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Homogeneous difference schemes, the general definition of which is given 
in [I], were considered from the point of view of their application to 
equations of the parabolic type with one space variable in [21-151. 
Since the problem of the convergence of difference schemes can be re- 
duced to the problem of the stability of the solution of a linear equa- 
tion with respect to its right hand side, and to the boundary and 
initial data, a priori estimates were obtained in the first instance in 
[21 and [41 from which the stability follows. As in [II, special atten- 
tion was paid to the choice of norms for the estimation of the right 
hand side of the difference equation with the help of which the con- 
vergence of homogeneous schemes could be proved in the class of discon- 
tinuous coefficients of the differential equation. In [31 the a priori 
estimates obtained in [2l were used in the proof of the uniform con- 
vergence and in the estimate of the order of accuracy of homogeneous 
difference schemes for the linear equation of heat conduction with dis- 
continuous coefficients. In [51 homogeneous schemes were studied for a 
non-linear equation (1) of the parabolic type with boundary conditions 
of kind III. 

In this paper we consider homogeneous schemes for quasilinear para- 
bol ic equations with one or more space variables. One-dimensional prob- 
lems are studied in 5 1 and multidimensional ones in 0 2. The equation 
of heat conduction with the coefficient of heat conduction k = k(x, t,u) 
is considered in 9 1. The main a priori estimates of [21 and [41 for a 
four-point implicit scheme (forward scheme) and for a six-point sym- 
metrical implicit scheme are improved in this section. This makes it 
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possible, in particular, to obtain an estimate of the order of accuracy 
of homogeneous schemes for quasilinear parabolic equations with coeffi- 
cients having mobile (“oblique”) discontinuities on a finite number of 
curves x = q”(t). The results of [31 for the linear equation of heat con- 
duction are also obtained. 

It is shown (subsection 8, $ 1) that there is a homogeneous differ- 
ence scheme having in the class of discontinuous coefficients for the 
parabolic equation 

$&u = ; (k (5, t)&)t r(z, t) z - f (z’ t, z.? g) = 0 
/ 

the same order of accuracy as in the class of smooth coefficients. 

It should be remembered (see [ 11 [31 [51) that we consider every- 
where homogeneous difference schemes of “through computation” which do 
not change when discontinuous coefficients of the differential equation 
are used instead of smooth coefficients, and do not involve any changes 
in the scheme in the neighbourhood of the lines of discontinuity of the 
coefficient of heat conduction. All investigations are made for a wide 
class of schemes defined by specifying pattern functionals (see [II) of 
a very general type, and the parameter a, 0 <a < 1 (weight of the row). 

The methods used in [21-[51 and here enable the convergence of homo- 
geneous difference schemes to be proved for a system of parabolic equa- 
tions with discontinuous coefficients. The a priori estimates obtained 
in 141 can be used for this purpose. 

Imp1 icit forward schemes, approximating a mu1 tidimensional equation 
of the parabolic type, are considered in 9 2. The investigation, which 
is made on the analogy of the one-dimensional case, enables uniform con- 
vergence to be proved and an estimate to be found of the order of 
accuracy of homogeneous schemes in the class of smooth and discontinuous 
coefficients. Schemes of a special type for the case of partial coeffi- 
cients were considered by a number of authors (cited in [Sl, see also 
[Al). In conclusion we would point out that for the solution of a multi- 
dimensional parabolic equation the use of the implicit schemes considered 
in 0 2 involves a large amount of computation to be carried out for the 
solution of difference equations. In recent years a number of economic 
computational schemes have been proposed for the solution of multi- 
dimensional problems. With the methods used by us to study convergence 
it is possible to give a justification for (prove the uniform convergence 
of) the method of fractional steps (see [81) in particular. X separate 
paper will be devoted to this question. 
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1. One-dimensional parabolic equations 

1. Introduct ion 

In [51 homogeneous schemes of through computation were considered 
for the non-linear equation 

91u = gx (k (G t) g) + f (z, t, u 2 ( g> = 0 (1) 

in the region a = (0 <x \<l, 0 <t \<‘I) and for boundary conditions of 
kind III 

k z.- a1 (t) u = u1 (t) 

k 2 + s2 (t) u = u2 (t) 

for x = 0, 

for 2 = 1. (2) 

The results obtained in 151 are extended to the case of boundary condi- 
tions of a more general type: 

kg=cpl(t,u,g) for z = 0, 

-kg = (~~(4 u, 2) for 5 = 1, (3) 

where Ts (t, u, ‘1) (s = 1, 2) are arbitrary functions satisfying the con- 
ditions 

$>O, fg+fg+,>o, 

where cr and c2 are positive constants. 
tions of this type are the conditions: 

%a2 > 0, 8 = 1,2, (4) 

The simplest example of condi- 

k;=C&)$+o,(t)u+ UlW 

- kg = C, (t) ;; + 62 (t) u + u2 P) 

for x = 0, 

for x=1. 

(5) 

(5’) 

The physical significance of condition (5) is clear: at the boundary 
R: = 0 there is a concentrated specific heat C,(t) and heat exchange 
occurs according to Newton’s law with the external medium at the tempe- 
rature - ur (t) /crl. 

Here we shall not be able. to discuss the study of problems with con- 
ditions (3). We shall only note that the construction of difference 
boundary conditions with the second order of approximation is carried 
out according to the scheme proposed in [51. The effect of the error of 
approximation of the boundary conditions on the accuracy of solution of 
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the difference boundary problem is estimated with the help of n priori 
estimates similar to the estimates obtained in [51 (theorem 1). 

Since the method of calculating the error by means of approximation 
of the boundary conditions (2) (and therefore (3)) has been given in 
[51, we shall confine ourselves, for simplicity, to a detailed study of 
schemes for problems with boundary conditions of kind I. 

In the rectangle o(O <x < 1, Cl < t \<7) we shall consider the 
following problem: 

(7) 
z.? (z, 0) = uo (4, (8) 

k (2, t, u> > cl > 0, c (5, q > c-2 > 0. (9) 
The function h(x, t, U) and f(x, t, u, p) have derivatives &/au,af/au, 
af/ap continuous with respect to the arguments u and 2*. 

The functions k(x, t, u), f(x, t, u, p) and c(x, t) can have discon- 
tinuities of kind I with respect to the variables (x, t) on a finite 
number of differentiable, mutually non-intersecting TV given by the 
equations x = q,(t), v = 1, 2, . . . . vO, 0 <t \(T and qvl(t) < q”*(t) 

for v1 < v2, q,(t) > q,,(t) = 1, qv (t) < qv +l(t) = 1 on the segment 

0 < t <T. As usual (see [31, [51) p we deno:e by Av and D the regions: 

8, = (r)v(t)<~<~+~(t), oCt<T), v = 0,1,2 )..., vo, 

If the coefficient k(x, t, u) is continuous on the curve rV(x = q,,(t)), 
the following conjugation conditions are fulfilled 

[Ul” = 0, 
ih 

[ 1 
kFz .==O for s=q,(t), o<t<<T, (10) 

* The boundedness of the derivatives of k(x, t, U) and f(x, t, U, p) 
is made use of in the study of the convergence of the solution of 
difference problems to a given unique solution u = U(X, t) of the 
problem (6) -(9). We also bear in mind the possibility of continuing 
suitably the functions k, f outside the region of variation of the 
arguments U, p(u) corresponding to the given solution of u. 
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where [J. = u(n”(t) + 0, t) - u(n”(t) - 0, t) 

If n”‘(t) E 0 for all O<t,<T, i.e. n”(t) 

=u 
IT, v - u,,v etc. 

= const., we say that 
kc%, t, u) has a fixed discontinuity. In the general case for nv’( t) fo 
we say that k has a moving (“oblique”) discontinuity. 

2. Homogeneous difference schemes 

Let c = (xi = ih, t = jT, i = I), I, . . . , N, j = 0, 1, . . . , K, 
h = l/N, T = T/K) b e aJdifference network, SJ the set of its internal 
points (xi, tj), 1 \<i<N - 1, l<j\<K; i3, = (xi = ih, i = n, 1, 
. . . . N), a,, = (xi = ih, i = 1, 2, . . ., b’ - 1) the network in X; 
ij =(t. = j x T, j = 0, 1, 
tze ne work c 

‘I), VT= ( t = jz, j = 1, 2, . . . , 1:) 
in t. The net f&&on y! given’on R or its parts will 

denoted by y(x, t) or simply y. The hollowing notations will be used 
be 

y = Y (r, $+i) = yj+l, Zj = y (2, tj) = yj, 
?I*1 = Y (5th a 

y;-(y - y’-l’)/h, yx =(y’+‘)-y)/h, Y; = (Y - YvW~ y; = 0.5 (y; + yx), 

such that (a~-,), = [ai+i (~i+~ - yi) - ai (Yi - yi-i)lp, 

N-l 

(Y, 4 = 2 Yi@, 
i=l 

(y, v] = i y&2. 
i=i 

The foil owing difference scheme 
ential equation (6) 

will be associated with the differ- 

Piry = (ay;y’ + cp (5, t(=j, Y’“‘, h@)(y)) - p’“‘y,-, 

where 71~~) = av + (1 - a);, a is an arbitrary parameter which 
the following values in the segment 0 <a < 1 

(11) 

can assume 

Q = o (5, t, Y’), y* = 0.5 (y + y(-q, t(=) = at + (1 -a)vt, 

P = P (J, t), h(Y) = Y; - 

If a = 1, then .I!!@,$ y is a four-pointy forward scheme; for 

id--t, 

,a = n.5 
we obtain a six-point implicit scheme ?jp;“y. The scheme ?%)y is de- 
fined by specifying the parameter a and the law for computing the co- 
efficients a, 9 and p in terms of the coefficients of the differential 
equation. We shall need the following properties of the coefficients a, 
q~ and p: 

I) o<cl\<~\(c;, o\<c,<p<c,, i f O<CI < k < cl’, 0 < CP G c (x, t) < CZ’; 

2) a (z, t, u) - k (2, t, u) = 0.5hk’ (z, t, u) + 0 (V), a, (5, t, u) = 
= k’ (2, t, u) + 0 (P), 
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where the prime denotes differentiation with respect to x; 

3) cp (z, t, u, h (u)) - f (z, t, U, u’) = 0 (h’). 

