0z; and

6ksafa:cu for o # 3. We note that the symmetry of the matrix (kaﬁ) is not

assumed.

6. If the matrix (k,;) is symmetric, A,, = k;,, and there is another

scheme which is suitable. We introduce the intermediate values y revsaYps

Yp+is =0 ¥2p-1 and represent Lygu in the form of the sum
- - a du
La,@" = Laﬂu + L:Bu, Ldﬁu = ﬁl— (kfﬁ -a—x-;) , (18)

where (kzﬂ) and (k:p) are, respectively, left and right triangular

matrices (k,g==0 when B>a, k;;=0 when B<a). Let Ajg and Aj; be
the corresponding homogeneous difference schemes. We consider the follow-
ing local one-dimensional economical scheme:

?ﬁal = A aMa 2 AL apls -+ P (2, 8, Yuy)s a=1...,p (19
A=1
' P
vy =y Ay, - 2 Aaayn + Qe (20 8 Yoy {19}
& fB=a1

a = 2p-1—a, L =2P+1—Bv a'=P+1s-~w 2ps !/2,,=y,
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Yo = Yar = Uygu (=, 1) when z, = 0; Ye S Yoo = u;a (=, t) when z, = Iy
a=1) sey Py (20)
Yy (7"1 0) = Uy (z) (ygp = y”l)v (21)

Here the boundary conditions are taken in the simplest form yg = yo' for
zE t= t;,;. It would be simplest of all to put ¢, =0 for a =2,

vees 2p, @, =@ (2,8 y). It is clear from (19)-(20) that as before it is
sufficient to invert the operator £ -~ 0.57Ay to find yq, « =1, ..., 2p.

We note that by analogy with [6] the lower terms containing au/az.,
can conveniently be referred to the previous layer.

7. We pass now to the question of the stability and convergence of
the scheme (13)-(15). Let u be the solution of the initial problem (1)-
(3), y the solution of the difference problem (13)-(15). Putting
¥ = w1+ 3, for a=1,...,p, yo=y =+ &, we obtain for the net
function z4 the problem

a—1
o= Agr b Agr=Azt N Az tdz,,, a=1...,p @2
=1
z, = Owhen z, = 0, z, = 1, z2(z,0) =0, [d, ] <c* ¢*=const>0,

where y, is the local error of approximation, equal to

a=1 ; ;
! w = (Wl — W) [ vjn,

. 1
= 1 — ’
‘pa = Aau"" — éa'lu’?’ 6¢.1 - {0' ask1; 1

It is not difficult to put y, in the form of the sum

. . . et 1 Ju\ it
‘pa =‘P¢ + ‘pa’ ‘pa = (Lau + Bgl LaBu + fa (zr tv u) —";—l:) (23)
L . 1 2 >
M, =0, =00r'+7w, [|a'=) 1, 24
a=] a=1

since Aaﬂ and Ay have second order approximation.

The question of the stability and convergence of the scheme (13)-(15)
as usual reduces to the a priori estimate of the solution of problem (22)
with the additional conditions (23)-(24).

8. Lemma 1. Let z5 be a net function which satisfies the boundary
conditions (22), If conditions (8) and (9) are satisfied, then
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W7 Enz-u—Mznzﬁ’:

a=% a==1 a=1

where M = const. > 0 does not depend on the net.

187

(25)

We write the epnergy identity for problem (22). To do this we perform
s scalar multiplication of equation (22) by 2z, apply Green's formula

and sum over x = 1, ..., p (see {s])

(1=1P); +r2ux- u+J—-2§} (B + bty + dutayy 7h

@==l a=1
where
a—1
J =2 Z (8,4, z ]¢°—2 2 2 (Aaﬁzﬁ, 5,).
a=1 a=1 f=1

Using Green's difference formula and the fact that st=0 for =z, =

z,=1_ when « # P we find

a @
+1
—_ (ZAGBZB' z,) =2 {aasz;‘B, z;a) +2 (a&a B)zxﬁ, "'::“) .
Therefore the expression for J takes the form
+18
1=(8 B e )+ (R B4 g )+
=1 a=1 B=1

+ Z {am Ix ...la+d( 11) ’ h [x =0

a=]
It follows from this and from (8) and (9) that

>m 3 A

a=}

Therefore instead of (26) we can write

(nzu).+r 2 Iz -+ 21, 2 % F<2 2 (ba +bazy_+ daZanyy 2a)-

=1 a=1 a==1

We have the estimate

22 (byzy +da”¢-1' 2,) S '1'12“‘- i+ M, 2"3 I,

a=1 a=1

where M; is a positive constant which depends on max |d,| snd
2, Q7

max |b,|. Lemma (25) follows from this and from (28).

a, Qp

9., Lemma 2. Let &a satisfy the condition

(26)

@n

0,

(28)

(29)

(30)
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(31

b=
o
1~
Il
<

a8
U
KA

Then

kil d
23 oz =23 (b " D 5 JSEe Dl i+ Bkl @

a=1 a=1 g=] a-=1

The lemma is proved in [6].

