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In [I] and 121 an economical method for solving parabolic equations with 
several variables, called a local one-dimensional method, is described. 

The purpose of this paper is to study local one-dimensional differ- 
ence schemes for hyperbolic equations in an arbitrary region C. These 
schemes converge on arbitrary nonuniform nets ah. 

If the region G is a parallelepiped, we can construct a number of 
other schemes which are splitting schemes [31 and [41. Such schemes were 
first described in [31. Splitting schemes of a higher order of accuracy 
are considered in [51. 

1. The difference schemes 

1. We shall consider the equation 

where 5 = (XI, . . .( xP) is a point in p-dimensional space with coordi- 
nates 5r, . . ., Z,, . . ., 4. Let G be an arbitrary p-dimensional bounded 

region with boundary r, qr = (G + r) x [O < 1 < 2’1, QT = G X (0< t < 2’1. 

_-_- 
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In the cylinder & we are looking for a solution of the problem 

g = i Lau + f (a 0, (2, 0 EQTi ulr = u1 k, 0; 
a4 

u (5, 0) = 24, (z),$ (2, 0) + U@ (3). 
(2) 

As usual we assume that this problem has a unique solution which is con- 

tinuous in the closed region @r and possesses all derivatives required 
in the course of the solution. 

We make the same ass~ptions with respect to c as were made in 111 
and 121. 

2. We shall use the same nets wf), or), as in c21. We mainly consider 

the net CII,, = UP), the internal nodes of which are all the nodes SQE G 
which lie inside C and all the boundary nodes 8EY, which lie on r. 

If the region G is arbitrary. then the net of) is nonuniform near the 

boundary even when the basic lattice which covers G is uniform. The 
boundary conditions on this net are given without drift. 

In contrast to [21, we take the net at = {tj = jr E [O,( t < Tl) to 
be uniform. 

The notation is the same as in [2]. We introduce the intermediate 

steps Q+a/p and the corresponding values $+OrlP = y,. we shall write 

y = yH, j; .= y.+, i = yi-rl ;;ja = @i-l)+@, yr = fv - i)/x, 

Yij = (Y - 2; + J 1 z2, Y& = (Y, - Ya_J/f. 

In order to construct local one-dimensional schemes we proceed by 
analogy with c51: we approximate to the operators 

pau = -i-_!tf!?. - (L,u + fa), p ata if.=f, cl=1 ,.*., p 
a=1 

separately, To anproximate to C?2&/r%?2 we use the expressions 

a -2U,_l 
=DL 

+E, i ab I” 
u- - 

Ia ‘a 
r-----7 4 at% a=1,2 (ug&wu, u2=z4), p=2, (3) 

ug! - ua-_l - u&&J “t 2 ah 
y( ra = ia 

---, 
9 at2 

a = 1, 2, 3 (u_, = &. u__z = u’,), P = 3- (41 
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To approximate to .&,u + f. on ah we use the homogeneous difference 

scheme Aa + a)= of second order of approximation, described in [Zl. 

The coefficients A, and qa will be taken at time 6 = 0.5 (tjtalp f 

tj-l+alp)v so that h, = A, (tz), cpa = va (z, tL>. 

For the hyperbolic equations (1) the local one-dimensional schemes 
have the form 

yr, I-, = o& Q/cl + y’,, + 2~~9 cl = 1,. , ., p, p = 2, 3; 

+ when p=2, 
(5) 

G= 
$ when p=3, 

where yr F is given by one of the formulae (3) or (4). 
a a 

When p = 2 the scheme is a three-layer scheme, when p = 3, four-layer. 
This is where it differs from parabolic equations, for which the form of 
the local one-dimensional schemes did not depend on the number of dimen- 
sions. 

We can write equations (5) in the form 

(E - at’&) (Y, + &I = 
29,-l + 2(Jt2q, when p = 2, 
9,-l -4- y,_, f 2~~2tp, when P = 3. 

To fiud y,+ia (& is known) we have to invert the three-point operator 

E - oz2AR,, which can be done using the successive substitution formu- 

lae and the boundary condition 

9, = a1 (r, $+a/r.J when zE’$. 