4) p (z, t) - c (2, t) -1 0 (V), 

if k(x, t, u), f(x, t, u, u’), c(x, t) and the solution u(x, t) of equa- 
tion (6) are differentiable a sufficient number of times, for example, 
k has three derivatives, f and c two derivatives each, and u(x, t) four 
derivatives with respect to x. Conditions 1) - 4) are sufficient in 
order that scheme (11) may have the second order of approximation with 
respect to x. The concrete representation of n, T and p in terms of k, 

f and c is not used in practice. F’urther, we require that the scheme 
.!?)k?&J should be a homogeneous scheme, i.e. its coefficients should be 
calculated according to the same law in terms of the coefficients of the 
differential equation at all points of the arbitrary network for the 
entire work of piecewise continuous functions. In [ll a method of calcu- 
lating the coefficients of the scheme was given which makes use of the 
so-called pattern functionals 

Ah[p(s)l (-iisSO), F*[~((s)] (--0.5gsf0.5) 

according to the law 

a (z, 4 y*) = Ah Ik (z + Sk t, y’)l, p (z, t) = Fh [c (cc + slz, t*)], 

cp (r, t, Y, h) = Fh If (x + sh, t, Y, A)]. 

Without any loss of generality we can consider Ah and Fh to be 
canonical functionals independent of ii. and denote them by A and F. Con- 
ditions 1) - 4) will be fulfilled if it is assumed that: 

a) ALp(s)I is a homogeneous non-decreasing functional of the first 
degree having differentials UP to the third order of A,[cI, fl (m = 1, 
2, 3) and satisfying the conditions 

A [I] = 1, Al [s] = - 0.5 t-4 [I, 51 = A [sl)i 

b) F[p ~1 is a linear non-negative functional and 

F[l] =1, F [s] = 0. 

Thus the family of initial schemes sip,’ will be defined by specify- 
ing the parameter a E [O. 11 and the class of pattern functionals ‘2 and 
F satisfying conditions a) and b). All the following investigations re- 
late to the entire family of initial schemes for 0.5 <a <l. In practice 
we are interested only in two values of the parameter a: a = 0.5 and 
a = 1. We do not consider explicit schemes (a = 0). 



660 A.A. Samat.skii 

The difference scheme with the pattern functionals (see [ll) 

A IP (41 = [I $$’ 

ensures, as will be shown below, the 
class of discontinuous coefficients. 
transformed to the form 

F [p (41 = y p(s) ds (12) 
-0.6 

highest order of accuracy in the 
The function f in (6) must be 

which is always possible because k>cl > 0, and in formula (11) the 
approximation 

h (y) = a(++/, + ay,. (13) 

must be used instead of A. 

Below, when talking of scheme (12) we shall imply formula (13) also. 

We now formulate a difference problem corresponding to the problem 
(6) (9) : 

91p!y = 0 in Q, 

Y (0, t) = Ul (a Y (1, t) = u2 (4 

Y (z, 0) = no (2) 

for t Eo,, 

for XEOh. 

(14) 

(15) 

From a), b) and (9) we obtain 

O<cSa, O<C,GP. (16) 

3. The dzfference problem for the error 

In solving problem (14)- (16) instead of problem (6)-(9) we introduce 
the error z = y - u. We shall find the conditions for the determination 
of 2. Substituting y = z + u in (14) and taking into account (6), (‘I), 
(8) and (15) we obtain the following conditions for z: 

$+z = (a (2, t, y’) 2;):) - p’“‘q + Q (z) = - Y in 52, (17) 

2 (0, t) = 0, z(l,t) =O for tE(Jh, (18) 

2 (x,0) = 0 for ZEOh, w 

Q (z) = (gz’)!“’ + bzf’ + dz(=), (20) 
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6= 
aa (T t, 4 

au ’ 
&&ii 

ah 9 
d=z, y* = 0.5 (y(-1’ + y). 

The vinculum denotes that the derivatives are taken for certain mean 
values of the arguments u and h (see [51). The right hand side of ‘? 
equation (17) is, obviously, the error of approximation of scheme (14) 
in the solution of the differential equation (6). 

It is determined from the formula 

Y =lg’+ij, $2 = (a (5, t, u*) u;), - g (k (s, t> u) a;) 9 

+ ‘p (& tf”’ (a) (a) U, U; )- (f(2,t,Uy$))(a) - [p(““i-(c~)(L)]* (21) 

We shall asgume that problem (6)-(10) has a unique solution u=u(~,t) 
continuous in n and the following conditions are satisfied: 

Conditions Ac: 1) the function k(x, t, u) has a second derivative 
with respect to x, satisfying Lipshits’s condition for x; 2) the func- 
tion f’(X, t, u, A), c’(x, t), u”‘(z, t) satisfy Lipshits’s condition for 
x; 3) the derivatives ~ma-‘c/atma-‘, amau/atma satisfy Lipshits’s condi- 
tion for t, where ma = 2 for a = 0.5 and ma = 1 for a f 0.5. 

If the conditions Aa are fulfilled in E (or in a fixed neighbourhood 
of the point (x, t), it is easy to show that 

Y (2, t) = 0 (IP) + 0 (Pa), 1 2 for a=0.5, 
ma= 

1 for a#0.5. (22) 

4. 77le simplest a priori estimate 

The question of the convergence and the order of accuracy of the 
difference problem can be reduced to the estimation of the solution of 
the problem (17)- (21) in terms of the error of approximation T, i. e. to 
the proof of the stability of the solution with respect to the right 
hand side of T. For this we use different a priori estimates depending 
on the type of the equation and the properties of the coefficients of 
the differential equation. The simplest to study is the case where 
k = k(x, t) does not depend on u(r, t) and the functions k, f and c are 
smooth. If k = k(x, t), g = 0 in formula (20). We shall consider an 
implicit forward scheme, i.e. for a = 1. 

Let z = z(x, t) be the solution of the following problem 

. PZ~ = (az,), + b, + b,z; + 42 + dd + 9, (231 
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u(+‘~z,=~~z~ + qz - v1 for z = 0, - az; = ttazF+ QF--Y~ for z=xN=~, (24) 

2 (z, 0) = 20 (5)s (25) 

o<c1<4 O<C,<P, IdslIcc,, lbsl <CP, s = 12, 
%>,O, s,>o, 6, + 84, > Gi > 0, 61 + Q2 >, Gl > 0. 

(26) 

The boundary conditions (24) are obtained for a difference approxi- 
mation of order O(h2) of boundary conditions III of kind (2) or condi- 
tions (5) (see [21 and [51). For conditions (2) 8, = O(h). Boundary con- 
ditions I of the kind ~(0, t) = VI and ~(1, t) = v2 follow from (24) on 
replacing in (24) VI by uIvI, v2 by u2v2 and then passing on to the 
limiting transition UI - m and u2 - 0. 

TIleorem 1. The solution of the problem (23)-(26) is stable with re- 
spect to the right hand side of y, the boundary data VI and v2 and the 
initial values of z(n, O), so that for a sufficiently Smd1 T < T,, and 
any 11 the following estimate is true 

where TV and I!! are constants dependent on cl, . . . , c6 and independent 
of the network; 

The theorem is proved by a method similar to that used in the theory 
of differential equations and based on the principle of the maximum for 
(23). We introduce a new function VI, putting zJ = vi( 1 t !!T) j where /! 
is an arbitrary positive constant which we shall select later. For the 
network function v(x, t) we obtain the conditions 

;vi- - (UC,), = blv, + b,v; - dv + ii22iv + s; 

T$17+ - U(+‘b, $ i,V =Yl for z = 0, gzV,-+ UV; _t &V = G2 for z = 1; I 
(28) 

V (J, 0) = 2 (z, q, 

where 

j = pr, d = -d, -+ p%y, ;iz = d2r, $i = @yi, $ = vjyj, 

a,= % + 8,yM, 8s = r&, 7 = l/(1 + ia), s=1,2. 

We formulate the conditions for v2, Mu1 tiplying (28) by 2v and taking 
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into account the obvious identities 

2V (UP-), = (a (V”);)r - a?$ - a(+‘%, 2V. UC = (z+),- + zvf, 

we obtain 

i (?.I~)~ - (n (v”),), + Q (v) + 2dv2 = 2~ (b,v, + &v;) + 2&& + 24, (29) 

& (C2)T - a (+l) (z+)% + 2&V’ + R, (V) = 2iy,V for z = 0, 

Z2 (i’“)i_ + U (?I”); + 2&V* + R2 (V) = 2Y2V for z = xAv = I, 1 
(29’) 

Q (v) = +v; + uvi + a(+%;, 

R, (v) = (riR& + hu(+%:) lx=,,, R2 (v) = (z&v: + ha,;) Jx=l. 

