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Homogeneous difference schemes, the general definition of which is given
in [1], were considered from the point of view of their application to
equations of the parabolic type with one space variable in [2)-[5].
Since the problem of the convergence of difference schemes can be re-
duced to the problem of the stability of the solution of a linear equa-
tion with respect to its right hand side, and to the boundary and
initial data, a priori estimates were obtained in the first instance in
[2) and (4] from which the stability follows. As in [1], special atten-
tion was paid to the choice of norms for the estimation of the right
hand side of the difference equation with the help of which the con-
vergence of homogeneous schemes could be proved in the class of discon-
tinuous coefficients of the differential equation. In (3] the a priori
estimates obtained in [2] were used in the proof of the uniform con-
vergence and in the estimate of the order of accuracy of homogeneous
difference schemes for the linear equation of heat conduction with dis-
continuous coefficients. In [5] homogeneous schemes were studied for a
non-linear equation (1) of the parabolic type with boundary conditions
of kind III.

In this paper we consider homogeneous schemes for quasilinear para-
bolic equations with one or more space variables. One-dimensional prob-
lems are studied in § 1 and multidimensional ones in § 2. The equation
of heat conduction with the coefficient of heat conduction k = k(x,t,u)
is considered in § 1. The main a priori estimates of [2] and [4] for a
four-point implicit scheme (forward scheme) and for a six-point sym-
metrical implicit scheme are improved in this section. This makes it
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possible, in particular, to obtain an estimate of the order of accuracy
of homogeneous schemes for quasilinear parabolic equations with coeffi-
cients having mobile ("oblique") discontinuities on a finite number of
curves x = 1,(t). The results of {3) for the linear equation of heat con-
duction are also obtained.

It is shown (subsection 8, § 1) that there is a homogeneous differ-
ence scheme having in the class of discontinuous coefficients for the
paraholic equation

P = 2 (k(z, t)gg)+ (e, t) e —f(2,t, u %—‘t‘) —0

the same order of accuracy as in the class of smooth coefficients.

It should be remembered (see (1 (3] [5]) that we consider every-
where homogeneous difference schemes of "through computation" which do
not change when discontinuous coefficients of the differential equation
are used instead of smooth coefficients, and do not involve any changes
in the scheme in the neighbourhood of the lines of discontinuity of the
coefficient of heat conduction. All investigations are made for a wide
class of schemes defined by specifying pattern functionals (see [1]) of
a very general type, and the parameter o, 0 <Ca <1 (weight of the row).

The methods used in [2]-[5] and here enable the convergence of homo-
geneous difference schemes to be proved for a system of parabolic equa-
tions with discontinuous coefficients. The a priori estimates obtained
in [4] can be used for this purpose.

Implicit forward schemes, approximating a multidimensional equation
of the parabolic type, are considered in § 2. The investigation, which
is made on the analogy of the one-dimensional case, enables uniform con-
vergence to be proved and an estimate to be found of the order of
accuracy of homogeneous schemes in the class of smooth and discontinuous
coefficients. Schemes of a special type for the case of partial coeffi-
cients were considered by a number of authors (cited in [6], see also
[7]). In conclusion we would point out that for the solution of a multi-
dimensional parabolic equation the use of the implicit schemes considered
in § 2 involves a large amount of computation to be carried out for the
solution of difference equations. In recent years a number of economic
computational schemes have been proposed for the solution of multi-
dimensional problems. With the methods used by us to study convergence
it is possible to give a justification for (prove the uniform convergence
of) the method of fractional steps (see [8]) in particular. A separate
paper will be devoted to this question.
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1. One-dimensional parabolic equations
1. Introduction

In [5] homogeneous schemes of through computation were considered
for the non-linear equation

Fu =g (k05 +(ztug, 5)=0 "

in the region ] = (0 << x <1, 0 <t <7D and for boundary conditions of
kind III

k2 s (yu=u(t)  tor z=0,
} (2)

k2L (u=uy(t)  forz=1.

The results obtained in [5] are extended to the case of boundary condi-
tions of a more general type:

du du
k5—=q>1(t,u, ——) for z =0,
z at 3
_kﬂ‘— (t Ou forz—i} )
az_‘(P2 Iuva—[> — L

where ¢s(t, u, 7 (s =1, 2) are arbitrary functions satisfying the con-
ditions

o9, O | o9 o9,
>0 g za>0, FL>a>0, =t (4

where ¢, and c, are positive constants. The simplest example of condi-
tions of this type are the conditions:

kg_:=cl(t)g—:‘+cl(t)u+u1(t) for @ =0, (5)

__kz.l;=cz(t)g_t'i+ Sy (t) u -+ us (t) for z=1. (")

The physical significance of condition (5) is clear: at the boundary
x = 0 there is a concentrated specific heat Cl(t) and heat exchange
occurs according to Newton’s law with the external medium at the tempe-
rature - u, (t)/o,.

Here we shall not be able to discuss the study of problems with con-
ditions (3). We shall only note that the construction of difference
boundary conditions with the second order of approximation is carried
out according to the scheme proposed in [5]. The effect of the error of
approximation of the boundary conditions on the accuracy of solution of
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the difference houndary problem is estimated with the help of a priori
estimates similar to the estimates obtained in (5] (theorem 1).

Since the method of calculating the error by means of approximation
of the boundary conditions (2) (and therefore (3)) has been given in
[5], we shall confine ourselves, for simplicity, to a detailed study of
schemes for problems with boundary conditions of kind I.

In the rectangle D(0 <x<1, 0t XD we shall consider the
following problem:

932u=:—x<k(x,t,u)g——:>——c(x,t)g—': —|—]‘(a:,t, u,%), (6)
u (0, ) = uy (2), u(l,t) =u,(2), (7

u (z, 0) = o (2), (8)

k(x,t,u) >¢, >0, c(z,t) >c; >0. 9)

The function k(x, t, u) and f(x, t, u, p) have derivatives Jk/du,df/%u,
af/ap continuous with respect to the arguments u and p*.

The functions k(x, t, u), f(x, t, u, p) and c(x, t) can have discon-
tinuities of kind I with respect to the variables (x, t) on a finite
number of differentiable, mutually non-intersecting Fv given by the
equations x = n,(t), v =1, 2, ..., vy, 0Kt T and nvl(t) < nvz(t)
for v, < wv,, n,(1) > () =1, nvo(t) < nv0+1(t) = 1 on the segment
0<t<CT. As usual (see [3], [5]), we denote by A, and D the regions:

A=) <zma(), 0tT)

, v=0,1,2,...,v,,
A=mt<zs<nau (), 0<t<T), D= A.
=()

If the coefficient k(x, t, u) is continuous on the curve Fv(x = n,(t),
the following conjugation conditions are fulfilled

[u], =0, [k g—';]v =0 for r=1,(t), 0<tT, (10

* The boundedness of the derivatives of k(x, t, u) and f(x, t, u, p)
is made use of in the study of the convergence of the solution of
difference problems to a given unique solution u = u(x, t) of the
problem (6)-(9). We also bear in mind the possibility of continuing
suitably the functions k, f outside the region of variation of the
arguments u, p(u) corresponding to the given solution of u.
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where [ul | = u(n, () + 0, ) - u(n,(t) = 0, 1) =u_ - u__ etc.

T,V 2,V

If nv'(t) =0 for all 0<Ct<(T, i.e. n,(t) = const., we say that
k(x, t, u) has a fixed discontinuity. In the general case for nv'(t) #0
we say that k has a moving ("oblique") discontinuity.

2. Homogeneous difference schemes

Let Q = (x, =th, t;=jr, 1=0,1, ..., N, j=0,1, ..., K
h = 1/N, v = T/Ky be a"difference network, Q the set of its internal
points (x;, t), 1<iKN -, 1<K @, = (x; =ih, i =0, 1,
ceer M, @ = (x; =ik, i =1, 2, ..., N=1) the network in x;
o =t =jxT, J=0,1, ..., D, o = (t; =j, j=1, 2 ..., IO
the ne{work in t. The net function yfl. given'on Q or its parts will be
denoted by y(x, t) or simply y. The following notations will bhe used

y=y(z ) =y", Y=y t) =y, yB=y@Eth?),
Yz=W =y VR, Y =@yN—y)/k, yr=(y—y/,  y. =05(y; +va),
such that (ay;)x = [@ist (Yira — ¥i) — @i (Yi — ¥i-1)1/R%,

N-1 N

W, 2)= Aywk, @ vl= D) ywih.

i={ =1

The following difference scheme will be associated with the differ-
ential equation (6)

Pry = (@) + @2, 1@, y=, M (y)) —p@yp, (11)

where v(a) =av + (1 - a)?, o is an arbitrary parameter which can assume
the following values in the segment 0 <Ca <1

a=afx,ty"), y* =0.9(y + y-v), 1 =at 4 (1 ——a)vt, [=t—1,
p=plx,t), My =y;.