Jn the cuse of the net w,, (l) t!le boundary condition has the form 

(7) 

(WC 51, [?I). If the opcrt.tcsr L,u contaius the lowest terms 1,~ = 

f3U 

rm cg -I- ‘I, u, then WI~CII the successive substitution formulae are used 
a 

it is generally necessary to make the steps of the net Oh sufficiently 
small. In order to eliminate any restrictions on the steps of the net 
Oh, we must, by analogy with t2:, take the lowest terms on intermediate 

rows. Then ya is found after inverting the operator E - st’.\z, where 
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which is possible for any h,. 

It is clear from [ll, [21, [61 and [71 that taking the lowest terms 
into account only complicates q 8tters without changing the basic proper- 

ties of the difference schemes. Therefore in future we shall take 

A= = A”, without loss of generality. 

We take the initial conditions in the following form: 

(a) if p = 2 then 

(E - ar*A,) y’ia = F,, Y’l’ = Y (2, +) , (8) 

F, = u, + 0.5z,z + $ r”A,u, + T* [+- fl - $ (AU + j)],, ; 

(b) if P = 3, then 

Y (5, 0) = u. (z), (E - m*A,) ~“8 = F,, (E - ar2A2) (y” + vo) = 2y’/a + F,, 

(9) 
P, = ug -F $ Go + $ r*A,u, + 9 [I fl - f (Au + f)JIEO’ 

F, = r* I$ f2 - f (Au + f)Lo. 

Thus we associate problem (2) with the difference problem defined by 
conditions (5), (7), (8) or (9). We shall call it problem II. 

3. We calculate the error of the difference scheme. Let u be the 
solution of problem (2) k and y the solution of problem II. The error 

so = (I Y - uj+=lp is given by the conditions 

Zi=F= =aAa(Za-t kz) +$a for t>,T(i>,l), 

20 = 0, zEr$ 2 (2, 0) = 0, 5 EOh, 

(E - dA,) z’lp = ~3~ for t = $, p = 2, 3, 

(E - dA2) ~‘18 = 22’h + ~32 for p = 3, 

where $, = aA, (uI1 + k,) - ui- G + 2q,. The approximation error of 

the scheme is the sun 



Multi-dimensional hyperbolic equations 25 

Since (see [21) 

-pa (u&l 

where pa = 0 (hz), we 

*a = $a + $‘a, ia 

It is not difficult to 

can write 

see that 

9: = (P.,);a + 0 (fLZ + 2% Pa = 0 (Q. 

0 
When p = 2 we have 9,a+ 2& + & = 0 (.t2). 

Let us now discuss the question of the stability and convergence of 
the scheme II. 

2. Convergence of the difference schemes 

1. We consider the cases p = 2, p = 3 separately. 

We shall use the scalar products and norms introduced in [21 

(y, z) = x YZH, II Y II2 = (Yt Y) etc., 

where 

H= hi., 
(I=1 

The only assumption we make about A, is that 

ti, = 0.5 (h, + h,, ). 

where c, and c1 are positive constants which do not depend on the net. 

It is nut difficult to see that the scheme &z = (a,~;~);= satisfies 

(10) 
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these re~ir~ents if ~1,~ = 0 and a, = a, (x, t) satisfies the Lipschitz 
h 

condition with respect to t. In future we shall assume that conditions 
(11) are satisfied without specifying the form of &. 

2. Let p = 2. We consider the problem 

zih I-- = o&a (X0: + r;,) + *ix, 

z(x, 0) = 0, -L 7 T; = uA,z~ -l-q1 when t-3 , 

2, = 0 for xEfi, tE6h, a--1,2. 

We make a scalar multiplication of (12) by Z (2~~ i- Zi;._l) = Za 

r (gcx)i_ and use condition (11) 

11 “r,lp + ojra <[I zia_lIla + a (1 + C.r) ia + z (bl (4~)C 

II zip + aI,< -c (*I* q* 

(12) 

03) 

(14) 

- ia = 

($5) 

Here yo have the form indicated in Section I. Below it will be more 
convenient to take 

% = +L7 + 6, &&=o; 
0=1 (46) 

9; = (pa)& + 0 (G, + 0 (a I-$= 0 (J&. 

