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In (1] and [2] an economical method for solving parabolic equations with
several variables, called a local one-dimensional method, is described.

The purpose of this paper is to study local one-dimensional differ-
ence schemes for hyperbolic equations in an arbitrary region G. These
schemes converge on arbitrary nonuniform nets .

If the region G is a parallelepiped, we can construct a number of
other schemes which are splitting schemes (3] and [4]. Such schemes were

first described in [3]. Splitting schemes of a higher order of accuracy
are considered in [5].

1. The difference schemes

1. We shall consider the equation

1)
P
du a du du
W:ZLau-F/(z, t), Lau=a—x;(ka(1', t)éz_a) -}—ra(x, t)a'—z;"*' qa(z, t) u,
a=1
where z = (z;, ..., ;) is a point in p-dimensional space with coordi-
nates Iy, ..., Za, ..., Ip. Let G be an arbitrary p-dimensional bounded

region with boundary I, Qr = (G+T) X [0<<t<<T], Qr =G X(0<t Tl
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In the cylinder 62‘ we are looking for a solution of the problem

D
Y L+ f(z ), (200 ulr = (z 1)
a1 )

u (2, 0) = ug (2), 90 (2, 0) = Uy (2).

As usual we assume that this problem has a unique solution which is con-

tinuous in the closed region Cﬂ~ and possesses all derivatives required
in the course of the solution.

We make the same assumptions with respect to G as were made in (1]
and [2].

2. We shall use the same nets mgl), of?, as in (2]. we mainly consider

the net @, = of¥, the internal nodes of which are all the nodes =& G
which lie inside G and all the boundary nodes €Y, which lieonT,

If the region G is arbitrary, then the net ®f is nonuniform near the

boundary even when the basic lattice which covers ; is uniform. The
boundary conditions on this net are given without drift.

In contrast to [2], we take the net o.={ =jt 0t T]) to
be uniform.

The notation is the same as in [2]. We introduce the intermediate
steps #jiap and the corresponding values yi*®/P =y . We shall write

y = yi, §.= ¥, y= y:'q’ 3;6 =yl g = (y — ?})/1,

¥ = v — 2y + )/, ¥r, = We =¥}/

In order to construct local one-dimensional schemes we proceed by
analogy with [5]: we approximate to the operators

T
ﬂbau=——i}—,—%——(ll¢u+fa), Sh=fhH a=t,...,p

a=1
separately. To approximate to &%u/dt® we use the expressions

A\ 4
u ua - 2u¢_1 + Uy 1 8%
e e
lata T3 4 8!

a=1,2 (ua:f;, ug = u), P=2: (3)

ua—ua—l—'ua—z"*';‘a 2 d%u - _ —_ = 3. (4
L = ~ g, 0=1 23 (= u =), P (4)
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To approximate to L,u + f. on o, we use the homogeneous difference
scheme A,y + @, of second order of approximation, described in [2].
The coefficients A, and @, will be taken at time ¢ = 0.5 (tiap +
tj—1+a/p)v so that A, = A, (t;), Pa = Pa (7, t;)-

For the hyperbolic equations (1) the local one-dimensional schemes
have the form

Y. = Oha Wat¥,) + 209, a=1,...,p p=23

ta

()

1

{-1- when p=2,
s=12%
5 when p=23,

where Y1, is given by one of the formulae (3) or (4).
[+

When p = 2 the scheme is a three-layer scheme, when p = 3, four-layer.
This is where it differs from parabolic equations, for which the form of
the local one-dimensional schemes did not depend on the number of dimen-
sions.

We can write equations (5) in the form

. 2Yq.t + 207%Q, when p = 2,
(E—o?A) (y, +y,)= {ya_~—1 +y,.,+ 201, when p= 3. (6)

To find ya—{—‘zv/al (;a is known) we have to invert the three-point operator
E — o01®A,, which can be done using the successive substitution formu-
lae and the boundary condition

Y, = g (z, tjrap) when zE 15 0
In the case of the net off’ the boundary condition has the form
Yg ™ Bc?y;ﬂ“) 4+ —BJuy, for reE®
;

(see {H. [?.]). 1f the operwtor L,u contains the lowest terms [u =

du . . . .
Ta 3" -+ q,u, then waen the successive substitution formulae are used
&

it is generally necessary to make the steps of the net wp sufficiently
small. In order to eliminate any restrictions on the steps nf the net
wp, we must, by analogy with {2,', take the lowest terms on intermediate

rows. Then y, is found after inverting the operator L — st®\,, where
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a du
AW = @az)s, ~Low = 5 (ke -

which is possible for any hq.