Using the well -known inequality 1 abl < ~,,a’/2 + b*L?c,,, where c,, is 
an arbitrary positive quantity we obtain 

where c* = ci/cl + c3 + 0.5 co. Thus the right hand side of equation 
(29) is increased by the expression 

2 ]r (c3 + 9.5cZ/c*) + c, - c,] ZP + yc*+ + q/c, 

and instead of (29) the following inequality can be written 

; (v2)i. - (a (v”);>x + 7 (c2 - rc,) v; + 2d*u2 < q/c,, (29”) 

where d = (c2E - c3 - 0.5 ci/c )y - c . We now choose i such that 
d > O.*This condition will be gatisfi;d if T is sufficiently small 

*< (T T,,‘), and i iS sufficiently large (a > M*‘) 

M’ 
T<T+- I-$- , ( 1 jj > *’ = (c3 + c*) c* + 0.54 

* w* (30) * 

(choosing, for example, M = ti,’ we obtain -r,,’ < 0.5 c2/c*). Hence we 
obtain c2 - TC+ > 0 and 

; (v~)~ - (a (v”);)~ + 2d,va <@/co. (31) 
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Using the estimate 21~~~1 < ciz* + $/co (s = 1, 2) where c,,’ is an 
arbitrary positive quantity we obtain 

& ( vyt - a(+l) (?qx + 2o,*v2 < v& for L-c = 0, 

82 (v2)t -+ a (v2); + 2a2*v2 < vgc; for x = 1, 1 (31') 

where 01. = al - 0.5 ci, a2, = a2 - 0.5 ci. 

We shall now require that i,, >m > 0 (s = 1, 2), where 111~ is a 
given,~onstant. This condition will tfe satisfied if T < 7;' (c5, ci, m*), 
I!? > hf > 0. Taking (30) into account and denoting by TO the least of 

TO ' ;d To': and by h!* the greatest of Me' and M* ", we obtain 

&>(A bl+ > m, > 0, &>m,>O for z<z,, 37>~,>0. (32) 

We shall express 21 = v(l) + v(*) t LJ(~) + Y(~‘, where v(l) is the 
solution of equation (28) with homogeneous boundary and initial condi- 
tions, v(*) is the solution of the homogeneous equation (y = 0) with 
homogeneous boundary conditions (vi = v2 = 0) and the initial condition 
,(2)(X 0) = 2(x, O), vC3) 
y = O,‘P(X, 

is the solution of problem (28) for J, = 0. 
0 = 0, and vC4) 

0(X, 0) = 0. 
is the solution for I;, = 0, T = 0, 

The function w = (v’ ‘))* > .O can reach a maximum value only at the 
internal points of the network Q. We assume, for instance, that it 
reaches a maximum at the point (0, t). Then vt o > 0, tlir o < 0 at this 
point and condition (31’) gives 2m*w*(O, t) < 6, which is impossible. 

We fix a t 6.z oT. Let 70(x, t) = (v(i))* > 0 assume a maximum value 
for x = X E Oh. Then (cx~;;)~ > 0 at the point (?, t) and the inequality 
(31) gives 

IIv(l)I~.II~(l)~$+~~~,g/~,,c, = c,c,/(l+Mz). 

It follows hence that 

The function v(*) (n, t) obviously cannot have a maximum either inside 
Q, or for x = 0 or x = 1, i.e. 
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The function vt3) (x, t) can have a maximum only at some point (0, t) 
of the boundary. At this point w~,~)/ 0, wX u < 0, where zu = (v(~))*, 
and the first of the inequalities (31’) givbs 

II d3) (Xl 4 I10 < 
& 

1 VI (t) 1, where 1 VI (t) 1 = TF;:t 1 ;I @‘I 1. 

II vC4) Ilo is estimated similarly. Collecting all the estimates and 
returning to the initial function 2 j = vj( 1 + 4~) j we obtain inequality 
(27). It should be noted that cO, ci, m* should be so chosen that the 
constant M in (27) is a minimum. The theorem is proved. 

Note. Theorem 1 and estimate (27) are obviously true for the first 
boundary problem 

2 (0, t) = 2’1, z(l,t)=v2, 

This can be verified by making the limiting transition mentioned abve 
or repeating the proof of the theorem, which becomes simpler in this 
case. 

5. Improved a priori estimates for a forward scheme 

In this subsection we shall follow the method described in [21 to 
obtain a number of new estimates for a four-point forward scheme. The 
order of accuracy of homogeneous schemes in the case of moving discon- 
tinuities (cf. [31) can be improved by using these improved estimates. 

Let us consider the following problem 

Pzi = taz;)x + Q tz) + 97 (33) 

Q (2) = (g11& + (g12$, + c6722q; + (g214; + b, + b2z; + 42 + d26 (34) 

a(+1t2, = 812~ + Q1z -VI for x = 0, - oz; = 822~ + $9 - v2 for 2 = 1, (35) 

Z(? 0) = z&g, (36) 

where P = P(X, t), a = a(x, t), y = ‘+J(X, t), gsk = g,k(x, t), b, =b,(t), 
ds = ds(t), gs=gs (t), us = a,(t), vs = v,(t) (s, k = 1, 2) are the 
given network functions. The coefficients of the problem satisfy the 
conditions: 
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where c1 - c9 are Positive constants independent of lt and T. 

We introduce a new function u, writing 

2j = rj (1 + Zr)j, 

where I?! > 0 is an arbitrary constant. F’or v we obtain the conditions 

& - (an;), + dv = ‘4 = iji + Q1 (v), (39) 

a(+%, = &Jy + a,v + Y1 for x=0, 

- au; =z2v~+&--~ for x=1, ) 
(40) 

v (x,0) = 2 (x,0) = 20 (x), (41) 

QlW = kllV)x + Gl24, + kzzv); + (i21$; + hv, + b'; + G', (42) 

where 

Henceforth we shall follow [21, improving on the estimates obtained 
there. Multiplying equation (39) and boundary conditions (40) by 
1) x 112 . . . v*~-~ = van, where a = 2” - 1 we obtain for 9 = v2” n the 
problem: 

._ 

& _ (&), +kl 2+-k--1 (= (;;)‘+ =(+I) (“v,)” + tp(;T)2)va@k+l t_ 
k==o 

+ 2nd; = 2nvaq (an equation of the 
nth order), 

a(+‘);x = &JT + ya,; +y p-k-1 (ha+(‘)(q2 + T&J2) v=n-=k+l + 
k=O 

+ 2nG#+ for x=0, 

- &,- = &;T + 2%~; + y2,&-1 (h” 6;)’ + %82&)8> va”-ak+l - 

k=o 

- 252Van for x = i, 

(43) 

(44) 

(44’) 
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“v (z, 0) = I(5,O) (45) 

(XV,=(+, i;= (L3-& etc.j. 

Multiplying equation (43) by /I, summing over the internal points 
x = h, 2h, . . . , (PI - 1)k of the network CO,, and taking into account (44) 
and (44’) we arrive at the integral identity of the n-th rank 

[P, v”lr + 21, + P, + 2” [d, E] = 2” pan, Y] + [P,-, i], (46) 

I,, = (a, (n;J)2] +. i2 2-2{(a (Q2, g"-=h.+l] + [n(+l) (E,)“, V@n-‘k-l)} + 
k=O 

-t Go + GN, (48) 

ran++ll, [Y, zq = (Y, $n) + ,,,;n + ;7,,> 
(49) 

(% = v (0, 0, “N = v (1, t), an = 2n - 1). 

It will be noted that the term EIEO + Fzini has been left out in 
formula (17) from 6 2 of [21. This did not, however, affect the suh- 
sequent arguments and results. 

The discussion below concerns the major-ant estimate of the expres- 
sions on the right hand side of (46) by means of (1, 2) and 1”. The 
arbitrariness in the choice of the constant fl is made use of for this 
purpose. We use the estimate which follows from lemma l* of [2], 

where !!* > fl is a constant dependent only on c1 and cg, Holder’s in- 
equal i ty 

(50) 

I~l,~lIBC~,Iflplt’P[~,IIC,l*l’iQ, -$+$=I, P>O* q>o* (51) 

and the inequality 



668 A.A. Samarskii 

fjC~<&LkC*,wherepk>O. Ck>O, &*=I. 
k=l k=l k=l 

(52) 

We note, first of all, that because of conditions (37)-(38) 

We now consider the expression 

2” [ij, ?Yq = 2” (11, z+) + 2%Jlvp + 25*“2. 

Two types of estimate are possible for the sum a’(;, van) depending 
on the choice of the norm for y 

1) 2y (ij, Van) I\< 2n(gzn, l)‘““(l, i+*“< 231, I) + (ljp”); (54) 

2) we choose for 7 the norm 

ll~ll~=Ilslls+I~~~~~I~ II as = II q II27 q(2) = i Iz$(d). 
S’-Zl: 

We introduce the function T-I, writing 

rl,-=ji x=h,..., (N - 1) h = zL$T_.l > ro = 0, 

and use the formula for summation by parts (see [41) : 

The formula 

s n-1 
Ii 

(D%)r = kzo (~(+l))“~v=~-=~flZ,Jc (55) 

was found for (van), in [21. 

Using inequal ities (50) - (52) we obtain 
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n-1 
< &/yrl/2n 

Cij 2 I* 
-'/I n 'i*-llzn 11 rl iI2 2 k=O & (2n--k--l(a(+l), 1 u p--l-“h (k,)“))” \< 

< In I-W_ 2n+l~~pl/2~c;J? I/ rl i2* 

Hence, because of (52), it follows that 

where by =‘j!(cr, c6) is a positive constant dependent on c1 and c6. 