We write the solution of the problem (12)-(14) in the form of the sum 
n = 6 t u where s is the solution of the problem (12)-(14) with the 

right-hand side $a = $e and v the solution of the same problem with 

the tfght-hsnd side’ 9m = 9:. We write the energy inequality for { 

11 &Fall” + (JIa [El < 11 ET=_, 11” + n (1 + c,t) ia ItI + T (iti9 Vi!+)* 

We sum over u = 1, 2 and use the fact that 

? 5 (4.9 (EAT) = x2 (G,, Eq) = x2 (%*, ET;)I - v* c&, f,) Q 
a=1 

We then obtain 
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Using Lemma 4 from kl and the inequality 

Combining this with the inequalities 

we obtain 

Il. f Ila = II $2 II 2 + II i$F l12. 

It follows from this and from (11) that 

II !i’+’ II < Mr max II * II. 
07 

(17) 

Let us now turn to the estimate of u. We write inequality (15) for v 
and make the estimate 

We insert these estimates in (15) 

(18) 

We take the equations for t = 0.5 T and t = T. After the usual reasoning 
we obtain an o priori estimate of the form 

11 ui?+‘II” + Ild+lI/ < M max II ‘Y’ 112, 
1. *t 

where 

II Y’ II2 = g, (II Sll’ + II +:r. II’). W) 
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The estimate of 9: in 

W & which sppears 

introduce the norm /]*a[& (see hl). 

the norm [$$jjs is too rough, becsuse of the term 

on a nonun~fo~ net. It is therefore necessary to 

To do this we replace conditions (II) by the conditions 

As 8 result instead of (19) we have the estimate 

where 

3. We have thus proved the following theorem: 

Theorem f. If conditions (II) and (1~) are satisfied, the sofution of 

the problem (f2)-(141 satisfies the estimate 

I/ zj+lII i- I( z$+’ I( < M I~ max 11 @II + M, max I( TV* II. (24) 
UT UT 

If conditions (21) and (15) are satisfied, then the n priori estimate 

II zj+l 11 + /I p I/ < M 1z maxIj*j+ M, maxllY* 3, (247 
02 @t 

holds, where M,,M, are positive constants which are inuependent of 

the net. 

This, together with (IV, sives tne following theorem: 

Theorem 2. When p = 2 scheme II converges at the rate 

on the arbitrary sequence of nets ohX e&: 
0 ill h2 II -I- Q 

if conditions (21) and conditions ensuring maximum order of approximation 



multi-dimensional hyperbolic equations 29 

II@ll= O(i), IIY?]ia = 0 (jh*II + r) are satisfied. 

,“v’o t e . If the operator Lo (and, therefore A,\ contains lower terms, 
then conditions (11) and (21) are satisfied only for sufficiently small 
z <?lJ. Therefore the estimates of Theorem 1 will also be true for r<r,,. 

4. The estimate of the order of accuracy given by Theorem 2 is, gener- 
ally speaking, too low. If the region C is a rectangle, our scheme has 
second order accuracy on the arbitrary nonuniform net q, 

11 #+I - fJ+lII - 0 (11 h2 !I+ 2’) for t < to. (26) 

We rewrite equation (6) in the form 

A, (?./a + &) = 2%x-, + 0.5r2 (pa*. A, = E - OZ~A,, a=~, 2. (27) 

&e eliminate y1 and & from the equations A, (yl f &) = L?i i- 0.5 r2q1, 

4 (3 + k) = 2Y, + 0.5r”(p,* A, (?j+ ?J) = 2tj,+o.52z$2. 

A,A, (y + j;) + A,-& tj, + ;, = 4; + +a? d, = ‘pl + 0.5Al(cp2 + G2j. (28) 

Equations (27) are written along the boundaries and can be used when 
t = tj+r/* to find the boundary conditions in terms of the boundary con- 

ditions when t = tj+r and t = t+ This is the difference between this and 

the previous formulation (‘7) of the boundary conditions. 

When t = T we obtain the equation 

A,A,(y + jl) = 27;+-z@D + TM09 ?I ==.2cp, + AlOp,. 