It is clear from [1], [2], (6] and [7] that teking the lowest terms
into account only complicates matters without changing the basic proper-

ties of the difference schemes. Therefore in future we shall take
AL = AY without loss of generality.

We take the initial conditions in the following form:
(8) if p = 2 then
Y@ 0 =@, (E—otA)yh=F, yh=y(zz), O
Fy= o+ 0.55,% + L+ PAuy +  [L i — L (Au+ )], _;
(b) if p =3, then
(2,0 =1 (2), (E—0A) yh=F, (B — 0vA,) (4% + o) = 29/ + F,,

()
Fo=uy + Lty + 20 u + 2 [2f,— L (Au + f)]
3 3 3 8

Fy= (% f, — L (Au+ e

t=0"

Thus we associate problem (2) with the difference problem defined by
conditions (5), (7), (8) or (9). We shall call it problem II.

3. We calculate the error of the difference scheme. Let u be the
solution of problem (2) k and y the solution of problem II. The error

Za = y,— uite/p is given by the conditions

2z =O0Au(zat 2) + ¥a for t>7(>1),
2.=0, zE1% z(z, 00 =0, ze&wn,

(E — ot®A,) 2/ = 1™, for t = %, p=2,3,
(E — at®A,y) zh = 220 + ™, for p=3,

where Y, = 0A, (ux + ;la) — U + 20@,. The approximation error of

the scheme is the sum
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p
T = Pu.

a=s]
Snme(%e[ﬂ)

B (e + wa) = (Lot + ()3, + O (BS),

where p_= O (h3), we can write

° 1 0% (§-0.8)+a/p
y Q= 1, N /R

Vo = B + P \pa=2(r[Lau-—7 O+ fa

It is not difficult to see that

P

Pa=0 (1), W= (); +OE + 1), p,=0(®R)

a=]
When p = 2 we have $2+—2¢1—% @1:: 0 ().

Let us now discuss the question of the stability and convergence of
the scheme II.

2. Convergence of the difference schemes

1. We consider the cases p = 2, p = 3 separately.

We shall use the scalar products and norms introduced in (2]

(v,2) = XDyzH, |yP=(y, 9) etc., (10)
wp

where
4

H= 1%, #,=0.5 " + ha).

a=]
The only assumption we make about A, is that

(—' Aa (Za + ;a)a Zq _"':za)>1a ha (1 -+ C‘T) Ya,

o> el zlf, 1

where c, and ¢, are positive constants which do not depend on the net.
It is nut difficult to see that the scheme <A;z::=(aaz§)£ satisfies
LM
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these requirements if z| .= 0 and a, = 4, (7, {) satisfies the Lipschitz
h

condition with respect to t. In future we shall assume that conditions
(11) are satisfied without specifying the form of A,.

2. Let p = 2. We consider the problem

7 7 = OAa (s + Za) + VPa, (12)
2(2,0) =0, ~z;=0Agz + ¥ whent=7 (13)
z,=0 for zE I E @y, a=1,2. (14)

We make a scalar multiplication of (12) by =< (z;u -+ zt-a_l) =gy — 2y =
T (z.); and use condition (11)

Iz P+ ol <lz_ P+ o +ed lat v (1) (15
|2 + ol <% (1 2)-

Here y, have the form indicated in Section 1. Below it will be more
convenient to take

° . .4 o
I‘b& = ‘Pﬂ + \Pﬂ.’ agl\p& hant O! (16)

o= ()5, +O@)+0(®, p,=0F)

We write the solution of the problem (12)-(14) in the form of the sum
z = & + v where £ is the solution of the problem (12)-(14) with the

right-hand side 4, =:i% and v the solution of the same problem with
the right-hand side Y, = §,. We write the energy inequality for §

18 I + ofa B1<|&_ I+ 0 + 1) Ta [B] + 7 (bar (Eap)-
We sum over o = 1, 2 and use the fact that
T3 (b B0 = 7 (b b) = 7 (o ) — P )<

<7 (b B + Tl E R+ 1P

¥We then obtain

VER =3 + 0 (s = 1) < (U + e 0]ER -+ (b &)p + - g
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Using Lemma 4 from (8] and the inequality

T (e 8) <o Bl + o (Bl <ol B + 1 1,

we have

[E LM 8 [+ My max (§P+ % F) (o, M3, Ma= const>0).