?lere we are considering a class of boundary conditions more general 
than in subsection 4, since we allow one of the cases aI = 0, 81 = 0 
or 8’1~ O(h) ; u2 = 0, 82 = 0 or 81 = o(h) 

Taking into account the inequalities 

2” 1 ,,vz I ,<&I+ (M.2”ly21)2n, 2” I 11 N_l”~I~$In+(M.2nlrlN_~I)an 
for 52 = 0, 

2” I ,2V> I< 2na2irf + (M I i2 l)2n for d2 >, c6 > 0, 

and also (54), (56) we obtain the estimates 

(57) 

where sS = 

2” I CL van1 I < f In + W-2” II li) (Id2*, (58) 

1 for oS = 0, s = 1, 2, E S = 0 for as >c6 > 0, or + E* = 1 

II TJ II5 = u c II4 + I ‘VI I + I Y, I> [I, “v] = (1, E) + & + b2&. 

We now pass on to the estimation of the expression ~*(C),(U), van). 

We consider first the term 2”(bluz + b2vj;, van). From the inequalities 

[a(+‘), va+J:) f 1,/2”-l, (a, va”-lu~] < In/2n--l, 

n-1 
2”~(blv,,van)I\<2nC4( v ,IvILln-‘jv,I)9$I,+~1.2”(1,“v) 

it can be seen immediately that 

2” 1 (b,v, + bzv;, van) I < $ I, + M - 2” (1, c), M = M (Cl, cp, ce) > 0. (59) 
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The estimate 

2"1(1,, ~vbn)~ <2ncS (1,;) + c,(l, S). (‘30) 

does not require explanation. Estimation of the remaining terms in the 
expression 2”(QL(v), van) presents the greatest difficulties. Without 
any loss of generality it may be considered that g,, = 0 when n = 0, 
.z = ZN_~, and gl 1_ = 0 for n = h, x = Z,P,J = 1. If these conditions are not 
satisfied, then writing, for instance, g = g* + Ax + g(0, t), where 
A = [6’(Zjvl, -t) - L?;(O, t)l/h, we obtain g* = 0 for x = 0 and x = xN_i. 
‘The coefficients of vz and tr for (~~~u)~ (of 21% and v for (gl lv)x)) vary 
for bounded values. 

The formula of summation by parts (see [21) gives 

(k22~);, 0 = - (g22u, v%) (gza = 0 fnr 5 = 0, 2 = ZN_r). 

We substitute here expression (55) for (van),, 

Similarly we find 
n 

B"J((g&,, pan)1 < $I* + iJ,f*22nll,v), M = fif (cl, cd > 0, 

If boundary conditions I of the kind u,, = 0, u,~ = 0 are given for 
x = 0 and n = 1. then 

” 

2” I (Ghvi;, +) 1 = sn I (i21 6 (Van),)1 <$I,, + i%f-2n(l, ;) + iM’ (p, ;), , 
where IV = M(cl, cs) > 0, M ’ = i!(c2) > 0. A similar estimate is obtained 

for 2”l ((irzG) x, ua”) I. 

Collecting all the estimates obtained ahove, we arrive at the follor- 
ing inequal it ies: 

a) if all gsk = 0, s, k = 1, 2 then 
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2” 1 [Y, VanI 1 6 1, + Mdn [I, “VI + (M22”11~1/d2” 
([I, ii =(I, G) 1-G +62q; 

b) if &r2 = gsl = 0 then 

(62) 

2” 1 [Y, z+] I\< I, + M,22n [l, iJ] + (Me2”[l q Ilsy; (63) 

c) if LJO = UN = 0 then 

2"~['3Wnl)<L+ ~,~22n[l,~l+(~2~2nIl~~l~)2n+~2~~,~l~ (64) 

where !I,, M,, hf, are positive constants depending only on cl, c2, c3, 
Cqr c51 cg. 

We now choose % in such a way that for a) 

li? - f.& (1 + MT) -M, (1 + MT) >M - (c, + M,) (1 + a) > 0. 

For this it is enough to require that the following conditions are ful- 
fill ed 

r<%,where%< ,__:M, - -+ 

In case b) (and c)) we must write i = M* 

seen that for any n > 1 and M* > c3 + M, we 

%I< I 2(ca+M1)’ 

It will be noted that TV does not depend 

Taking now the identity (46) of the n-th 

, a>c,+M,. (65) 

x 2”. From (65) it can be 
shall have 

on n (compare with [2l). 

rank and remembering (53)) 
(61)“(64) we obtain the following integral inequalities 

ai) [p, iI + ~1, < (1 + MT) [t, $1 + Mu” $ ,I*, II I/ (66) 

a2) [p, iI + 71, < (1 + MT) [T, t]-+ (M,. 2”1/ $ Jj5)zn; (67) 
v 

b), c) [p, E] $ %I,, < (1 + fut) [;, ;] + 1112~2n~~~l]a)2n (Z = bfz.29. (68) 

Hence we find 
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arid correspondingly 

iYe now return to the initial function zJ = vJ (1 + %) I. Then from in- 
equalities (69) and (70) we shall find 

a,) I..,, (t) < M, lp (.T, O), I (z, O)P2” + 144, [ i 4; (2, 4 l*]112n, (71) 
1’=r 

I,), c) II,, (t) < eMI*?” [p (2, 0), “z (J, O)f2" + :V2a2neMl*2" [ i ‘t 11 ‘II: (.r, ty:n]1’2n, t ‘z-r 

(73) 
where 

,411 the constants .M in (71)-(73) and below are positive and depend 
only on ci, . . ., cv. We shall not write out their explicit expression 
in terns of cS. As a rule we shall also omit the indices of the con- 
st,ant C’ / . 

7heorem ?. If the conditions 

g&. = 0, s, k = 1, 2, (74) 

are fulfilled, then for the solution z = z(x, t) of the problem (33)- 
(38) the following uniform estimates are true 
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where 6 = 1 + E, E > 0 is any number h, = h,,(E), T,,’ = -rO’(E), 

h, and TV’ are sufficiently small quantities, and T,, is determined from 
conditions (65). 

1. First we shall prove (75). If y = 0, v1 = vp = 0, (72) gives 

[ I R 1’2n < M [p (2, O), % (cc, O)]l’? P, = 

Hence 

If z(x, 0) = 0, it follows from (72) that 

Now choosing II = n(h) as a function of h such that 

log* + 
1 <2”\< log2f for h<hJ (e), 

eloga loga x 

where E > 0 is any number, and taking into account that n + l/2” 
log, l/h <S log, loge l/h (6 = 1 + E) we find 

Combining (77) and (79) we obtain inequality (75). 

2. To prove the estimate (76) we use (72) and the inequalities 

It is enough to confine oneself to 
from (72) and (80) that 

(77) 

(78) 

M = M (cl, co), 

(80) 

the case Z(X, 0) = 0. It follows 

II= (z, t) lit, < M.2”+‘2nlb# (2, t) IL. 
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Now choosing n = n(s) as in (78) we obtain 

Note. For n = 1 from (72) follows the mean estimate 

llz~.~~~l12~~ll~~~~o~l12+~[~~~~ll~~~,~’~ll~]L’2 for T<ro. (81) 

For the first boundary condition z,, = zN = 0 

Il~(~,f)l~~~IIZ(Z.O)Jb+M[i; ~llow’,llf2 for r<% (81’) 
i’=r 

if gsk f 0, s, h = I, 2. 

?‘heorem 3. If the conditions (74) are fulfilled and 6, = 0, then for 
the solution z = x(x, t) of the problem (33)-(38) the following uniform 
estimates are fulfilled: 

-- - -- 
II 2 ($9 t) II0 < M ( II 2 @I 0) IIll + II 9 (4 110 + I % (0 I) + M I y2 w I 119 $ (82) 

for t<TO, h<h,, 

H 2 (G 4 Ilo < M ( II 2 CC 0) Ilo -+- 1) 9 @, t) Ilo + I VI @I I) + M I V2 W I h’t for r < Tie 
(82’) 

where 

1. Let v2( t) r 0. Then limiting transition can be carried out in (71) 
for n - m, taking into account that T,, and the constants in (71) do not 
depend on n, and h and -r are fixed. Remembering that 

we obtain (82) for v2 3 0. 

2. Let v1 = 0, q~ = 0, 2(x, 0) = 0. Then it follows from (71) 

11 z (5, t) II, < M .2’7~-“‘~ I*(t) . 

Now choosing n = n(h) in accordance with (78) we find 

jz(z, t)II,<MIv2(t)/In8+for h<h,, r<% 
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Hence and from 1 we get (82). 

3. To prove (82’) we use (54) for v1 = tp = z(x, 0) = 0 and (80). It 
follows from (71) and (80) that 

Choosing n = n(T) in accordance with (78) we obtain 

!/ate. Theorem 1 is proved for the conditions 8, + us > c > 0, al + 
a2 >cCa > 0, us ZO, b, > 0, s = 1, 2. Theorem 3 is true, for example, 
when 892 + u2 = 0 or i& + u2 = @(h) and hence theorem 1 cannot be used. 

Theorem 4. Let the conditions 

632 = g21 = 0. 

be fulfilled. Then for the solution of the problem (33)-(38) the follow- 
ing estimates are true 

1. Prom (73) we find for any n 

12 (G t> IL < e”*2nh-1’2n ( II 2 (2, 0) Ilo -t nf. 2” (I 9 (2, t>lb (8.5,) 

We now consider the expression 

2nexp (M.2” + In+ /2”)=exp(M~2n+ln~/2”-nln2). 