If « =1, then PNy is a four-point forward scheme; for o = 0.5
we obtain a six-point implicit scheme 95;.01'5)3/. The scheme 9",(1?}/ is de-
fined by specifying the parameter « and the law for computing the co-
efficients a, ¢ and p in terms of the coefficients of the differential
equation. We shall need the following properties of the coefficients aq,
¢ and p:

N o0<a<aKe, 0<<ea<p<e, if0<a<i<ca 0<a<e(r,)<e;
2) a(z,t,u)—k(z,t,u) = 0.58k" (x, t, u) + O (h?), ax{x, t,u) =
=K (z, ¢, u) + O(hZ)’
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where the prime denotes differentiation with respect to x;

) ¢l t,u, A @) —/ (2,8, u,u') =0 (1),
4) p(z,t) —c(z,t) = O (h?),

if k(x, t, u), f(x, t, u, u’), c(x, t) and the solution u(x, t) of equa-
tion (B) are differentiable a sufficient number of times, for example,

k has three derivatives, f and ¢ two derivatives each, and u(x, t) four
derivatives with respect to x. Conditions 1) - 4) are sufficient in
order that scheme (11) may have the second order of approximation with
respect to x. The concrete representation of a, ¢ and p in terms of k,

f and ¢ is not used in practice. Further, we require that the scheme
Spf?y should be a homogeneous scheme, i.e. its coefficients should be
calculated according to the same law in terms of the coefficients of the
differential equation at all points of the arhitrary network for the
entire work of piecewise continuous functions. In (1] a method of calcu-
lating the coefficients of the scheme was given which makes use of the
so-called pattern functionals

Arp ()] (—1<s<0), Frp(s)] (=05<s<0.5)
according to the law
a(x,t,y*) = Ahk(z +sh,t,y*)],  pl(z,t) = Fhic(z + sh, t*)],
@ (x,t,y,A) = Fr[f(z +sh,t,y, M].

Without any loss of generality we can consider AR and Fh to be
canonical functionals independent of i, and denote tliem by 4 and F. Con-
ditions 1) - 4) will be fulfilled if it is assumed that:

a) A[u(s)} is a homogeneous non-decreasing functional of the first
degree having differentials up to the third order of Am[u, f] (m =1,
2, 3) and satisfying the conditions

A1 =1, A;[s1=—0.5 (41 [1, 8] = Ay [s]);

b) F[u s] is a linear non-negative functional and
Fi11 =1, Fis]=0.

Thus the family of initial schemes Phe will be defined by specify-
ing the parameter a & [0, 1) and the class of pattern functionals 4 and
F satisfying conditions a) and b). All the following investigations re-
late to the entire family of initial schemes for 0.5 <Ca <(1l. In practice
we are interested only in two values of the parameter o a = 0.5 and
a = 1. We do not consider explicit schemes (a = 0).
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The difference scheme with the pattern functionals (see [1])

0.5

S Fmen= peds (12)

-0.5

Afp(s)] =[

he—o

ensures, as will be shown below, the highest order of accuracy in the
class of discontinuous coefficients. The function f in (6) must be
transformed to the form

7{z t,u, Zk%),

which is always possible because k>c1 > 0, and in formula (11) the
approximation

A (y) = ey, + ay;. (13)
must be used instead of A.
Below, when talking of scheme (12) we shall imply formula (13) also.

We now formulate a difference problem corresponding to the probhlem
(6)(9):

Py =01n Q, (14)
y(O, t)=u1(t)a y“rt):uz(t) for tEm,,} (15)
y(z,0) = u, (z) for T E wp,.

From a), b) and (9) we obtain

0K, 0 e Co. (16)
3. The difference problem for the error

In solving problem (14)-(16) instead of problem (6)-(9) we introduce
the error z = y -~ u. We shall find the conditions for the determination
of z. Substituting y = z + u in (14) and taking into account (6), (7),
(8) and (15) we obtain the following conditions for z:

Prz=(a(x, t,y") 2z A p(“)zt— +Q(z)=—Y¥ in Q, (17
2(0,2) =0, z2(1,t) =0 for tE 0., (18)
2(2,00=0  for T€ oy, (19)

Q (2) = (828" + b2 + dz", (20)
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da (x, t, a e . _
g=—‘5%—,f—ﬂ, b=7‘{i, d=3r, ¥ =05("D+y).

The vinculum denotes that the derivatives are taken for certain mean
values of the arguments u and A (see [5]). The right hand side of ¥
equation (17) is, obviously, the error of approximation of scheme (14)
in the solution of the differential equation (8).

It is determined from the formula

Y% Y= (alo ), — o (k@ w2,

=0 tfa)ufa)u:(;a)) . (f (1, %))(a) B [p(“)u,—— (c %:%_)(a)] ‘ (21)

We shall assume that problem (6)-(10) has a unique solution u=u(x,t)
continuous in D and the following conditions are satisfied:

Conditions Au: 1) the function k(x, t, u) has a second derivative
with respect to x, satisfying Lipshits’s condition for x; 2) the func-
tion f'(x, t, u, N\), ¢'(x, t), u'’(x, t) satisfy Lipshits’s condition for
x; 3) the derivatives 3" !¢ /d¢™a~1 3mxy,/3:™x satisfy Lipshits's condi-

tion for t, where my = 2 for o« = 0.5 and m, = 1 for a # 0.5.

If the conditions Aa are fulfilled in 5 (or in a fixed neighbourhood
of the point (x, t), it is easy to show that

2 for a=0.5,

1 for a=0.5. @m

¥ (x,t) =0 R +0T™), me= {

4. The simplest a priori estimate

The question of the convergence and the order of accuracy of the
difference problem can be reduced to the estimation of the solution of
the problem (17)-(21) in terms of the error of approximation ¥, i.e. to
the proof of the stability of the solution with respect to the right
hand side of Y. For this we use different a priori estimates depending
on the type of the equation and the properties of the coefficients of
the differential equation. The simplest to study is the case where
k = k(x, t) does not depend on u(x, t) and the functions k, f and c are
smooth. If k = k(x, t), g = 0 in formula (20). We shall consider an
implicit forward scheme, i.e. for o = 1.

L.et z = z(x, t) be the solution of the following problem

. p2p = (azg); + bz, + bazz - duz + dZ - 9, (23)
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a(+”zx=$IZt- + G612 — Vp for z= 0, — az; = 822;‘—{" Go2—Vy for z=xN=1, (24)

z(z, 0) =z, (x), (25)

0<e,<aq, 0<ea o ldsl<car ]b,|<c4,s=1,2,} 26
60, 8.30, o4+ 8>c>0, 6 +o>e>0 [ (4O

The boundary conditions (24) are obtained for a difference approxi-
mation of order O(h%) of boundary conditions III of kind (2) or condi-
tions (5) (see [2] and [5]). For conditions (2) &,= O(h). Boundary con-
ditions I of the kind z(0, t) = v, and z(1, t) = vy follow from (24) on
replacing in (24) v, by o,v,, v, by o,v, and then passing on to the
limiting transition o, -~ ® and g, = @

Theorem 1. The solution of the problem (23)-(268) is stable with re-
spect to the right hand side of y, the boundary data v, and v, and the
jnitial values of z(x, 0), so that for a sufficiently small T < To and
any h the following estimate is true

t

2z, 0)ly < M {12 (2, 0) |y + @] + [ @1 + M [ 2 <lv @ )E]", @D

=z

where T, and } are constants dependent on ¢, ..., ¢, and independent
of the network;

|vs (£)| = max [v(t')], s=1,2.