Combining this with the inequalities

R < T (e (B)D) + T (b Bp) = T (s E) <
<05r2||%|12+05u§,,t|= 0.5 2| H2 + 0.5 8} when t =1,

I8 < e ales

we obtain

I R<M maxl ¥ E, EP =1l + 1 I

It follows from this and from (11) that
| € < Mt max | ¥ an
@y

Let us now turn to the estimate of v. We write inequality (15) for v
and make the estimate

CoT

(Pl (2a)) = TV, Va)p — T (W7, 9a) < T(Vay 2a) + o La (01 + 5 |37 P,
(W 20) <o 1valf + oo [WL P < 5 Lo + o I P

We insert these estimates in (15)
2 2
[o <+ M)+ Mot 2 ¥ P+ 8 (9, vl (18)

We take the equations for t = 0.5 T and t = 7. After the usual reasoning
we obtain an a priort estimate of the form

I v’*l oM maxll ¥R, (19)

where

YF =2 A 1) (20)
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The estimate of ¢ in the norm [¢;[® is too rough, because of the term
(“a)Qa which appears on & nonuniform net. It is therefore necessary to

introduce the norm [, s, (see [2]).
To do this we replace conditions (11) by the conditions
v ~ i
("“'Aa {Za + za)s Zq — Zg) > I~ 1+ {".t) Im 1. > ';é“ H z;alfz’ (21)
2
and this gives (see [2])
{za, ‘P;) L ol Z’{f ‘f’; Hsc' (22)
As a result instead of (19) we have the estimate
PR+ oS M max ll ¥ 5 (23)

where
b3

e g =3 B+ o]

a=1

3. We have thus proved the following theorem:

Theorem £. If conditions (11) and (18) are satisfied, the solution of
the problem (12)}-(14) satisfies the estimate

2940 + 12 < Myw max| ¥+ My max | ¥°). (24)

If conditions (21) and (18) are satisfied, then the a priori estimate
b2+ )27 < Mﬂmunﬂ+ﬂﬂ MVYm (24)
holds, where Al,,ﬂlz are positive constants which are inaependent of
the net.
This, together with (1R), gives tne following theorem:

Theorem 2. When p = 2 scheme II converges at the rate O (|h*|+ 1)
on the arbitrary sequence of nets @i X ©°

w

74

lpher —werp= O i+ 9, (RI=RRL et @9

if conditions (21) and conditions ensuring maximum order of approximation
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I¥]= 0(1), |¥Jy= 0 (h*|+ 1) are satisfied.

Note. If the operator Ly (and, therefore Ay) contains lower terms,
then conditions (11) and (21) are satisfied only for sufficiently small
Tt Therefore the estimates of Theorem 1 will also be true for r <7

4. The estimate of the order of accuracy given by Theorem 2 is, gener-
ally speaking, too low., If the region & is a rectangle, our scheme has
second order accuracy on the arbitrary nonuniform net w

4741 — w1 |= 0 (|A*| + ©*)  for T <. (26)
We rewrite equation (€) in the form

Ao+ y2) = 2oy + 0572 @, A, =E — 0Ty, a=1,2.  (27)

We eliminate y, and ¥, from the equations Ay, + ?}1) = 2;} + 0.5 g,
Ay (y+9) =2y + 0509, Ay (y+9y) = 2+ 057,

Ad, Y+ 9+ A4, G+ y) =4y + v°D; D =g, + 0.54, (¢, + ¢2). (28)

Equations (27) are written along the boundaries and can be used when
t == ljyy, to find the boundary conditions in terms of the boundary con-
ditions when f = {;;; and (={; This is the difference between this and

the previous formulation (7) of the boundary conditions.
When t = v we obtsin the equation
AA, (y + y) = 2y + D, + Tu,, O, = 2¢, + A19s. (29)

We rewrite equations (28) and (29) in the form

v v v ' v
V=0 + ANy + P+ My + M)+ y)—PAAN (¥ + y) — (30)
- 02"21\1/{2 (?} + )+ @ whent >,
T —05u) =0 (A + Ay + ) — PTAN )+ By, =1, (B1)
Yl = Uy, ¥ (z, 0) = y, (2). (32)
It is clear frow this that we must interpret the scheme (27) as a split-

ting scheme in the case of the simplest region. For 2 =y — u we obtain
tne conditions

=\ +A) G+ D+, FA)(E+ D— A (z+2) — (33
— AN, (z-F ) ¥ for t> 1,
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=0 +A) G+ D PAN o+ D+ Y, =1, (34)
z(z,0) =0, z(z, t)]y, = 0. (35)

The approximation error W =0 ((h|?+ 1% for t > 1 and ¥ =0 ((h*+ 1)
for t = 1.