H’e rewrite equatious (28) and (29) in the form 

(29) 

It is clear from this that we must interpret the scheme (27) as a split- 
ting scheme in the case of the simplest region. For z = y - u we obtain 
tne conditions 

2;; = (T (.I1 + AJ (2 + 4 + (r (‘11 + ii,, (& :) - o272.$& (2 + i) - (33) 
” 
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+ zi_ = a(& +A%) (2 + i)- u2z2A,A, (2 + z)-?- Y, t = 7, (34) 

z (Z, 0) = 0, z (3, t) jyh. = 0. (35) 

The approximation error Y = 0 (I h la f z”) for t > T and Y = 0 (I hf2+ Z) 
for t = T. 

Using the methods developed in [21 and [51 it is not difficult to ob- 
tain an a priori estimate by the method of power inequalities of the form 

which is true for sufficiently small ‘C< Q. This also gives (26). To 
obtain the energy identity we have to make a scalar multiplication of 

(33) by r (Zf 2jr (for t > T) and of (34) by %‘zi- (for t = T) aud use 

an explicit expression for &z = (a,~;~);~ + 6:2;= + bLzgq+ d,z (see 

[23) assuming that I (u&j, 1 &J;;,l (a, p = 1, 2) are bounded. There is 

no need to reproduce the oroof of the estimate (36). but we shall dis- 
cuss the conditions under which the scheme (30)-(32) has the maximum 
approximation error. 

5. If we consider the net oh (l) introduced in [XI and 123, which is 

uniform with respect to each of the variables ~1 and x2, we can show that 
the solution of problem II when p = 2 in the arbitrary region G satisfies 
the relation 

I{y-u!p+1 = 0 ( 1 h 1”) + 0 (2%;l”), p&p=lg+ g. (37) 

Let us give the main points of the derivation of this estimate. We 
first represent wo in the form 

jb =& + & where 41 = -0.5 ($2 + &), G2 = 0 (11, (38) 

so that 

9: = 0 (t’) + 0 (h2,) for t>z, 9; = 0 (v) + 0 (hf) when t = 712. (39) 

By analogy with [II we look for the solution of problem (12)-(14) in 
the form of the sum 

Z=:TjfV, (40) 
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where q is found from the conditions 
1 

%& = 110, 71 (2, 0) = 0, q (2, T) = 0, (41) 

so that qz - 2q1 + 49 = d2G2, Vl - 24 + {I = -0.5 T2 ($2 + i2,, 

4 - 24, + ?y2 = &12_ We eliminate qI and 4,: q - 24 + ; = 0 and, 

from (41), qj = 0 for all j = 0. 1, . . . . When cx = 2 equation (41) at 
once gives 

We define q at the points r”, by analogy with [II so that f&q = 0 (q) 

near the boundary. For the net function u we obtain the conditions 

“i, Q = a& (vu + ;a) + Ya, Ya=&+ aA,(q, + ~,)&a a=1,2,‘ 

p = p~v(+) + v& 6 = 0 (hi) + 0 (7) &,,I for 5 E$ (see. [2)), 

D (5, 0) = 0, (E - oz2A,) u (5, f) = z2Y1, Y, = $I+ a&V, I (42) 

I 
or +vr, = uA,v, + Y,, 9; = 0 (t + hf). I 

Since v satisfies nonhomogeneous boundary conditions, we cannot use 
(11) and (21). We need a concrete expression for AI. It is sufficient 
to carry out the reasoning for a segment (for a single chain cl) omit- 

ting summation with respect to x2. The factor hy,% appears because 
of the non~omogeneity of the boundary conditions and the need to use in- 
equalities of the type 

vp; 
I 
< & 

Vr 1 

( j o-jq +$- v&, co = const.> 0. 

In [II we estimated v with the help of the maims principle. If we 

also use the energy method there, instead of the estimate 11 v/b = 0 (T) 

we obtain 11 VII = 0 (t/‘C/G). 

It is therefore reasonable to expect that the appearance of the 

factor hi” in (37) is a result of the method of proof. 