>

The theorem is proved by a method similar to that used in the theory
of differential equations and based on the principle of the maximum for
(23). We introduce a new function v/, putting z/ = v/(1 + M)/ where ¥
is an arbitrary positive constant which we shall select later. For the
network function v(x, t) we obtain the conditions

Evt« — (av3), = b, + byv; —dv + dov + V;
&0y —aty, 4 6, =V forz =0, &yt avs + Gs¥ = V3 for z=1;
v(z,0) =z(z,0),

(28)

where

p=pr, d=—di+pMy, dy=dyy, ¥ =1, vi=vr,
83=6.+$STM, gs:'rgsv T=1f(1+1"_jt)v s=1,2

We formulate the conditions for v2. Multiplying (28) by 2v and taking
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into account the obvious identities

2v (avs), = (a (v%)5), — av? — a*Vol, 20.v; = (v%); + w0},

2v-v, = (v%), — hol, 2v-v-= (v¥); + hvz,

we obtain

p (09); — (@ (9%)); 4+ Q (v) + 2dv = 20 by, + byvz) + 2do0 + 209, (29)

&, (0%); — a"* (0?), + 26,0% + Ry (v) = v for z =0, } o)
&a (VD) + a (v¥); -+ 2050 + Ry (v) = 2vy0  for s =1z =1,
Q (v) = pw} + av} 4 a"Vef,
R,(v) = (Tg)lv% + ha™%) [xm, Ry (v) = (t&20} + havi’) be=1-

Using the well-known inequality |ab| < c,a®/2 + b%/2¢c,, where c, is
an arbitrary positive quantity we obtain

2| (b, + b)) v | < (263 ) v + avh + a0, 2|0 | <o + e,
2| dyov | << 2veq® + 27es || T vy | <C27(cs -+ 0.5¢3/c,) v? + 'rc*rzv%,

where c, = ci/c1 + Cy + 0.5 Coe Thus the right hand side of equation
(29) is increased by the expression

217 (cs + 0.5¢3/c,) + ¢, — 3} v? + 7e, %% + Y¥c,
and instead of (29) the following inequality can be written
p (v9); — (@ (¥¥)2)x + 7 (€2 — Tc,) v + 24,02 < Y¥/e,, (297
where d* = (cleI ~¢3 - 0.5 cg/c*)y -c,. We now choose M such that

d* > 0. This condition will be satisfied if v is sufficiently small
(t < -ro'), and M is sufficiently large (M > M*')

, M — , +) €4 + 0.5¢2
1‘,'<1,’0=~%j—( —-—_A__l_i_)’ M>M*:(ca+c)c + Cg (30)

C2C,

(choosing, for example, M = oM ' we obtain 7," < 0.5 c,/c ). Hence we
obtain ¢y - Tc,_ > 0 and

p (097 — (a (?);), + 2d,02 < PY/c,. (31)
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Using the estimate 2|vsz|<§ c(;z2 + vi/cé (s =1, 2) where c,’ is an
arbitrary positive quantity we obtain

gl (Uz)t— — g™V (v%), + 251*02 <wv /c;) for =0,
| (31
<

gz (172); —]r a (vz)a—c + 282*02

V/Co for » =1,

where o,, = 0, - 0.5 ¢, 0,, =0, = 0.5 ¢;.

We shall now require that E . ;Bm* >0 (s =1, 2), where m is a
given constant. This condition w11] be satisfied if T < TO (cs, co, m),
> M* > 0. Taking (30) into account and denoting by T, the least of

4

T,' and T,", and by M, the greatest of M* and M_", we obtain

dt>0’ 61">m*>07 32¢>m*>0 for v, M>M*>0‘ (32)

We shall express v = v + »(2) 4+ ,03) + ,08) yhere v(1) is the
solution of equation (28) with homogeneous boundary and initial condi-
tions, v{?) is the solution of the homogeneous equation (Q = 0) with
homogeneous boundary conditions (v, = v, = 0) and the initial cond1t10n

(2>(x 0) = z(x, 0), v is the solutlon of problem (28) for v2 =0,
w =0, yt3 )(x, 0 =0, and v'4) is the solution for vl =0, w =0,
v (x, 0) = 0.

The function w = (v“))2 > 0 can reach a maximum value only at the
internal points of the network Q. We assume, for instance, that it
reaches a maximum at the point (0, t). Then vy g >0, w <10 at this

X,
point and condition (31") gives 2m w (0 t)<<.0 which is 1mposs1ble

Ve fixat € 0. Let w(x, t) = (v(”)2 > 0 assume a maximum value
for x = X € w,. Then (aw;), >0 at the point (%, t) and the inequality
(31) gives

I ey !|(2> <| MAGY |ﬁ 4 ‘l,'"‘l—l)"(z)/zo»zo = coc2/(1+MT).

It follows hence that

t

o (2, ) < (5 PRIC B)".

The function v'2) (x, t) obviously cannot have a maximum either inside
Q or for x=0or x =1, i.e.

2@ (2, t) |o <2 (2, 0) |-
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The function v(”(x t) can have a maximum only at some pomt (0, t)
of the boundary. At this point wy 0}0 W, 0 S <0, where w = (v 3))2,
and the first of the 1nequa11t1es (31') gives

[v1 ()], where |v; (t)| = max |v,(')|.

(3)
nv (x) t) ”0< V‘C;)'n* <t

“ o4 ” is estimated similarly. Collecting all the estimates and
returning to the initial function zJ = v/ (1 + M)/ we obtain inequality
(27). It should be noted that o co, m, should be so chosen that the

constant M in (27) is a minimum. The theorem is proved.

Note. Theorem 1 and estimate (27) are obviously true for the first
boundary problem

z2(0,1) = vy, z2(1, ) = vy,

This can be verified by making the limiting transition mentioned above
or repeating the proof of the theorem, which becomes simpler in this
case.

5. Improved a priori estimates for a forward scheme

In this subsection we shall follow the method described in [2] to
obtain a number of new estimates for a four-point forward scheme. The
order of accuracy of homogeneous schemes in the case of moving discon-
tinuities (cf. [3]) can be improved by using these improved estimates.

Let us consider the following problem

pzp = (azg), + Q (2) + ¥, (33)

Q (2) = (8u) + (128). + (@or2)z + (gm2); + biz, + bytz + diz + daz,  (34)
alVz, = &12; + 612 — Vg for =0, — a2z =&2; + 6oz — vy for z=1, (35)
z(z, 0) = z, (x), (36)

where p = p(x, t), a = a(x, t), ¢ = y(x, t), Bop = Bsp(% t), bs=bs(t),
d, =d (), & =& (t), o, = o (1), v, = v (t) (s, k =1, 2) are the
given network functions. The coefficients of the problem satisfy the
conditions:

0<ea<e, 0<ea<e, [d<<e [bI<<cn |ga|<<cs (s.k=1,2),}
6,20, o1+063>¢ >0, 0<ch <&,

l pf ! < Cs,y ] (89)1_1 < ngg’ s=1, 2, (38)

(37)
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where €, — ¢4 are positive constants independent of h and T.

We introduce a new function v, writing

28 = vi (1 + M),

where ﬁ > 0 is an arbitrary constant. For v we obtain the conditions

pvr —(av;), +do =¥ = + Q,(v),

aty = glv; + Elv 4V forz= 0,

—av;:@’zvt——{—azv—@ for rz=1, }
v(x,0) =z(z,0) = z,(z),

Q1 (v) = (u?); + (199), + (2a20); + (Baad); + bty + bovz + do?,
where
p=p1, d=pM —d,, dy=dyy, Gux=2guw'T, & =&, 1,
S, =0, + My&,, T=1/(1+Mr), ¥ =il +Mr)7;

=i (1 4+ M) (s, k=1,2).

(39)

(40)

(41)
(42)

Henceforth we shall follow [2], improving on the estimates ohtained

there. Multiplying equation (39) and boundary conditions (40) by

v xv: ... p2m-l= v%n, where a, = 2" ~ 1 we obtain for 7 = v2" the
problem:
P n g _
ror— (e + 3 2 (0 6" ao (5,)" s o o
k=0
n
ny __ on an (an equation of the
+2dv =2""¥ nth order),
n—1
— [k \o _

a4y, = Byop + 2% + 2 277 (e o,) 4 78, (5, )7) oonorn

k=0

+ 27';1”“" for =0,

n—1
- av"‘ = ggv‘ + 2 02?) + Z 21;_];_1 (ha (vx) + T%z(v,) ) an_ak+1 -

k=0

n., .«
— 2" " for z =1,

(43)

(44)

(44)



Homogeneous difference schemes for parabolic equations 667

v (x,0) = z (z, 0) (45)
(,;t—= (Iz‘;—%v)/r, ’1;;= (I;—,;(‘l))/h etc.).