It can be seen from the condition !A x 2” * ln(l/h)/2” that -.- 
Zn_ I/In (l/h) / J;i?. 

Selecting correspondingly n = n(h) * In In(l/h), we obtain j? x 2” t 
.___ 

ln(l/h)/2” - n In 2 GM3 Vln(l/h) for a sufficiently small h < h,. 
Hence and from (85) we get the inequality (83). 

2. Estimate (84) is obtained similarly if (80) is taken into account. 
It is true for all values of h. 
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Note 1. Theorem 4 is true in the case of boundary conditions I of the 
kind (z,, = 0, z,,, = . . O), even if the conditions gr2 = g,, = 0 are not 
fulfilled. 

Note 2. Writing n = 1 in (73) it is easy to see that for the solu- 
tion of the problem (33) -(38) the mean estimate 

is true. It is valid even when gsk f 0, s, k = 1, 2. 

All n priori estimates in this subsection have been obtained on the 
assumption of the boundedness of the coefficients a, b,, ds, gsk only. 
For this reason they can be used for the proof of the convergence in 
the case of moving (oblique) discontinuities of the coefficients of the 
differential equation (6). 

6. A priori estimates for a six-point s&me 

The following Problem was considered in [2! and [41 

$:5z = pzy - (az;)~’ - Q (2) = II, (0.5 < c1< 1), 
z,z = (a(‘%, - a#) - &ZT = Yr for r = 0; 

z,z = (az- + a#) + &ZT = x -v\12 for x=1; 

2 (z, 0) = &J @>9 

Q (2) = @r + b$x + bz; + b,,& + d,z + & 

0 <Cl < a < c;, O<C,\<P, Ids I < c3, Ibsh.I<cc 

%>,O, a,+ a,>,%> 09 s, k = 1, 2, 

/aII\<c,, I(a,)J<c,o,, O<%h<<S<% 

The following a priori estimates were obtained 

1) 

where 
II * Ilg = 

2) if .I# z ip, vs =i$=), s = 1, 2, ~(5, 0) = zo(z) = 0. then 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 
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We shall show that estimate (93) can be improved if b,, satisfy 
Lipshits’s condition for t: 

Theorem 5. Let z(x, t) be the solution of 
where 

11) = G’“‘, ys =<P’, Q (4 = (kc- + bzz,)@) 

If the conditions 

(94) 

the problem (86)-(91), 

I Cbs)iI <c1O9 0.5<u<l, &+Qs>c*>o, s=l,2, (961 

are fulfilled, for a sufficiently small T < -r,, 

~l~(~~~)liO~~{ll\l)(~,O)/$+llQ(~. ,II,.,[i (119(~~~‘)llg.+II~~i-~~ W6.)21”‘}. !‘CS 
iw 

For an implicit scheme for a = 1 the following estimate is true 

(98) 
Let us express z in the form of a sum, z = p t u + w, where w is a 

solution of the stationary problem (aw& = - $, alw-,, O - olw, = cl, 

aNT,& $oZWN =-i2, and p and v are defined by the conditions 
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zF;7v = if=), l,v=O, 1,v = 0, v (2, 0) = 0, 

q = dlw + d& - pwT, ~=blwxfb,w-. .‘: 

(100) 

In [41 it was shown that 

For estimating ~(n, t) we use (92), and for u the inequality (93), 
taking into account (101) and the obvious inequalities 

II 11 II2 < M ( II $ IL* + II Si-lJ 9 

II rl II5 = Ii II* G &if II W;tllI < M II s lip II i II&. = II i Ilo. < M II a,.. II VT II,* < M II GF IL.* 
For u we obtain (93) for p = 0, and for u (97) for ~(zx, 0) = 0. Collect- 
ing the estimates for w, IJ and u we arrive at (97). 

When a = 1 we express u in the form of a sum, u = i t F, where i is 
the solution of the problem (99) with the initial condition F(x, 0) = 0, 
and F is found from the conditions ,!&F = 0, Ii; = l,$ = 0, E(x, 0) = 
- $x, 0). Now using theorem 1 we obtain 

Hence the inequality (98) is true for u, as for u. 

ke. If Q(z) has the form (89) and conditions (94) are fulfilled, 
then an estimate of the same type as (97) is true., Also, instead of 

l/S IIS’ -c II $i_ IIp under the summation sign we shall have the expression 

jl i$. + II G II&* + z II + lb 
7. Accuracy in the class of discontinuous coefficients 

To establish the order of accuracy of the scheme (14)-( 16) it is 
enough to use one of the a priori estimates obtained in subsections 5 
and 6. Together with (1) and (6) we shall consider the following equa- 
tions of the parabolic type 

.Y$u = & (k (2, t) &) + r (5, t) $ + f (r, t, u, 2) = 0, 

(k (5, t) ;i) + f (5, t, u, E) - c (2, t) $ = 0. 
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Adding conditions (7)-(10) to the equation .!Psu = 0 (s = 1, 2, 3, 4) we 
shall obtain a problem which we shall denote by (IsCa)). The correspond- 
ing difference problem, which is formulated by analogy with (14)-(16) 
(for (Ilta)) see [51), will be denoted by (IIsCa’). Finally, the problem 
for t = y - u will be denoted by (III (a)). 

S 

To simplify the formulation, instead of using the words “the solution 
of the problem converges uniformly to the solution of the problem (IsCa)) 
and has the order of accuracy O(h”) + 0(-r) “, we shall say n the scheme 
converges uniformly at the rate O(h”) + O(T). (( Only unconditionally 
stab1 e schemes, i. e. 0.5 <a < 1 are considered everywhere. Unless 
specified otherwise all statements relate to the entire family of 
schemes. 

Theorem 6. The homogeneous difference schemes (IIsCa’), s = 1, 3, 4 
converge uniformly at the rate O(h2) + O(sma) for 0.5 <a< 1 (ma = 2 
for a = 0.5 and m = 1 for a f 0.5), if the conditions A, are fulfilled 
in the entire regyon 0, or more accurately, for a sufficiently small 
T < TV the following estimate is true 

where k! is a constant independent of h and T. For the scheme (112(1)) 
(for a = 1) the following estimates are fulfilled 

where p (h) - l/VW)-+0 for h-+-O, p(z)-l/Vln(l/r)--,O for 
T-0 . 

Inequality (102) follows from (92), and (103) and (104) from (83)- 
(85) (theorem 4). 

We now pass on to the problem of accuracy in the class of discontinu- 
ous coefficients. We shall distinguish two cases: a) all discontinuities 
fixed (FD), i.e. q,‘(t) 3 0 for v = 1, 2, . . . , v,,; b) at least one dis- 
continuity moving (h!D), i.e. qv’( t) y 0 for at least one v = 1,2,. . . ,vo. 
In E51 an estimate is given of the accuracy of the scheme (IIlta)) in 
the case FD. It was assumed in this case that conditions Aa are satis- 
fied in each of the regions 9, and besides that the limiting values of 
the functions k, k’, k’, u’, u’, u”‘, a2u/axat satisfy Lipshits’s con- 
ditions for t along each of the straight lines rv (v = 1, 2, . . . , v,,). 
It has been shown (theorem 4 in [51) that 
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(105) 

where K1 = 0.5 for the entire family of schemes, and K~ = 1.5 for the 
scheme (12)- (13). From theorem 5 and the estimates for the error of 
approximation near the line of discontinuity given in [51 we have the 
following: 

%orem 7. Tbe difference scheme (II,(l) ) in the class of coefficients 
of the equation $‘su = 0 having fixed discontinuities converges uniformly 
at the rate O(kK2) + O(T), i.e. 

II~J--u~~,\<M(~~*+~) for Z<~O. 

where K* = 1 for the entire family of schemes (II( “), K* = 2 for the 
scheme (12)-(13), if the coefficient r(x, t) satisfies Lipshits’s condi- 
tion for t in Xv, v = 1, 2, . . . , vo. 

It can be seen from (106) that the scheme (12) has the same accuracy 
in the case of discontinuous coefficients as for smooth coefficients. 

Using theorem 4 it can be easily shown that scheme (112(1)) in the 
case FU converges in the mean at the rate O(kK’) + O(T) and converges 
uniformly O(hx'--p(h)) + O(T+~(~'), i.e. 

!I y - u II, < M (kxl--p (h) + x1-p (T)) for h < ho, v <To, 

where p(k)-l/vln(l/k), p(z)-l/l/ln(l/z). 

For the scheme (II2(a) ) for a y 1 it is not possible to prove uniform 
convergence even in the class of uniform coefficients. 

Now let us consider the problem of the convergence and the order of 
accuracy in the class of coefficients having moving discontinuities (MU). 
It is assumed everywhere that in each of the regions q the conditions 
A, are fulfilled. Convergence is proved only for the schemes 112( ‘) and 
II 4 (‘) (a = 1). We shall assume that c(x, t) can have only moving dis- 
continuities. In [31 the convergence was proved for a special case of 
the scheme (II,(‘)) for f = f(~, t) - q(x, t) u, q >O. Theorems 2 and 4 
can be used, first of all, to improve the estimate of the order of accu- 
racy obtained in [31, and secondly to prove the following theorem: 

Theorem 8. The difference schemes (II,(l)) and (II,(‘)) converge uni- 
formly in the class of coefficients having moving discontinuities, so 
that the following estimates are true: 
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1) for the scheme (III(‘)) 

11 y - u II, Q M (h” 1 ng f +z Ins f 
) 

for h <ho, 7 <z,; 

2) for the scheme (IIz(‘)) 

II y - u Ijo < n/r (IF-p th) + P tT)) for h <ho, T < To, 

where K~ = 0.5 for the entire family of schemes, K~ = 1 for the scheme 

(12), (13), p@)--1/V~, p(+---1/m, 6>1. 