Using the methods developed in [2] and [5] it is not difficult to ob-
tain an a priori estimate by the method of vower inequalities of the form

J2 IS M max (¥ s+ ¥pl) i=1,2,..., I < M- ¥, (36)

which is true for sufficiently small v<{rt, This also gives (26). To
obtain the energy identity we have to make a scalar multiplication of

(33) by T(z+ z}} (for t > 1) and of (34) by tz; (for t = 7) and use

an explicit expression for Aqz = (@az;); + bzz£¢+ bazy + daz (see
X & @

(2]) assuming that |(aa);|, |(aa);ﬂl (e, B =1,2) are bounded. There is

no need to reproduce the proof of the estimate (36), but we shall dis-
cuss the conditions under which the scheme (30)-(32) has the maximum
approximation error.

5. If we consider the net ofV’ introduced in [1] and [2], which is

uniform with respect to each of the variables x; and x5, we can show that
the solution of problem II when p = 2 in the arbitrary region G satisfies
the relation

ly—ul" =0(|2)+0 (*hi™),  |hlP=hi+ ks @7

Let us give the main points of the derivation of this estimate. We
first represent yy in the form

Vo =V + b, where By = —0.5 (s + pa), ¥ = O (1), (38)
so that
Yo=0 ()4 O (k) fort>t, Yy=0(1) + O(h) when t=12. (39)

By analogy with [1] we look for the solution of problem (12)-(14) in
the form of the sum

z=1+ 0 (40)
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where n is found from the conditions

M=%, 1n(0=0  n(z7) =0, (41)

v o v v ) ¥
so that 1y — 21y + Me = Ty, M — 20 + ny = —0.5 7 (§, + ),
ﬁ — 2;)1 -+ ﬁ‘; = 1:2\{52. We eliminate n; and ;h: N — Zﬁ + 'q¥ =0 and,

from (41), =0 for all j =0, 1, ... . When « = 2 equation (41) at
once gives

i = —0.5 7 = O (12).

We define n at the points ¢, by analogy with [1] so that A = O (n)
near the boundary. For the net function v we obtain the conditions

vt-at—a = GA« (va + ?;a) + \I’as .\Pcz = \p;‘%- UAa (T]g + ;}a) 6¢,1, o= 1’ 2“

v = Baiv(:ma) + va, vi=0 (ki) + 0 M) bs,; forz E'{fc (see. [2]),

v (z, 0) = 0, (E — ov®A) v (x, %) = 1*W¥,, ¥, = ¢;+ oA}, l (42)
)

or Top=oMw + ¥, % =01+ h).

Since v satisfies nonhomogeneous boundary conditions, we cannot use
(11) and (21). We need a concrete expression for I\l. It is sufficient
to carry out the reasoning for a segment (for a single chain c¢;) omit-

ting summation with respect to x;. The factor h,"l/' appears because
of the nonhomogeneity of the boundary conditions and the need to use in-
equalities of the type

1 Yy Co 3 —
Vr’v&‘. < 5o (.i./_’_:) -+ 5 v hl, ¢y == const.> 0.

In [1] we estimated v with the help of the maximum principle. If we
also use the energy method there, instead of the estimate |vf, = O (1)
we obtain | v} = O (r/]/ﬁ;).

It is therefore reasonable to expect that the appearance of the
factor ;"™ in (37) is a result of the method of proof.

6. Let us now turn to the three-dimensional problem (p = 3)
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1 . v
rr =7 @ —Warg) =0Aa (Bt 2) + Yt (43)
%w] = UAlzl + \pl when t = T/3, (44)
Tt‘(wz —wy) = 0Ay2, + P,  when ¢ =2_—: ) (49)
z(r,0) =0, for zeEuw, za =0 forzerh, (46)
where
Wq = zt_a = (za - za—])/T- (47)

To obtain the energy inequality we multiply equation (43) by 24 — zva
and use (11). We have the formula

(7 2= %) = M5 [ — 27,10, (48)
where

Iz, I} = lwa P+ Way Way) -+ | Waus |2 (49)
In fact, 24 — Ea = T (U)a G Way + ll)a_z) and (zl_,,t—,l y Za— Ea) = (wa —

Wa-g, Wa + Way + Wa_g) = ["wa ||2 + (Wa, Weq)] — [" Wa-g "2 + (Wa-1, We-g)|=
Iz P — lz_ I, edding end subtracting |we—y|[P. We have the estimate
ale a-1"e

(Pas 2Za —211) = T (Ya, ‘zﬂ)i' -7 ("‘pat—' 2“) < T (Yoo Za)‘— -+ 0.5C21,'I¢ -+ (50)
+ 0.5 (1/¢5) | Ya fo

if condition (21) is satisfied.