Multiplying equation (43) by i, summing over the internal points
x=h, 2h, ..., (N = 1)h of the network @, and taking into account (44)
and (44') we arrive at the integral identity of the n-th rank

(7, o) -+ 20, -+ P, + 27[d, 5] = 2*[°", Y] + [57, 2], (46)
where

[, 51 = (¢ 2) + Eivo + Eavn, 14,01 = (@ 0) + (1= i ) Gory o+ Saow),

(47)
— n—2 . 12
1,=(a, ( v;: >2] - Z 2"_k_2{(a (:1;)2, P TMk+1] - [at+D) (sz,r) , vﬂn—ﬂk—-l)} +
k=0

+ 310y + Sy, (48)

2 "—" - [P \L )ﬂ’ van_ak-i—),], [qf’ van] = (111" Uan) + ';17.’;‘" -+ ;'21]‘;171
- (49)
(l‘ozv(o, t), vN=v(1’t), an=2‘n_.1)'

It will be noted that the temm &0, + G,Uy has been left out in
formula (17) from § 2 of [2]. This did not, however, affect the subh-
sequent arguments and results.

The discussion below concerns the majorant estimate of the expres-
sions on the right hand side of (46) by means of (1, 3) and In. The
arbitrariness in the choice of the constant ! is made use of for this
purpose. We use the estimate which follows from lemma 1* of [2],

n n
517y - Gev N A
Cg Cy

2 < Va oo lh<M,I,, (50)

where M* > 0 is a constant dependent only on ¢, and c., Holder's in-

equality

6!

[, %1 <L 1A PTP L, |9 17T,

|-

+o=1 p>0, g>0.  (51)

and the inequality
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m m m
H ctk < 2 WxCk, where pe >0, ¢ >0, Z e =1.
k=1 -1 1

We note, first of all, that because of conditions (37)-(38)

- n v R
][pt_’ v] I < M[P; v], where M = Cg/c2.
We now consider the expression

2" [, 0] = 2°(§, v™) + 2ol 4 2o

(52)

(53)

- a
Two types of estimate are possible for the sum 27(y, v ") depending

on the choice of the norm for y
1) 2|5, 0| < 2@, (L, O <20 (1, 0) + (4, B);
2) we choose for ; the norm
19k =191 D, [bPh=I1k 1@ =2 G
xf-uh
We introduce the function n, writing
”I;=1P, x_—_h’"':(N_'l)h:xN—vl’ ’l’|0=0,

and use the formula for summation by parts (see [4]):

(v“n’ E) = (z,ln, Tl;) = (Tl’ (v“n)x) + v;;"*lN_l» NN = (1) q))

The formula

‘n—1 K
(Uan)x — 2 (v(+1))"‘kv°‘n““k+1z,x_
k=0

[o
was found for (v "), in (2].

Using inequalities (50)-(52) we obtain
n n—I1

23 (o [ e, YA o
Voo,

2", (")) 1<

24))

(54)

(55)

<
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n—1

1, /ot t 1 _q1/9M 1 n—k— —a, F N

KMITEGITE gy -—2;—_—,;—;;(2 ek, [ [P (v, )) Y
k=0

ST G

lHence, because of (52), it follows that

2 [, ("™ | <5 o+ (M2 1)), (96)
where M =M(cy, cg) is a positive constant dependent on c, and c,.

Here we are considering a class of houndary conditions more general
than in subsection 4, since we allow one of the cases o, =0, &1=0
or &= 0(hy; g, =0, & =0or & =0

Taking into account the inequalities

v | < dn+ (M2 W )P, 2%y | < S L+ (M-2% )"
for s, =0,
2“ [ 'ng;vn < 2n62?]N + (M | 'VZ I)zn for Og > Cg > 0,

and also (54), (56) we obtain the estimates

2, o <2, o+ M e, Sl =+ 257 50 220 5
(57)
2V [, 0" [ <2 L+ (M-20 9 )™, (58)

where ¢ =1 for o, =0, s =1, 2, ss=0foros>c6>0, g, te, =1

— -— _ - n n n n
Jols =%l + 1va]| + v, [1,2] = (1, v) + 619, + 620n.
We now pass on to the estimation of the expression 2"(Q1(v), va").
x
We consider first the term 2"(b v, + b gVzs U ™y. From the inequalities
[atn, v o) < L2 (g, 0 < L2
2 (b0, ) | <2y (0, 011 0, ) & To+ M2, 0)

it can be seen immediately that

2“ I (blv + bzv" va") | n + M 2 (1 ’I)) M=M (Cl, Ca, Co) > 0. (59)
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The estimate

2" | (d,, " ") | < 2%; (1, v) 45 (1, v) (60)

does not require explanation. Estimation of the remaining terms in the

expression 27(Q,(v), va") presents the greatest difficulties. Without
any loss of generality it may be considered that g,, = 0 when x = 0,

x = xy ,, and g;, =0 for x = h, x = xy = 1. If these conditions are not
satisfied, then writing, for instance, g = g* + Ax + g(0, t), where

A= [g(xN_l, t) — g(0, t))/h, we obtain g‘ =0 for x =0 and x = xy_,.
‘The coefficients of vz and v for (892V) 3 (of v, and v for (811v),)) vary
for bounded values.

The formula of summation by parts (see [2]) gives
((8220)z, ¥°™) = — (82?0, (")) (g2=0 for z=0, z=2zy_).

x
We substitute here expression (55) for (v ")

26‘5

2" ((gaav);, ¥ | << Z (1, o) (a<+1>( ) , Y

n
<_—§-1n+M-22"(1,v), M = M (0,00 >0.
Similarly we find

2" (€ui0)r 2 | < AL+ M2 (1,0), M =M (e, ) >0,

If boundary conditions I of the kind vy = 0, vy = 0 are given for
x =0 and x = 1, then

2"| ((-é2lv‘3§: a”)l = 2" (5’21” (’) NI 51+ M- 2" (1, v) + M’ (p, U)
where M = M(c,, ¢ ) >0, M = M(c,) > 0. A similar estimate is obtained
for 2 |((812v) y U )I

Collecting all the estimates obtained above, we arrive at the follow-
ing inequalities:

a) if all =0, s, k=1, 2 then

8sk

n!

(61)

2 |[Y, o < Lo+ My-2"[4, 2]+ M
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2" [, "] < To+ My 2" [1, 2]+ (M2" [ )™ (62)
(['1, 1:':.' =(1, :) +El;';0 + GQ‘J‘N);
b) if g;5 = go; = O then
2" 1Y, o | < + M 274, v]-l— (Mo2™ |9 s)*"; (63)
c) if Vg S Uy T 0 then
2 [F, 0°)| < Lo+ My 2[4, 0] + (M, 27| 95" + My [, 0], (64)
where Ml,

M, are positive constants depending only on ¢, c¢,, ¢,
Cyr Cgo Cgo
We now choose M in such a way that for a)

M—d(1+Mty—M, (1 +M0)>M— (c; -+ M;) (1 + M) > 0.

For this it is enough to require that the following conditions are ful-
filled

1 1
T<Toywhere70<m — =

7 M>c;+ M,. (65)
In case b) (and c)) we must write M=M x 2"

. From (65) it can be
seen that for any n_>1 and M* > cy + M. we shall have

1
T <TGT )

It will be noted that To does not depend on n (compare with [2])

Taking now the identity (46) of the n-th rank and remembering (53),
(61)~(64) we obtain the following integral inequalities

a) Ip, o]+t < (1 + M1)[p, v] + M

as)

|1‘

(66)
[p, 1+ 1, << (1 +MT)[p,vH (M- 2" [s)*"

(67)
), 0) [, 31+ Tn << (L4 M1) 5, 5] - My 2B e)"

Hence we find

(M = M*.2"). (68)
7 5 (@ 01+ 3 @) <M {5 0), 5 (e, 00+ M5 3 <ol (@, )b} (69)
t'===x t'==
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and correspondingly
1
—_ n - n
[ (2, 0), 2 (&, 0]+ X T () <M {5 (2, 0), v =, 0] + (70)

==
2n
(2,1 }.

e now return to the initial function 2l = vj(l + HT)j. Then from in-
equalities (89) and (70) we shall find

t
+ (Mg 272" 3

=1

P10

] (71)

a)  Ho(t) <My lp(z,0), z (x, 01" + M, [

==

t

an) Ho(0)< Mylp (z,0), 2 (x, )"+ M, 2"[u T (2, ) ] : (72)

=<

t

1/eM oT /2"
D, ©) Ho (1)< M o (x,0), 5 (&, 1" + My 2] Safp r, 00|

t'=1 (73)
where
Hy(t) =lp (v, 1), 2 (-T 01"+ [Z | Va(z,t) (x, t) l]%—] ‘2"’
V==
" Va n} E = H —n—1 b 61720 —+ GzzN! ”1]: = \pznul + (2 nlvl|'l"2£ My |)2n-

All the constants ¥ in (71)-(73) and below are positive and depend
only on ¢}, ..., ¢c,. We shall not write out their explicit expression
in terms of Cygr As a rule we shall also omit the indices of the con-
stant M.