To prove theorem 8 all arguments given in [31 are repeated, lemmas 
2, 3 and 4 of [31 being improved by means of theorems 2 and 4. 

P/o t e . All results of this subsection, in accordance with [51, remain 
true in the case of boundary conditions of a more general type (for 
example, for (2) and (5)). It is not necessary to deal with the proof of 
the corresponding theorems. !Ve would only mention that a priori estimates 
(theorems 1-5) have been obtained for boundary conditions of a very 
general type, and the method of describing difference boundary condi- 
tions with order of approximation 0(/l*) -+ O(sma) is described in [51. 

Here we shall not deal with the question of the methods of solving 
non-linear difference equations for the schemes (IIICa’), (II2(a)), 
(II, (l)) (see [51). 

2. Multidimensional parabolic equations 

1. JPormulation of the problem 

Let x = (x1, . . . . 
coordinates x1, . . . , 

xP) be a point in a p-dimensional space with the 
x p, E = {OGxa\(Za, a = 1, 2, . . . . pl a p- 

dimensional parallelepiped with the boundary r, G = E - r, (?T = E x 
[O < t < fl, c&. = G x (0 < t <n. The solution of the following problem 
is sought in the cylinder ?& 

c(x, t,$= 5L,u ;+, t, u, g ,..., E) , (x, t) E QT, (1) 
a=1 

w;lere 
Lzu = $- k,(G t, .)$) , 

c 
(4) 

a a 

c (32, t) = c (21, 2.3, . . . ) xp, t), k, = kor(x, t, u), f = f(z, t, u, A,... . , &), 
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x = x(x, t), U,,(X) are given functions. We shall assume that 

ka(x, t, U)>Cl>O, c(x, q>cs>o; (5) 

k,(x> t, u) and f(x, t, u, A,, . . . . 
with respect to u, A,, . . . . A 

A,) have continuous derivatives 
. If the coefficient ka = ka(x, t, u) has 

a discontinuity of kind I on e he plane xa = 5, = const., the following 
conjugation conditions (continuity of u and ka(&@xa) are fulfilled: 

Iula =u(x1,. . . 9 G-1, Xa + 09 Xa+i, . . . , Xpr t) - 
- u (Xl, * - * , xu-11 x61 - 0, Za+1, . . . , xp, t) = 0, (6) 

As usual we-assume that the problem (l)- (5) has a unique solution 
continuous in QT and having the number of derivatives required in the 
course of description. The following conditions will be used. 

hditions A: 1) the solution of the problem (l)-(5) has derivatives 
a4u/axt, a*u/&*, a = 1, 2, . . ., p uniformly bounded inside 0,; 2) the 
functions c(n, t), 
a* c/&;, a3 $x/&;, 

k (n, t, u), f(x, t, u, A,, . . . , 
a*fPg, 

A ) have derivatives 
a = 1, 2, . . . . p uniform y P bounded in QT. 

Conditions B: if c, k and f have a finite number of discontinuities 
of kind I on the hynerplanes x, = 6:‘) = const., s = 1, 2, . . . , p, 
a=l, 2, . . . . p, then a4u&$ a%pt*, a*,/a,;, a*fpg, a3ka/&i are 
uniformly bounded inside each of the regions into which ($ is parti- 
tioned by these hyperplanes. 

These conditions are sufficient for proving the theorem on the accu- 
racy of the difference schemes considered below. In a number of cases 
they can be replaced by weaker requirements. But here we do not intend 
to carry out our investigations on the solution and the coefficients of 
the problem (l)-(5) under the minimum conditions. This would require 
more complex methods of investigation and would be beyond the scope of 
the paper. 

2. Difference networks and network functions 
(i,) 

The planes xa = ida, ia=_O, I, . . . . Na, a=I, 2, . . . . p, 
ha = la/N, partition the region C into parallelepipeds with vertices at 

( il) 
the points xi = (x1 , 

x( ia) 
'*'t a ' "" 

Xp)). We introduce the nota- 

tions oh= {Zinc}, Wh= {XieGG), Y E {Zi E r}, & = COG •/- 7. 

We break up the segment 0 < t &T by the points tj = j x T, 
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j = 0, 1, . . . . K into K intervals of length T = T/K. Let-$ = { tj = j x 

T E [O< t\<Tl), Ok = {ti = j x T, j = I, 2, . . . . K}, Q = Oh x 4 = 

‘<‘i, tj) E 04, Q = b,h X UT = {(Xi, tj) E QT> be a space-time network. 
Below we shall as a rule use a system of notation without indices, 
writing 

2 = xi, t = tj+1, t’= tj, Y = y (2, t) = Y (Xi, $+I) = y(+l, 

x(fl,) = x!*l”) - 
, - (x?), . . . , xy:‘, xy -pzh,, 5z;p,. . . , zaip’), 

Y (fltx) = y (pa), q, 

Y;= = 
Y_y(-la) y(+l=) _ y 

h , Yx, = h 
= ylrti.) 

SOL 
, 

a OL 

&y(x,t-r), y-=2+ 
2 

N,--1 Np-I 

(y, u) = Cy.vh1. . . hp = Nglhl* . . pJ h,. . . 2 hpypi, 
Oh b-1 i==1 ip=l 

N,-1 N=_l-l 

(I/, “I= = 2 hl. * * z h=--1 $ h, N=:-lh=+l. . . N&,yivi, 
i,=l i=__l”l i==l ’ ‘=+1=l ip=l 

where y and u are any functions given on the network Q. We use the 
following norms (compare $ 1) for the estimation of network functions 

IIYlI,=(lYl”9 1)“’ or ll~ll., =(Iyl@, 112, 

7, (‘9 t) = xi Y (x1~. . -9 Xa-1, Xi, X=+1, . . 
r;=h, 

II Y II3 = iI II Y IIS,. 

o=l, 2, 

rp, t) ha! 

3. Homogeneous difference schemes 

We shall consider implicit forward homogeneous schemes, which we shall 
construct by analogy with the one-dimensional case p = 1. We introduce 
the pattern functionals Ata) [p<s,l, a = 1, 2, . . . . p, s = (sl, s2,. ..,sp) 
defined in the class of piecewise continuous functions II(S) given In a 
p-dimensional parallelepiped - 0.5Q~~Qo.5, p f g - l<s,bO. For 
simplicity we consider that ACa) is independent of h,, . . . , h , i.e. we 
consider canonical functionals (and canonical schemes). We sh&l assume 
that AIa) [d is a non-decreasing (Ata) [IA,] > Ata) Cp,l for ~1~ > or), 
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normalized (Aca) [ll = l), homogeneous functional of the first 
(A(o) [CCJ = c/4(a) [CJ ( c = con& > 0) having a differential of 

degree 
the third 

order and satisfy 
n\c) [S&l = - 0.5, 

ring the conditions Ai*’ [s 1 = 0 for p + a, 
where Ala) [ql = A ia [l, !$ is the first differential 

of the functional A(Or) [PI at the point u = 1. We associate the family 
of homogeneous three-point difference schemes 

LY = (4 (5, t9 Y*) Y& y* = 0.5 (z/l”’ + y), (7) 

with the difference operator L,u. The coefficients of the schemes are 
determined with the help of the functional Ata) from the law 

0, = ccl (z, t, y*) = A@’ [kc, (z,+ @l, . . * , c-z+ ez, * . * , xp+ s&p, t, ?/*)I. (8) 

It is easy to see that the scheme Ilay has, because of the assumptions 
made above regarding .A (a), the second order of approximation 

A,u - L,u = 0 (h2), where h2 = + i hi. (9) D =I 

The simplest family of schemes Amy is formed by schemes, the coeffi- 
cients of which are calculated by using the functional A[cI(s~)I, where 
V( sa) is a function of one variable s,, - 1 < s, GO, so that 

aa = A [km (21, - - * 9 Xa-1, J;a + Sz~k~, ~:,~I, * . ?? 9 zp, t, ?/*)I, (8’) 

IIere ~[p(s~)l is the pattern functional used in 5 1, subsection 2, 
for the construction of one-dimensional difference schemes of the second 
order of approximation. Evidently 

A [p (sm)] = A’“’ [p (0, 0, . . . , 0 scz, 0 , ,,.*9 (41. 

For the approximation of the function f(n, t, u, h,, . . . , hp) on the 
network we use by analogy with the case p = 1 (5 1, subsection 2) the 
1 inear functional s 

F [P (41 = F [P 61, . . . , sp)l, -0.56 s,<O.5, a=l, 2,. . . , p, 

assuming that HP(s)1 > 0 for P(S) > 0, F[lI = 1, F[s~ = 0, a = 1, 2, 
. ..( F. The function f(X, t, u, A,, . . . . hp) is associated with the net- 
work function 

(10) 

cp = cp (z, t, u, Al, . . . , A,,) = F rf h + s&i, . - . , zp + s&m t, u, L . . . , &)I, 
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P 

cp (2, t, u, a,, . . . , hp) -f (2, t, 24, al,. . . ) hp) = O(P), h2 = +- 2 h”,. 
a=1 

An analogue of the one-dimensional scheme (12). fj 1 (see [ll ) for 
p > 1 is, in particular, a scheme with a pattern functional of the type 

A’“’ [p (Sl, . . . , sp)l = Bk%[Ah(s,, . . . , sp)~, 
0 

AZ [P h, * * - ’ 41 - [s % (11) 
-1 

p @,. . . ( s,, . . . , Sp) 

where B:::[~(s~, . . . , sa_l, S&l’ ***, sp)l is a linear normalized 

(fqq hl = l), non-negative (BCax’ [ql > 0 for q > 0) functional defined 
in i class of piecewise contin%& functions of the (p - l)-th variable 
given inside a (p - l)-dimensional cube - 0.5 < sp GO.5, p f a, p = 1, 
2, . . . . a - 1, a + 1, . . . . 
dition 

p. Simultaneously RkT: satisfies the con- 

J$‘-‘-,[Q] =O for S#a. P=i, 2 ,..., u-i, a+ i,..., p. 