We write the power inequality |z [* + ol, <;|[z&_lw +

1+ ¢ UIva + T (Yq, (za)t—). Summation for « =1, 2, 3 gives

3
Iz B+ ol <IZ[f+ (1 +cvol+7 }‘:1 (P (Za)p)s (51)
where
I= i I,.

We note that |z [0 >z P+ Iz _I°)-

By analogy with the case p = 2, we represent z in the form of the sum
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Z=§+‘l),

where € is the solution of the problem with the right-hand side Yo =1,
and

To estimate § we use the inequality (51), replacing z by § and Y, by
fpa. The condition ¥, + 11), 44 = 0 gives

3
¢2=1 T (‘;’ua (Za){) = 1?2 [(\Ps, Zt-;‘-) f— (\pl’ z.t.‘.‘.)] - 12 {(“P& Z,;) _

— (‘I’l, Z,-.)],- — 1 [(\i;s—t, :‘zt—.) — (‘i’ﬁ' Zt_‘)] < [(\I.Jss zt_‘) _
= b 2l + w5k + 055 (1P + 1l

The power inequality will take the form

bzl + o/ <U+e )z + oD + 7 [(ds 2) — (b 21+

3 ° o 52
+05 2 (g P+ [P 4

Using the standard argument, taking the inequality for t = 1/3, t = 21/3
and the estimate

T [y 27) — (o 2)] << 0.5] 2 [F + 0.5¢30 b, + | $a 1),

we can see that the estimate

IFHI< Mrmax|P), [FP =6 + 10l + 105l + 195l 53)

holds, where # is a positive constant which depends on c;, ¢, and ¢,. In
deriving the a priori estimate for v we use inequality (51).

As a result we see that Theorem 1 and Theorem 2 hold for p = 3.

7. If the region G is a parallelepiped, we can construct a large
number of economical schemes with accuracy O (|A' + 1?). In [5] we
even construct a scheme O (|h|* + v®). It is not possible to dwell in

detail on splitting schemes here. We note only the different variants of
the generating schemes, We first write the initial scheme
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; p
¥yr=05A@+y +o A=2 A

x=]1

p
Replacing the operator E — 0.5t*A by the product II (E — 0.51%A,),
a=1
we can obtain the following generating schemes:

. N ¥ L
Ay; =y + 05tA(y + y) + w9, A= 114, 4, =E — 0.514,,

a=1

Ayy = y;+0.5tAy + 0.519,  y; =05 (y; +y7), Ay =2y —y + .

For each of these we can propose a number of alternatin direction com-
puting algorithms. Such a large number of splitting algorithms requires
a comparison of the various algorithms from the point of view of economy,
simplicity, etc.

In contrast to local one-dimensional schemes, the splitting schemes
are, generally speaking, stable only for sufficiently small values of T,
and in practice this may lead to a reduction in the step T, not required
by the accuracy, and to an increase in the number of calculations in-
volved.

8. For the system of hyperbolic equations

»
0% N 0 du
FTon = 2—4 L¢u1 Lau —.Ez(ka (I, t) 3;:) ’

a=]

where h, = (/f’:) is a symmetric positive definite n x n matrix,
u=(u,, ... W), we can write down economic local one-dimensional
schemes by analogy with (1]. Consider, for example, the case p = 2. We
represent the matrix ko in the form of a sum of triangular matrices

ke = k3 -+ K%, with (k)Y = (i)' = 0.5k, so that A; and A} are
conjugate matrices. Then

Lqu .= Lyu -+ Liu
and, accordingly, .\. =.\; =~ AL

The simplest local one-dimensional scheme has the form
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Determination of the vector y, reduces to the application of suc-
cessive substitution n times, due to the triangularity of the operator
AL . For this scheme estimate (26) holds,

The local one-dimensional schemes considered above converge in the
class of discontinuous coefficients having discontinuities of the same
type as in [2].

All these results can be applied to the case of the equation

p
a% a
C(l,t)a—ll;"+b—a':—= ZL¢u+f’ C(:l',t)>03>0,

a=1
where: L,u is given by formula (1), f=f(z, ¢t u), b=20b(z,t, u),
Te = T (2, 8, u).

Translated by R. Feinstein
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