Theorem 2. 1f the conditions

gk =0, s, k=1,2, (74)
are fulfilled, then for the solution z = z(x, t) of the problem (33)-

(38) the following uniform estimates are true

Iz (2, ) < M2 (x, 0)ly +M|F(@ O 0+ when T< o, h<ho.  (75)

12 (2, < M|z (2, 0y -+ M[§ (@, )]s 002 when t<r),  (76)
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where § =1 + &, € > 0 is any number hy = hy(e), Ty =T, (8),
I¥(x, )]s = max [ (z, )]s,
<t t

h0 and To' are sufficiently small quantities, and Ty 1is determined from
conditions (65).

1. First we shall prove (75). If y =0, v, =v, =0, (72) gives
n
(o, 2" < M 1p 2, 0), 2 2, 01",
Hence

|2 (2. )l < M|z (2, )], (77)

If z2(x, 0) = 0, it follows from (72) that
Iz (z, 8) o < M-2"H 2" [ (z, 1) |-
Now choosing n = n(h) as a function of h such that

{
loga 3~ n 1
T S27<C loge 5 for h<hy (o), (78)
elog, logs -

where ¢ > 0 is any number, and taking into account that n + 1/2"
log, 1/h <5 log, log, 1/h (5 =1 + €) we find

H z(x't) ||0<MI|¢(Z’t) ”5 lns_}if Tor h<hy t<7y,- (79)

Combining (77) and (79) we obtain inequality (75).

2. To prove the estimate (76) we use (72) and the inequalities

l<m (clzo+ozz~+|}VE ) - MHVE"Z-‘
S |z, ), <M Z Jva"zl.

t =T t'=t

2, M=M (Cl, Cs),

(80)
It is enough to confine oneself to the case z(x, 0) = 0. It follows

from (72) and (80) that

(2 oz @) ) <M b 12( 0l < M-2" 5, .

t'=1
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Now choosing n = n(7) as in (78) we obtain

1z (z, )y < M|V (z, )] t",ln5 for 1< 1.

Note. For n =1 from (72) follows the mean estimate

t

2@ 0 b <Mz (@ 0h+M[ 2 tlo@ )]~ for v<n  (81)

V==

For the first boundary condition Z, = Zy =0

t

|2 (z, ) < M| 2(z, 0)”2+M[Z Tlllp(x,t’)[[é]l/2 tor 1<, (81')

V=1
ifgsk?()' S, k:l' 2.

Theorem 3. 1f the conditions (74) are fulfilled and &, = 0, then for
the solution z = z(x, t) of the problem (33)-(38) the following uniform
estimates are fulfilled:

12 (2, ) o <M (2 (2, 0) o + [ (@) o + [v1 (O)]) + M [v2 (2 1111571; (82)
for 1< 1, h<hy,

b (@ )l <M (I2(2,0) o + [0 (@ Do + W O + M [V B tor v< ),
(82)

where
1 (z,0) I!o— max 9@ ) [ve@)| = max |v ()], s=1,2,8>1.
it
1. Let vo(t) = 0. Then limiting transition can be carried out in (71)

for n - », taking into account that 7, and the constants in (71) do not
depend on n, and 2 and T are fixed. Remembering that

1" <l + v,

we obtain (82) for v, = 0.
2. Let vy =0, y =0, z(x, 0) = 0. Then it follows from (71)

12 (2, ) o <M - 207" [%, (7).
Now choosing n = n(h) in accordance with (78) we find

12 (@ O < M | v O] 1 for h<hy,  T<To.
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Hence and from 1 we get (82).

3. To prove (82') we use (54) for v, =y = z(x, 0) = 0 and (80). It
follows from (71) and (80) that

j2 (@, O << M-2"7 v, ().
Choosing n = n(1) in accordance with (78) we obtain
—_— 1 ,
Iz (=, t)lly <M |vy(2) | In® ~ for v< 1,
Note. Theorem 1 is proved for the conditions &; + osl;>c >0, g, t

g, >c¢, >0, 0, >0, &> 0, s =1, 2. Theorem 3 is true, for example,
when & + 0, =0 or & t+ o, = O(h) and hence theorem 1 cannot be used.

Theorem 4. Let the conditions
g1z = a1 = 0.

be fulfilled. Then for the solution of the problem (33)-(38) the follow-
ing estimates are true

12 (e <M1l 3, Ol + My 19 ) exp(Ms )/ Ta - ) tor < h <t
(83)
12 @ Ol < M2 @ 0l + Maf b0 Dl exp (My ) L) gor v <), (84)
1. From (73) we find for any n
2 (2, 1) < MRV (|2 (2, )|y + M2 |5, D). (8%
We now consider the expression
2™ exp (M-Z"+ln—:l—/2"> = exp (M-2" + ln%/Z"«—nan).

It can be seen from the condition M x 2" ~ In(1/h)/2" that
2"~ Via(1/ky] VM.

Selecting correspondingly n = n(h) ~ 1n 1n(1/h), we obtain M x 2" +

In(1/hy/2" - n 1n 2<<M,; VIn(1/k) for a sufficiently small h < h,.
Hence and from (85) we get the inequality (83).

2. Estimate (84) is obtained similarly if (80) is taken into account.
It is true for all values of h.
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Note 1. Theorem 4 is true in the case of boundary conditions I of the
kind (zy = 0, zy = 0), even if the conditions 819 = 8y; = 0 are not
fulfilled.

Note 2. Writing n = 1 in (73) it is easy to see that for the solu-
tion of the problem (33)-(38) the mean estimate

l2(@ O S M|z(z Ok + M [;_] ¥ (2, t) ||§T’z ,

is true. It is valid even when g, 70, s, k =1, 2.

All a priori estimates in this subsection have been obtained on the
assumption of the boundedness of the coefficients a, b, dg, &y only.
For this reason they can be used for the proof of the convergence in
the case of moving (oblique) discontinuities of the coefficients of the
differential equation (6).

6. A priori estimates for a six-point scheme

The following problem was considered in (2] and [4]

Pz = pz; —(az5) — Q&) =%  (05<a<), (86)

Iz = (025 — 612)™ — 12; =V, forz=0;
lyz = (az; + 0,2)® + &a2: = — vy for z=1; (87)
z(2, 0) = z, (), (88)
Q (2) = buy2z -+ biaZs + boz 4 bagzz + dyz + doz, (89)

0<e<<a<e,  0<ap |4 [ba]Sew

6. >0, 6,40, >¢;>0, s, k=12, (90)
fap | oo (007 [<<erds, 0 < egh &5 <o (91)

The following a priori estimates were obtained

t

D e 0 <M{lzn@ 0k+ (3 v O (92)

3 s

where o
"‘l—’"§="‘pu2+[\’1[/]/((501'{‘“’2”]/?2;
2) if Y= @(“), ve =V, s=1,2, z(z, 0) = z,(x) = 0, then
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t'=x
1

Iz (z, ¢) IIOQM{H‘TJ(x, 0) s+ W (=, ¢) l]5t+[ D (] (@ ) oot 197 (2, ,)“5.)2}‘/2}4

th=1

+ 5[ 3 <, )R[", W =0 tor by =0. (93)

Here [$(x, O)fs = | (2, )]a 4 1vi ]+ [Val, [l = [¥ler + [¥2] + [Vl

i!wll4=llwlll3+l(tln DL Al =19l + 106 D] fols=1nl, Iltblls.='inﬁl,
N (z) 2’ hp (z').