6. bet us now turn to the three-dimensional problem (p = 3) 
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ZjJ* = + (wz - w*-2) = dz (&I + i) 3 9*, tar, 

+I = &Zl + 91 wFen t = r/3, 

+(W, - WI) = a% + $72 when t=$, 

2 (5, 0) = 0, for z Emh, za = 0 for z E $, 

(43) 

(44) 

(45) 

(46) 

where 

w, = zr, = (& - 2,-J/T. (47) 

To obtain the energy inequality we multiply equation (43) by z. - & 
and use (1X). We have the formula 

where 

(1 q= 11: = llwa 112 + (w=* Lo,-4 -t II w=-1 l12. (4% 

In fact, za - k = z (We + %-I -I- h-2) and (Z~,T;, , &- k) = (h - 

w,_2, wa + we-1 + wa-2) = I@?z II2 + (wa, %.,)I - [)I G-2 [I2 + o&-l, %2)1= 

II ZG 11: - \l ~~=_~lf, adding and subtracting I~w~-~I~~. We have the estimate 

if condition (21) is satisfied. 

We write the power inequality 1) 2~ IIf + CJI~ < II ~r=_~ II: + 

(1 + c*r) 4 + z ($a, @a)$ Summation for a = 1, 2, 3 gives 

where 

we note that (I 2~; Il’f > a 01 zi= II2 + II ~r=._~ IPb 

By analogy with the case p = 2, we represent z in the form of the sum 
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where 5 is the solution of the problem with the right-hand side $o.=$(I 
and 

To estimate c we use the ineouality (51), replacing z by c and $a by 

-&. The condition $1 i- 4% -I- & = 0 gives 

The power inequality will take the form 

Using the standard argument, taking the inequality for t = -r/3, t = 2r/3 
and the estimate 

we cau see that the estimate 

holds, where id is a positive constant which depends on cl, c. and ~2. In 
deriving the a priori estimate for v we use inequality (51). 

As a result we see that Theorem 1 and Theorem 2 hold for p = 3. 

7. If the region G is 8 parallelepiped, we csx~ construct a large 

number of economical schemes with accuracy 0 (1 hje + 9). In t51 we 

even construct a scheme 0 (I h 1’ + 9). It is not possible to dwell in 
detail on splitting schemes here. We note only the different variants of 
the generating schemes. We first write the initial scheme 
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Replacing the operator E - 0.5?A by the product fi (E - O.~T~A,), 
a=1 

we can obtain the following generating schemes: 

AYr = ir + 0.5rn(jr + ;, + q, A = fi A,, A, = E - O.~T~A,, 
a=1 

Ayp = &+ 0.5zA; + 0.5~9, Yf = 0.5 (YF + 3;$ Ay = 2jl - y” -I- T~~J. 

For each of these we csn propose a number of alternatin direction com- 
puting algorithms. Such a large number of splitting algorithms requires 
a comparison of the various algorithms from the point of view of economy, 
simplicity, etc. 

In contrast to local one-dimensional schemes, the splitting schemes 
are, generally speaking, stable only for sufficiently small values of T, 
and in practice this msy lead to a reduction in the step T, not required 
by the accuracy, and to an increase in the number of calculations in- 
volved. 

8. For the system of hyperbolic equations 

d2U 
df” 

where Ii, = (/i:) i’s a symmetric positive definite n x n matrix, 

u = (U1, . * -1 &I), we can write down economic local one-dimensional 

schemes by analogy with [II. Consider, for example, the case p = 2. We 

represent the matrix k, in the form of a sum of triangular matrices 

hh 1 ii; + ki, with (k,)” = (X:)ii = 0.5/i’;‘, so that h, and kz are 

conjugate matrices. Then 

and, accordingly, _\. = -1, + _\f. 

The simplest local one-dimensional scheme has the form 
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Determination of the vector ye reduces to the application 
cessive substitution n times, due to the triangularity of the 
Ai. For this scheme estimate (26) holds, 

35 

of suc- 
operator 

The local one-dimensional schemes considered above converge in the 
class of discontinuous coefficients having discontinuities of the ssme 
type as in [21. 

All these results can be applied to the case of the equation 

c b, 0 g t-b%= &.u+f, c (2, t) >, cs > 0, 
0=l 

where. L,u is given by formula (l), f = f (5, t, u), b = b (3, t, u), 
r, = r, fz, t, u). 

Translated by IL Feiastein 
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