For example, B~“~[ql E 1, or 

0.6 0.6 0.6 

Br!,[q] = 
s 

dsl. . . \ d.sa__l \ A-,,,. . . y ds,q (sl. . . . , s,_l, &+l, . . . , sp). 
-0.6 -0.5 -0.6 -0.5 

0.6 

The analogue of the one-dimensional functional ~Li.t(s)l = \ ids is 
the functional -0.6 

0.6 0.6 

F [p(s)] = \ ds,. . . \ dSP/L(Sl, . . . , s*). (42) 
-0.5 -0.6 

In [51 it was explained that for the construction of difference 
schemes with maximum accuracy in a class of discontinuous coefficients 
it is convenient to transform the function f to the form 

f=f( x, t, u, 2k$, . . . , 2kpG , 
1 P 

This is always possible because k, >c, > 0. The flux 2k,(&/ax,) is 
approximated by the expression 

A, (y) = ah+‘“&, + uayxor - h: (u) = 2k, T& . (14) 
a 
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We shall also consider schemes for which 

f= f (x, t, u, g,. . . , g-). . . , &) 
P 

ha (Y) = Y& = 0.5 (yz, + y;,) I LO, (24) = $ . (15) a 

4. The difference boundary problem 

We now pass on to the formulation of the difference problem correspond. 
ing to the initial Eroblem (l)-(5). We have to find the network function 
y(x, t) defined in Q and satisfying the equation 

pys_ = Ay + cp (5, t, Y, Al (Y), - * . 9 A, (Y)) ina (16) 

the boundary condition 

y= x(x, t) for zEr, t E 0, (17) 

and the initial condition 

Y (x, 0) =Ug(Z) for t=o, ZG,. (18) 

Here 

Ay = ; Ad, 
a==1 

Aay = (62 (5, t, Y*) Y;&,, (19) 

expressions (14) or (15), p = p(X, t) = 
t,l. 

Let u be the solution of the problem (l)-(5), y the solution of the 
problem (16)- (19). We shall find the equation for the error z = y - U. 
Substituting y = z t u in (16) and reasoning as in 5 1, subsection 4, 
we obtain 

Qa (4 = baha (4 + k,z*)x,, 
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The vinculum indicates that the derivatives are taken for some mean 
arguments u, A,. The error of approximation has the form: 

Because of the conditions for f, c, k,, u the coefficients ao, p, d, 

b a, g, are bounded: 

u,>c,>~, p),c~>O, IdI\<cs, IbaI\(c49 IgaIGC59 (24) 

where cl, c2, c3, cqr c5 are positive constants independent of 1$x and T. 
(1~ = u(x, t) is a given solution of the problem (l)-(5). Outside the 
region of variation of IA, h,(u) it is possible to define k(x, t, u), 

f(x, t, u, A,, -*.t hp) in such a way that ax/&, af/&, af/ha (a = 1, 
. . . . p) are bounded. ) 

If the conditions A (B 2, subsection 1) are fulfilled, 

9 = 0 W) + 0 (4 or [I * Ilo 6 M (h* + r). (25) 

5. A priori estimates 

To determine the order of accuracy of the scheme (16) the solution of 
the problem (20)-(24) must be determined in terms of the error of 
approximation. We shall consider a problem of a more general type: 

pzri = AZ’+ Q (z) + 9 in B, 

2 =O for SET, tE% Z= 0 for t=O, zEoh, 

P 

(26) 

(27) 

AZ = 2 (aaZ&, - 42, (28) 
a=1 

Q (2) = i 15 azx, +zazza + (gg’z).za + (gg’z);a + @‘i)x, +(gg’a);aI + hi, 
a=1 

(29) 
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P>Cl>O, ~or>ICl>O, MI\(C% I~alIc3, IKlIc3, Ig$)I\<c*, 
s,k=i,2, a==1 ,..., p. (30) 

We shall assume that 

Theorem 9. If 

I &I Q CE.. (31) 

g$) = 0, s, k=i, 2, a=i,...,p, (32) 

then the following estimate is true for the solution of the problem (26)- 
(30) 

114% ~)llo\<~ll~(“~ 40 for T<% (33) 

where 

M= WI, cz, c3), IIWG t)II,= ma= Il$(~, OIL. 
(r<t’<t) 

If, moreover, condition (31) is satisfied, then for sufficiently small 
T < -r,, and h < h, the inequality 

11s ($9 t> Ilo< J4lw, t) l13,1nS (1 /WY a= 1, 2,...,p, (34) 

is true. Here H = h,. . .h,, all y(n, t> iI3 is given in subsection 1, 6>1. 
a 

theorem 10. Let Z(X, t) be the solution of the problem (26)-(31). 
Then for a sufficiently small 7 < TV the following estimate in the mean 
is true 

(35) 

where a is any of the numbers a = ‘1, 2, . . . I p. If, furthermore, h < h, 
is sufficiently small and gl:) = g:y) = 0, 

H = hl . . . h,. (36) 

These theorems are a simple generalization of theorems 2 and 4 proved 
in 3 1. The method of proving them is the same as for p = 1, only the 
description is somewhat complicated. First the transformation 
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zj = J(I + C)j is carried out. For v we obtain the same problem (26)- 
(30), and the coefficient dl> M* > 0, if T < To, where M* is any pre- 
assigned number. M is expressed in terms of M* and the constants c1 - c5, 
To simplify the account we shall assume that this transformation has 
been carried out already, and shall retain the former notation z for the 
required function. By analogy with the one-dimensional case wenshall 
write the integral identity of the n-th rank for the function z = z2”: 

(p, Z)T + 2 i 1:’ + $ P$? + 2”(dl, ;, = 2”(Y, 2.y + (Pi, z”,, (37) 

a=1 a=1 

n-1 

Y = Q (2) + $, p?’ =z 2 2n-k-1 (p (“ZJ”, Z%--aR+l), (38) 
k=o 

1;;) = @, ( n<)$ + ni2 2n-k-2 {@, (;;,)Z’ Z=n-‘h’+l) + 

k=o 

+ (up) (Ltx,)‘, Za@k+l)}. 

The integral inequality of the n-th rank and all 
hand side are derived as in subsection 5 $ 1 for 
considering the first boundary problem here, the 
ably simplified. To avoid unnecessary repetition 
give the proofs of theorems 9 and 16. 

(3% 

estimates of the right 
p = 1. Since we are 
arguments are consider- 
(of !$ 1) we shall not 

It should be noted that the specific form of the region G (parallele- 
piped) is not used in deriving the identity of the n-th rank. This 
identity is true on the Iectangular network ah which approximates the 
arbitrary region c. 

Ye now pass on to the question of the stability of the solution of 
equation (26) with respect to the boundary and initial data. 

The equation of the first rank has the form 

pq - Aw + R (z) + 2d,w = 2zQ (z) + 229 (w = ZP), 

(40) 

The principle of the maximum is true for this equation when git) = 0 
and therefore the following is true. 

Theorem 21. If gli) = 0, 2, k = 1, 2, a = 1, 2, . . ., p, the solution 
of equation (26) defined in R is stable with respect to the right hand 
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side, the initial and boundary values, so that for sufficiently small 
T < mu the inequality 

II2 (r, Q 110 < &UIs (29 0) /lo+ II 2 c? t) Ilo, Y) tiv, 
[ 

i rll $ (x:, f) 15 
I’=: I 

‘1’ (41) 

is true. Here -ru and M,, Mz 
andT, i=l, 

are positive constants depending only on ci 
- . . , 4 11 z (z, t) lb, y = max 1 z (z, t) (. 

(XE-f) 

This’theorem is proved by analogy with the proof of theorem 1. There 
is no need, therefore, to dwell on it. 

It will be noted that the first statement (33) of theorem 3 follows 
from (41). 

We now consider the general equation (26), when g.if) f 0. We express 
its solution in the form of the sum z = v + w, where v <and 1~ are deter- 
mined by the conditions 

vT - Av + d,v = Q1 (v) + 9, 
V=z forXET, tEo,i 2)(x, O)= Z(2, 0) for zEGh, 

(42) 

Q1 (v) = i @a~, + b;;,, = Q (4 - Qt (v), 

wT-Aw+&w=Q(w) +QzW, 

W-O forsET, tEo,, W((z, O)=O forrEOh. 

The estimate (41) is evidently true for v(x, t). To estimate ?L, we use 
the integral estimate (37) of the n-th rank. We transform terms of the 
type 2”( (gv) “o, 90~“) on the right hand side as follows: 

2”((,&,, Wan) = - 2” (gv, (w”“),il), ct,=2n-1. 