We shall show that estimate (93) can be improved if bsk satisfy
Lipshits’s condition for t:

| (bs) | << 10 (94)
Theorem 5. Let z(x, t) be the solution of the problem (86)-(91),
where

Y=, vi=W, Q(2) = (bizx + byz;)® 4 dyz +doz, b <coo (95)

If the conditions

](55)7‘<Cm, 0.5<a<1, &s+os>¢, >0,

are fulfilled, for a sufficiently small T < To

s=1,2  (96)

t'=2

1@ 0l <M {18 O+ 9@ Ot | B (R Okt 187 @ O]

(97)
For an implicit scheme for o = 1 the following estimate is true

t

12 @ D<M {I (@ Ol 1% @, 0ot 2 w1 (2 ) ot 17 (2 1) o]}

V=<

Let us express z in the form of a sum,

(98)
z=ut+ v+ w where w is a
solution of the stationary problem {awz), = —\];, W3, o — G Wy = \71,
anws y + Oy = —v;, and p and v are defined by the conditions

—ﬁﬁrl‘« =1, llll = 8110?, lzP« - gzw?: n(x, 0)=—w (z, 0)’ (99)
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Fro=1" lLp=0, lLp=0, v(z 0 =0, (100)
n=dw 4 dz;}) — pwy, ’r—] = bywy + byw-.

In [4] it was shown that

lwh <M|$lp [wsh <MI$lo |2 h <Mzl w7l < M|,
[wsle < M| - (101)

For estimating p(x, t) we use (92), and for v the inequality (93),
taking into account (101) and the obvious inequalities

o Inle <M (1%l + [ ¥k, B
Inls =lnk <MJwh <MVl [0 =Ile < Mblsr 1nple < M7 |er

For u we obtain (93) for M = 0, and for v (97) for y(x, 0) = 0. Collect-
ing the estimates for w, p and v we arrive at (97).

When o = 1 we express p in the form of a sum, u = a + ﬁ, where ; is
the solution of the problem (99) with the initial condition p(x, 0) = 0,

and p is found from the conditions EEZJT =0, llﬁ = lzﬁ =0, p(x, 0) =
- w(x, 0). Now using theorem 1 we obtain

Ie (@ o <M|w (z, 0)h<M|% (2, 0)
Hence the inequality (98) is true for u, as for wv.

Note. If f)(z) has the form (89) and conditions (94) are fulfilled,
then an estimate of the same type as (97) is true. Also, instead of

4l + ;. under the summation sign we shall have the expression

19l by g + T -

7. Accuracy in the class of discontinuous coefficients

To establish the order of accuracy of the scheme (14)-(16) it is
enough to use one of the a priori estimates obtained in subsections 5
and 6, Together with (1) and (6) we shall consider the following equa-
tions of the parabolic type

P = %(k(x, t)—g%)—}—r(x, y 2 +1(z . u, %) =0,

Pa =2 (k(z, z)—gg)+f(x, tou, 2 —c(z, 1) %% =o.
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Adding conditions (7)-(10) to the equation EP u=0¢(s=1, 2, 3 4) we
shall obtain a problem which we shall denote by (I (“)) The correspond-
ing difference problem, which is formulated by analogy with (14)-(16)
(for (I (a}y gee [5]), will be denoted by (I, ()Y, PFinally, the problem
for z = y — u will be denoted by (III_ (@),

To simplify the formulation, instead of using the words "the solution
of the problem converges uniformly to the solution of the problem (Is(“))
and has the order of accuracy O(h™ + O(1)", we shall say "the scheme
converges uniformly at the rate O(h™ + O(t)." Only unconditionally
stable schemes, i.e. 0.5 <{a <1 are considered everywhere. Unless
specified otherwise all statements relate to the entire family of
schemes.

Theorem 6. The homogeneous difference schemes (II (“)), s =1, 3, 4
converge uniformly at the rate O(h%) + O(x™ for 0. 5 <La<x1 (mg =
for « = 0.5 and m, = 1 for « # 0.5), if the conditions A, are fu]fllled
in the entire region D, or more accurately, for a sufficiently small

T < T, the following estimate is true
ly —ulo <M+ ™), (102;

where ! is a constant independent of h and T. For the scheme (II,(!))
(for « = 1) the following estimates are fulfilled

ly —ule <M (B +7) for z<, (103)
ly —ule <M E® 4 ve ) for v 1o, b by, (104)

where p (k) ~1/VIn(1/k)—0 for h—0, p(v)~1/Vin(1/t1)—0 for

T -0,

Inequality (102) follows from (92), and (103) and (104) from (83)-
(85) (theorem 4).

We now pass on to the problem of accuracy in the class of discontinu-
ous coefficients. We shall distinguish two cases: a) all discontinuities
fixed (FD), i.e. n,'(t) =0 forv =1, 2, ..., vo: b) at least one dis-
continuity moving (MD), i.e. n,°(t) # O for at least one v = 1,2,.

In [5] an estimate is given of the accuracy of the scheme (II (“)) in
the case FD. It was assumed in this case that conditions A, are satis-
fied in each of the reg1ons Kv and besides that the 1im1t1ng values of
the functions k, k', k", u’, u", u', 9%u/dx0t satisfy Lipshits’s con-
ditions for t along each of the straight lines F (v=1, 2 ..., vp).
It has been shown (theorem 4 in [5]) that



680 A.A. Samarskii

ly— ulo << M (B 77) for T<, (105)

where x; = 0.5 for the entire family of schemes, and Kk, = 1.5 for the
scheme (12)-(13). From theorem 5 and the estimates for the error of
approximation near the line of discontinuity given in [5] we have the
following:

Theorem 7. The difference scheme (II ‘1)) in the class of coefficients
of the equation JPu = 0 having fixed discontinuities converges uniformly
at the rate O(A"%) + O(1), i.e.

ly —ul, <<MH* 4 1) for 7<%,

where x, = 1 for the entire family of schemes (II‘!), x, =2 for the
scheme (12)-(13), if the coefficient r(x, t) satisfies Lipshits’s condi-
tion for t in K, v =1, 2, ..., v,.

It can be seen from (106) that the scheme (12) has the same accuracy
in the case of discontinuous coefficients as for smooth coetticients.

Using theorem 4 it can be easily shown that scheme (112(1)) in the
case FD converges in the mean at the rate O(hKl) + O(1) and converges
uniformly O (k™) 40 (¢ "), i.e.

ly —ufy <M E D L0 for h<lhy, 1<,

where p (k) ~1/VIn(1/k), p(t)~1/V In(1/7).

For the scheme (IIZ(“)) for a # 1 it is not possible to prove uniform
convergence even in the class of uniform coefficients.

Now let us consider the problem of the convergence and the order of
accuracy in the class of coefficients having moving discontinuities (MD).
It is assumed everywhere that in each of the regions KV the conditions
Aa are fulfilled. Convergence is proved only for the schemes IIZ(I) and
114(1) (¢ = 1). We shall assume that c(x, t) can have only moving dis-
continuities. In [3] the convergence was proved for a special case of
the scheme (114(1)) for f = f(x, t) — g(x, t)u, q >0. Theorems 2 and 4
can be used, first of all, to improve the estimate of the order of accu-
racy obtained in [3], and secondly to prove the following theorem:

Theorem 8. The difference schemes (112(1)) and (114(1)) converge uni-
formly in the class of coefficients having moving discontinuities, so
that the following estimates are true:
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1) for the scheme (II,{1))
ly —uly <M (1 In® 2 vlnd %) for hhy T < Ty
2) for the scheme (112(1))
ly —ufy <M @™ 427 D) for h<hy, 1<,

where k; = 0.5 for the entire family of schemes, Ky T 1 for the scheme
(12), (13), p(AY~1/VIn(1/k), p(v)~1/V In(1/1), 6>1.

To prove theorem 8 all arguments given in [3) are repeated, lemmas
2, 3 and 4 of (3] being improved by means of theorems 2 and 4.

Note. All results of this subsection, in accordance with [5], remain
true in the case of houndary conditions of a more general type (for
example, for (2) and (5)). It is not necessary to deal with the proof of
the corresponding theorems. We would only mention that a priori estimates
(theorems 1-5) have been obtained for boundary conditions of a very
general type, and the method of describing difference boundary condi-
tions with order of approximation O(h?) + O(+"®) is described in [5).