Noting that

b4 P
2 ) (b %)< 2 2 | P+ Mo D 10, B

a=z] LS

and using Lemmas 1 and 2 we can transform inequality (29) for suffi-
ciently small T T to the form

177+ 0.5m 2 g, P <A+ a0 + Moy, 33)

1ol = w* 2 1%+ 5= ZT E (R (34)

where M are positive constants which do not depend on the net. We now
apply Lemma 4a from [7]

1 <M iz (s, 0) |+ M |91, (35)
where
. 31 L\
1= (X w1 I - (36)
J' =1

We have thus proved the following theorem.

Theorem 1. The difference scheme (13)}-(15) for sufficiently small
Il < hg and T < 14 is stable in the mean with respect to the right-hand
side and the initial data. If the conditions securing maximum order of
approximation (23) and (24) are satisfied, the scheme (13)-(15) converges

at the rate O{|h*+V 1), so that
[ — S M(RP+ V) for © < T, |hl<h, 37)

where 1° —= max 1.
W, 7

10. Theorem 1 is also valid for the scheme (19)-(21). The condition
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}hi < hg is missing if the coefficients & are constant or if the scheme
AaBy ==(aa3yggxa, typ = kaﬁ, with first order approximation is used to

approximate to L,n. We note that a different approximation was used in

(1], 5] for Leg.

The condition T <7y is wmissing if r, = 0 or the division of L into a
sum is done so that L, contains the derivative du/dz,_ ;. then Ay con-

tains the term y£ , which is taken on the preceding "fractional" step,
25 |

i.e., is calculated from the values of y,_.; (see (6]).

The estimate O {2+ ¥V 1*) for z =y — u is probably too crude and
is associated with the method of proof used; even for a diagonal matrix

(k,5), when k,; =0 for o # B we have not succeeded in getting rid of

O (V'7) Meanwhile the maximum principle in this case gives |zf,=
2 T|, = T, = T,

O (Ri*+ Nl Il m‘gf g

Since in the general case the maximum principle for the scheme (13)
“
does not apply, the method of [3] enables us to obtain only the estimate

O(h{®+ v /Vh,), where h, = min kh_ (see [8]). The scheme (13)-(15) was
JECEN 4

experimentally verified for p = 2 on various nets @y X wy; it was shown
that it can have first order accuracy on arbitrary sequences of non-
uniform nets.

When p = 2 we can write a number of difference schemes (3] (three-
parameter family of schemes). We cannot consider these schemes in detail
on this note. The results are still valid if in (1) we replace Su/0t by
e{x, t) Su/Ot, where c{x, 1) >c1 > 0.

11, We have been describing the case when the region of change of the
space variables (xj, ..., xp) is a parallelepiped. All our results can
be applied without change to the case of regions G formed by parallele-
pipeds with boundaries parallel to the coordinate planes, The construc-
tion and study of local one-dimensional algorithms suitacle for arbitrary
regions G is of interest.

We have also assumed that the space net wy is uniform in each of the
variables. The study of similar schemes on non-uniform nets w, would be
of interest. We note that in this case there would probably appear certain
restrictions on h,/kh,,, because of the condition for the matrix (a,p) to
be positive definite.

We have restricted ourselves to the study of the first boundary problem.
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An slgorithm for the third boundary problem can be constructed similarly.

12. The term "local one-dimensional scheme” applied to this case means
that in order to find yy we obtain one-dimensional algebraic problems.
In fact the schemes (13) and (19), like our other economical schemes [3].
[6]. [8], are concrete realizations of the general principle of con-
structing economical schemes for the equations

du dtu
=L y T =
3t u ] 3 Lu + {,
which uses only the additive property of the operator L
Lu = ZL;;“»
[ 3

where La are linear non-bounded operators.

Schemes constructed on the basis of this principle are called addi-
tive schemes. The operators Ly in [3]. [6]. [8] are one-dimensional
elliptic operators; in this work Ly has a more complex form. For addi-
tive schemes to be applicable it is sufficient that the difference
approximations Aq of the operator LCx should be positive definite oper-
ators on the net w,. A description can be given for operator equations.
In this direction, in particular, it is not difficult to obtain economi-
cal schemes for systems of parabolic equations of general form assuming

that in (1) u is & vector == @, ..., u®, ... u™), and (k) = (kD is

a cell matrix whose elements are the matrices k;g with respect to i, j.
In this case 2p - 1 (or 4p - 1) intermediate values y,, « =1, 2, ...,
2 - 1, y(zp) = yJ*1 are introduced. The basic requirement which is then
made in the algorithm for determining the vector yy, is that the operator
Acx should be a three-point operator with respect to space and that the
matrix of coefficients should be triangular. For all local additive
schemes estimate (37) holds. The region G here is arbitrary if the oper-
ator L does not contain mixed derivatives, and the region G has the
special form indicated in Para. 11, if L does contain mixed derivatives.

13. For hyperbolic equations containing mixed derivatives,
Fu
T Lu—+f, {38)
where Lu is (1), in the cases p = 2 and p = 3 it is not difficult to
write similar schemes which are a generalization of the schemes of (s]
for an equation with s diagonél coeffidient matrix.

In this case the local one-dimensional schemes converge at the rate

O(|h|2 +T) or 0(lh|2+1'2/\] hy). The splitting method enables us to construct
three-layer schemes 0(|h|4 + 72) (see {4]) with more strict requirements on the
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smoothness of the coefficients of the differential equation (38), on the
assumption that G is a parallelepiped.

Translated by R. Feinstein
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