Hence, using the formula for (van) Xa we find 

2” 1 ((gv)x,, way I< 2”M (1) i) + $1:’ + (A4 .2”112’ (11))2”* 

As a result we have the following estimates: 

II w (Xl 
IIw@* 

Combining 

t) II* < M II v (x9 t) UOP 
t) Ihl< M II v (G t) II0 exP (M nn (I/ W) 9 

1 (43) 
Ii=lll.. . $1 

(41) and (43) we find that the following is true. 
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Theorem 12. Let z(x, t) be the solution of equation (26) defined on 
the network R. If conditions (30) and (31) are fulfilled, the following 
inequal ities are true: 

1) for a sufficiently small T < -rO 

II 2 (r, t) lb < M 
1 
II 2 (~9 0) 110 + II 2 (~9 t) Ilo. y + 

[ 
i qlq ix, t’) Ita]‘“); (44) 

f’=r 

2) for sufficiently small T < T,, and h < h, 

110, t)Il&M{IIz (2, 0) 110 + llz(z, N. y + IN (z, t)lls,>exp(M~ln(l/H)). (45) 

The second estimate contains a factor dependent on H = h,, . . . , hp. 
If will be used in dealing with the problem of the uniform convergence 
of difference schemes corresponding to quasilinear equations of the 
parabolic type with the coefficient of heat conduction k = k(z, t, 
dependent on the required function u = u(x, t). 

6. The convergence and order of 
for a quasilinear equation 

We now return to the problem 
problem (26) - (30) considered in 
a priori estimates used in that 
theorems on the convergence and 

accuracy of homogeneous schemes 

(20)-(24). It is a special case of the 
subsection 5. We can therefore use the 

u) 

subsection and enunciate a number of 
the order of accuracy of the solution 

of the problem (16)-(19). Particular attention is paid to the proof of 
uniform convergence. 

Theorem 13. If conditions A are satisfied in qT and k, = k,(r, t) 
does not depend on u, the solution y = y(x, t) of the problem (16)-(19) 
converges uniformly to the solution u = u( z, t) of the problem (1) - (5) 
as ko (a = 1, . . . . p) and T independently tend to zero in such a way 
that for sufficiently small T < lo 

II Y - u Ilo < M W + 4, h2 = $ $j h”,. 
a=1 

(46) 

Theorem 14. If the conditions A are fulfilled in ($,. and k,=k,(x, t,u) 
depends on u, the solution of the problem (16)- (19) converges to the 
solution of the problem (l)-(5) in such a way that 

1) for a sufficiently small T < TV 

Ily----l12\<M(h2+~) ( convergence in the mean); (47) 
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2) for sufficiently small T < T,, and h < h, 

IIY - u 110 \< M1 (h2 + Z) exp (MS vln (1 /H) ) (uniform convergence) . (48) 

Both theorems are true for any p > 1. Estimate (48) cannot be im- 
proved even for p = 1. 

To Prove theorem (13) it is enough to use condition (25) and estimate 
(33) of theorem 9. Theorem 14 follows from theorem 12 and (25). 

The c priori estimates (34), (35) and (44). (45) (theorems 9, 10, 12) 
can be used to Prove the convergence of the difference scheme (16) in 
the case of discontinuous coefficients k, and f, because these estimates 
were obtained on the assumption of the boundedness of the coefficients 
of equation (1) only. Let us assume that the coefficient k,(x, t, IL) has 
a finite number of discontinuities of kind I for xc = cc = const. Then 
the conjugation conditions (5) are fulfilled along the hyperplane xc = <c, 
and the scheme Aou, as we have seen in [ll, kd, b! does not approxi- 
mate the operator Lcu in the neighbourhood xo = 5,. It is sufficient to 
consider the case when, for example, the coefficient k x t, u) has a 
discontinuity for xl = t1 = xinl) + 8,h,, 0 \<O1 \<l, xlnl = nrhr. We 1t ‘1 
shall assume that in each of ;he regions into which the hyperplane 
x1 = El divides the cylinder 0, the conditions A are fulfilled, i.e. the 
conditions B are valid. In calculating the error of approximation at the 
points x 

“1 
= (ni”l), x2, . . . . xp) and xn t1 = (x~“l+‘), x2, . . . . 

is sufficient to confine oneself to a s&y of the term 
xp) it 

$,1= n,u - L,u 

(for simplicity we assume that c(x, t) and f are continuous for x1 = El), 
since q~ = yl = Q(h*) + Q(T) at the points x = xnl and x = xnltl. 

Moreover, we have y = C&h*) + Q(T) everywhere in R, in addition to 
the points (x 

“1’ 
t) and (xn tl, t), where t E oT. Noting that vl is the 

error of approximation of tie one-dimensional scheme A1u, and using the 
results of [II and [51 we obtain 

1) ~,g,(GL,~ t) =0(l), 41(&a,, t)+%(GI,fl, t) =0(l) (49) 

for an arbitrary scheme from the initial family of difference schemes 
defined in subsection 2, 

2) 4h(%r t) = O(j), +1bw t) + 4hn,flt t) = o(h) (50) 

for the 
(12). 

best schemes defined by pattern functionals of the type (11) or 
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It follows from (25), (49)-(50) that: 

for any scheme (16) 

(51) 

for the scheme (ll)-(12) 

h, ‘Ic! (xn,, t) = 0 (W, 7cj (G,, t) + II, (G,+I, 2) = 0 (h,). (52) 

If the functions f( n, t, U, h,, . . . , h ) and c(n, t) also have dis- 
continuities of kind I for r1 = E, = LX?‘+! O,lzl, 0 < 0, <h,, x?’ ’ = nltllr 

conditions (51) are satisfied for any scheme and any of the representa- 
tions (14) or (15). For a scheme defined by the functionals (11) and 
(12), and also the expression (14) for h,(y), conditions (52) are 
satisfied. 

At the remaining points of the network 

II, = 0 (h2) + 0 (r, for r # q,l, z + z,,,+~ 

for any of the schemes of the family considered. 

By analogy with 9 3 of [51 we find 

II 1c, IIS, < M lh2 + -r + q I 9 (%, 0 I + hl I 9 (%, t) + $ bn*+rl t) I>, (53) 

where I!! is a constant independent of h and -r (and dependent, in particu- 
lar, on the volume of the region Q. 

Now taking theorems 9 and 10 in turn we see that the following state- 
ments are true: 

a) if none of the coefficients k, = k,(x, t) depends on U, and each 
of the functions k,, c, f has a finite number of discontinuities of kind 
I for x, = I$$~) = const., s = 1, 2, . . . , ma, a = 1, 2, . . . , p, the 
solution of the problem (16)-(19) converges uniformly to the solution 
of the problem (l)- (5) as ha - 0 and T - 0 such that for sufficiently 
small h < h, and T < -r. the estimate 

II~--~lo\<~~(~~~n~(l/~)+h2+ r). (54) 

is true. Here K = 0.5 for any initial scheme, K = 1.5 for schemes (11). 
(12). 6 ’ 1. 

b) if even one function k, = k,(n, t, u) depends on U, for suffi- 
ciently small T < ?0 we have 
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IIY--u~2<w~,“+~2+ z) (55) 

and 

IIY--ul,\<M(h,“+h2+Z)exp(M~)for ‘F<G, h<ho. (56) 

In a number of particular cases the estimates given of the order of 
accuracy of the schemes considered can be improved. 

With the method of studying the convergence described here similar 
estimates can be easily obtained for an arbitrary region with a suffi- 
ciently smooth boundary. The main difficulty here will arise in the case 
where the conditions on the boundary r of the region G are transferred 
to the boundary y of the network ah by means of 1 inear interpolation 
(see [91). This method of specifying boundary conditions is easier to 
use for the so-called method of fractional steps (see 182). This method 
will be formulated and its convergence and accuracy studied in a sub- 
sequent paper. 

We now take the third boundary problem. Instead of (2) let the 
following conditions be given 

k au -- 
a C3za cl& = /la for 2, = 0, h-, g + G2d.J = j2a for X~ = l,,a = 1, 2, , , . , p. 

bl 
(flu) 

The difference boundary conditions no y, - alay = f1, for ro = 0, 

acJzo + *2,Y = f2, for “a = 1, have a firstaorder of approximation. The 
following estimates are true for the corresponding difference problem 

IIY - uIl~<M(h-t-T) instead of (46), 

IIy-UIlo~(((h:In8(l/H)+h +T)instead of (54), 

I/y-- U!O< M(h: --b-h -!- ~)exP(M~]n(l /H)) instead of (56). 

It is interesting to study boundary conditions of kind III with the 
second order of approximation (compare [51). 

7. Some remarks 

I. If k, = k,(x, t) has a derivative aka/at bounded in QT, and hence 
1 (aa)7I < I!!, theorem 5 can be generalized for the multidimensional case. 
In particular it follows from this that for the linear equation (1) for 
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ka = ka (5, t), f = f (r, t) + $ ra (5, q ga - 4 (2, t) 11 
a==1 

the estimates (54) and (55) can be improved. In particular instead of 
(54) we obtain 

where K~ = 1 for the entire family of initial schemes and K~ = 2 for 
the scheme (ll)-(12). Without going into the proof of this we shall only 
note that for p f a, aka/hp is bounded along the hypernlane xa = <, = 
const. on which k, has a discontinuity of kind I. It is also assumed 
that f, ra and q(x, t) have finite derivatives with respect to t. 

2. F’or the linear parabolic equation 

&+f( z, t, u; h’:(u), . * . , bO, (u), g) = 0, 
0-l 

where 

h:(u) = 2 
a 

or A”,(u) = 2k,$, 

the investigation is carried out as for the one-dimensional case (see 
[51). 

Translated by R. Feinstein 
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