Here we shall not deal with the question of the methods of solving
non-linear difference equations for the schemes (II (“)) (112(“)),
(II (1)) (see [5])

2. Multidimensional parabolic equations

1. Formulation of the problem

Let x = (%), o0y X)) be a point in a p-dimensional space with the
coordinates x,, ..., % = {o Sx Sl =1, 2, ..., p} a p-
dimensional paralleleplped with the boundary I, G = G - T, QT =G x
lo<t <7, =G x (0 < t<T. The solution of the following problem
is sought in the cyllnder OT

Ju du
c(x, t) Lou-f(x,t, u, ey =, (@ )E 0y, (1
Ot (;1 ( 3 675;0) )
ulp=x(1 (€T, 0<t<T), (2)
u (Ty 0) = uo (x)y x E‘a) (3)
wiere 8 8
u

c(x, t) =c(xy, Zoy .+ ., Xp, b), ke = kolz, t,u), f=/f(z, 1, u, 7»,....,7»,,),
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X = x(x, t), u, (x) are given functions. We shall assume that

ko(z,t, u)>c¢, >0, c(z, t)y > >0; (5)

k «(% t, u) and fix, t, u, 7\1, «eey» A) have continuous derivatives
with respect to u, 7\ ooy . If the coefficient k cx(:c, t, u) has
a discontinuity of kind I on ghe plane x, = §, = const the following
conjugation conditions (continuity of u and k (Bu/ax ) are fulfilled:

[wl,=u(ry, ..., To—y, Ta+0, Tayy, ..., 2p, ) —
—u(Ty ..y Loy, Ta—0, Zoyy, ..., Tp, ) =0, (6)

/]
[ka az“a}= 0, =t

As usual we_assume that the problem (1)-(5) has a unique solution
continuous in QT and having the number of derivatives required in the
course of description. The following conditions will be used.

Conditions A: 1) the solution of the problem (1)-(5) has derivatives
4u/oxl, 0%u/0e?, cx =1, 2, ..., puniformly bounded inside Qp; 2) the
functions c(x, t), (x, t, u), f(x, t, u, A, ..., A)) have derivatives
32c/axé, 33k0/8x§ %zf/ax , a=1, 2, ..., p un1formfy bounded in Q.

Conditions B: if ¢, k and f have a finite number of discontinuities
of kind I on the hyperplanes x, g‘” = const., s =1, 2, ..., P,
«=1, 2, ..., p, then *u/0x}, azu/at 32c/3x§, 32f/3xc21, a3ka/3x; are
uniformly bounded inside each of the regions into which Q—T is parti-
tioned by these hyperplanes.

These conditions are sufficient for proving the theorem on the accu-
racy of the difference schemes considered below. In a number of cases
they can be replaced by weaker requirements. But here we do not intend
to carry out our investigations on the solution and the coefficients of
the problem (1)-(5) under the minimum conditions. This would require
more complex methods of investigation and would be beyond the scope of
the paper.

2. Difference networks and network functions

(i
The planes x, =ihe 1450, 1, ..., N, a=1, 2, ..., p,
hy =1 /N partitmn the region G into parallelepipeds with vertices at
(i,) (i) i)
the points x; = (x, ‘1 T 7R x, P’y. We introduce the nota-
tions W= {z:cG}, op={2:cCG}, v = {zicT}, on=o0n+7.

We break up the segment 0 <<t <{T by the points t; = J x T,
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j=0,1, ..., K into K intervals of length v = T/K. Let 5_ = {t. = j x
TE[0<t T]}w—{t =jxT, j= 1.2....,K},Q “’hx“"r=

{=;, tH e QT} Q=uw, xa = {(x t;) € Qr} be a space-time network.
Below we shall as a rule use a system of notation without indices,
writing

T=x, t=tiy, t=t, y=y(, )=y, )=y,

14) i (i) iq) igty) L
) = g = (2, L, 2O, 2 e, aler, L ),
1
) = y (25, ),
(“1a) (*1a) N v
- ¥ —Yy _ __ y—y
e vt e et A A L
Ni—1 Ng—1 Np—1
(y,v) = 23/ vhy. .. hy= Z hy. . 2 k. Z hpyivi,
i—1 1-a=1 ip-—'],
N,—l Ny—3—1 Ng N1 Np—1
(y’ v]a = 2 hy. .. Z ha—y Z ha Z ha+1 2 hpyivh
=1 ig—1=1 ig=1 ig41=1 ip=1

where y and v are any functions given on the network 5. We use the
following norms (compare § 1) for the estimation of network functions

[yl = max|yl,  lyl,= Uyl 0" or 1Wlo, =yl 11", s=1,2,
Op
Hyllsa = “ Ne "2’ Ny (x’ t) = 2 y(zl" « oy Ta—1,y x;’ Lat1y+ -y Tpy t) has
::c'=h¢
14
Iyl = 2 19s,
a=1

3. Homogeneous difference schemes

We shall consider implicit forward homogeneous schemes, which we shall
construct by analogy with the one-dimensional case p = 1. We introduce
the pattern functionals A(® [u(s)]. =1, 2, eee, Py ST (8), Sy,044,8)
defined in the class of piecewise continuous functions u(s) given in a
p-dimensional parallelepiped ~ 0.5 << sy < 0.5, P # «, - 1< sy 0. For
simplicity we consider that A‘® is independent of hys «ou) h , l.e. we
consider canonical functionals (and canonical schemes) We shall assume
that A{® [ is a non-decreasing (A‘® ["‘2] > A® [u ] for u2>u1),
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normal ized (A‘“)[l] 1), homogeneous functional of the first degree

A ed = AN [, ¢ = const > 0) having a differential of the third
order and satisfying the conditions A(a)[s ] =0 for PFa
MA@ [s ] =_ 0,5, where A [y] = A‘00 (1, n is the first differential

of the functional A(“)[u] at the p01nt p = 1. We associate the family
of homogeneous three-point difference schemes

Ay =(0a(® 6y s, ¥ =050 +y), (7)

with the difference operator L ol The coefficients of the schemes are
determined with the help of the functional A‘® from the law

Ay = a4 (2, ¢, Y*) = A« ko (Z1F $1h, - o oy Zat Sakay -+ o, Tp+ Sphy, £, Y*)]. (8)

It is easy to see that the scheme A o has, because of the assumptions
made above regarding A(u), the second order of approximation

Aqu — Lau = O (h?), where h? = % D he. (9)

The simplest family of schemes A o is formed by schemes, the coeffi-
cients of which are calculated by using the functional ‘[u(s )] where
W(sy) is a function of one variable s; — 1<'sq <0, so that

aa = A [ka (xlv ey xa—l, xa + Sl/la’ ‘TIJ—]’ te ey xT)’ ty y*)]7 (8,)

lere A[u(sa)] is the pattern functional used in § 1, subsection 2,
for the construction of one-dimensional difference schemes of the second
order of approximation. Evidently

Alp(s)) = A9 [n(0,0,...,0,s,0,,..,0)]

For the approximation of the function f(x, ¢, u, A, ..., A ) on the
network we use by analogy with the case p =1 (§ 1, subsection 2) the
linear functionals

FlpG)l=Fu(sy,---, sl ~05<5,<05 a=1,2,...,p,

assuming that Flu(s)) >0 for w(sy>o0, Fl1l =1, Fls ) =0, « =1, 2,
.., p. The function f(x, t, u, STRRTEY AP) is associated w1th the net-
work function

(10)
‘P-——q)(l, t’ u, }\.1,...,}\4;))=F[f(x1+31h1,..., xp_l_sph‘p’ tr u, A‘1)"-1 A’p)]r
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(p(x’tv u, A‘l!""}"p)_/(xr t: u, }"17---1A'p)=0(h2), h2=—‘2h2

a=1

An analogue of the one-dimensional scheme (12), § 1 (see [1]) for
p > 1 is, in particular, a scheme with a pattern functional of the type

A(a) [P' (81) R | SP)] = B;I:')*l [A: “"’ (81’ LR ] sp)]]r

0

* dsa -1 (11)
Aa.[p’(slr-..,sp)] = [_SIP(SI,--”Sa:---'Sp)]’
where B(“) nesy, -, SqL1s Sob1r ces S )] is a linear normalized

(B(“)[l] 1), non-negative (B;“) ) > 0 for n 2>0) functional defined
in a class of piecewise continuous functions of the (p - 1)-th varlable
given inside a (p - 1)-dimensional cube - 0.5 Ssp 0.5, P#a, p =

2, ves, =1, a+1, ..., p. Simultaneously B(“) satisfies the con-
dition

B (5] =0 for Bska, B=1,2,....0—1, a+1,...,p

For example, B}‘)‘_‘i [ =1, or

0.5 0.5 0.6 0;5
;ﬂll'r]] S dsy... S dSqa—y S dsqyq. . . S dspN (S1+ ++ «y Sa—yy Sad1y « « « 5 Sp)e
-0.5 -0.5 -0.6 -0.5

0.5
The analogue of the one-dimensional functional Flu(s)] = S p(s)ds is

the functional -0.5
0.5 0..5
Flp(s)] = S ds,. . . x dsplb (51, - « - » Sp)- (12)
-0.5 —0.6

In [5] it was explained that for the construction of difference
schemes with maximum accuracy in a class of discontinuous coefficients
it is convenient to transform the function f to the form

f=j(x,t,u,2k1%,...,2kp%), (13)

This is always possible because ka>cl > 0. The flux 2ka(3u/axa) is
approximated by the expression
a
Ysg T Galz, ~ Ao () = 2ka 5 . (14)
o

(+1q)

Ao (y) =a,
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We shall also consider schemes for which

Ou du ou
f=f(x,t, u, a—z_l,-.-, —a—z—a-,..., —3—1:')
/)
ha(y) =Yy =050+ ¥yz)~Re@) = 5 (15)

4. The difference boundary problen

We now pass on to the formulation of the difference problem correspond-
ing to the initial problem (1)-(5). We have to find the network function
y(x, t) defined in Q and satisfying the equation

pyT=Ay+(p(x’ t, Yy, A'l(y)"--tA’l’(y))j’nQ' (16)
the boundary condition
y=1x%(z,1) for z€1, tE€ 0, (1mn

and the initial condition

y{z, 0) =uy(2) for t=0, zEw, (18)
Here
v
Ay= 2 Ay, Ay =(0(2, 1, ¥") ¥z Jrar (19)
a=1

A (y) is defined by one of the expressions (14) or (15), p = p(x, t) =
F c(x, + slhl' cees X + sphp, t)].

Let u be the solution of the problem (1)-(5), y the solution of the
problem (16)-(19). We shall find the equation for the error z = y — u.
Substituting y = z + u in (16) and reasoning as in § 1, subsection 4,
we obtain

pz; =Az—dz + Q(2) + ¥ (20)
z2=0 forzey, tsw,
z2 =0 fo:'t=0, zewh,} (21)
D
Az= D) A.z, Az = (aq (z, t, ¥*) 2z )zar (22)
D
Q)= 2 Qu(z),  Qul(z)=bcha(2) + (g,2")s, (23)

a=]1
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_ % ® %
d —_ ba— 83\, ga—-— Wuga.

The vinculum indicates that the derivatives are taken for some mean
arguments u, 7\“. The error of approximation has the form:

V= i [(aa (z, t, u*) U £: (ka (z, t, u) %9::)] —_ [P (2, t)uy —¢(z, b) 31:] \

a=1

+ 19t u, A (@), ..., Ao (@) —~F (2t u, AL (u), ..., Ap (W),

Because of the conditions for f, c, ka, u the coefficients ay, p, d,

by, g, are bounded:

>a>0, p>e>0, [d[<e |b|<con |g|<e  (24)

where ¢, c¢,, ¢4, ¢,, c; are positive constants independent of ha and T.
(u = u(x, t) is a given solution of the problem (1)-(5). Outside the
region of variation of u, A (W it is possible to define k(x, ¢, u),
f(x, t, u, A, ..., A)) in such a way that Ox/du, Of/0u, 3f/3)\

.«., Pp) are bounded.)

If the conditions A (§ 2, subsection 1) are fulfilled,

P=0F)+0(x) or [¥|<<M (R +7). (25)
5. A priori estimates

To determine the order of accuracy of the scheme (16) the solution of
the problem (20)-(24) must be determined in terms of the error of
approximation. We shall consider a problem of a more general type:

pz; =Az+Q(2)+ v in Q, (26)
z=0 forzgy, t€o,, 2=0 fort=0, zE€w, (27)
P
Az= D) (aaza—ca)xa —d,z, (28)
a=1

Q(z)= E [bazxa'l"baz' + (8{02)x, + (832); +(g‘“’2)xa+(g;:’5);al + dyz,
a=1
(29)
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P>C1>O, aa>cl>01 Idsl<02, [51|<C37 ]?a[<cay Igg;)l<c4r

sk=1,2, a=1,...,p. (30)
We shall assume that
lor | < cs (31)
Theorem 3. If
g =0, ssk=1,2, a=1,...,p, (32)

then the following estimate is true for the solution of the problem (26)-
(30)

Iz (x, ) < M[p(z, )], for <70 (33)

where

M = M(Cly Ca, Cs)v “'ll)(x, t) "0 = max "11)(12, t')"0'

<’

If, moreover, condition (31) is satisfied, then for sufficiently small
T < T, and h < ho the inequality

lz(z, tho < M9 (x, t)[s, 10° (L /H), a=1,2,...,p, (34)
is true. Here H = hl...hp, aH y(x, t)||3 is given in subsection 1, &> 1.
o

Theorem 10. Let z(x, t) be the solution of the problem (26)-(31).
Then for a sufficiently small v < T, the following estimate in the mean
is true

t A
Iz, o <M[3 *lbG B, (35)
t'=< ’
where « is any of the numbers « ='1, 2, .... p. If, furthermore, h < ho
is sufficiently small and g{J = gi% = o,

Iz (2, Ol <MY (@, O exp (M VIn(I/H), H=h...h,. (36)

These theorems are a simple generalization of theorems 2 and 4 proved
in § 1. The method of proving them is the same as for p = 1, only the
description is somewhat complicated. First the transformation
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= vf(l +-ﬂh)f is carried out. For v we obtain the same problem (26)-
(30), and the coefficient dl;>=M* >0, if v <7y, where M* is any pre-
assigned number. M is expressed in terms of M* and the constants ¢, - ¢s.
To simplify the account we shall assume that this transformation has
been carried out already, and shall retain the former notation z for the
required function. By analogy with the one-dimensional case wenshall
write the integral identity of the n-th rank for the function z = z2™:

n

n P P n
(0, 27+ 2 NI+ PP+ 2"(dy, 2) = 2°(¥, 2™ + (o7, 2),  (37)

a=1 a=1
n—1 k
¥=0Q(@)+b PY=t32""(p(z)", 2%, (38)
k=0
n—1 n—2 - I3 .
IV =(a, (5 )+ 3 2" e (z;)" ™) + (39)
k=0

K
+ (@ (z,)°, 2Ty,

The integral inequality of the n-th rank and all estimates of the right
hand side are derived as in subsection 5 § 1 for p = 1. Since we are
considering the first boundary problem here, the arguments are consider-
ably simplified. To avoid unnecessary repetition (of § 1) we shall not
give the proofs of theorems 9 and 10.

It should be noted that the specific form of the region G (parallele-
piped) is not used in deriving the identity of the n-th rank. This
identity is true on the iectangular network ©, which approximates the
arhitrary region G.

We now pass on to the question of the stability of the solution of
equation (26) with respect to the boundary and initial data.

The equation of the first rank has the form
pw; — Aw + R (z) + 2dyw = 22Q (z) + 2z (w = z2),
(40)
P
R(z) =tpgt + ) (amz:;al + ale 3 ).

a=]1

The principle of the maximum is true for this equation when giz) =0
and therefore the following is true.

Theorem 11. 1f g{%) =0, s, k=1, 2, «=1, 2, ..., p, the solution
of equation (26) defined in Q is stable with respect to the right hand
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side, the initial and boundary values, so that for sufficiently small
T < T, the inequality

t Ys
2 (2, o < Mz (@, O lo+ 22 Tb.) +M2[ Sty @, 1) n%} C )

t'=z

is true. Here Ty and Ml, M2 are positive constants depending only on c;
and 7, t =1, ..., 4 [z(=z, t)|p, y = max|z(z,t)]|.
(xEY)

This‘theorem is proved by analogy with the proof of theorem 1. There
is no need, therefore, to dwell on it.

It will be noted that the first statement (33) of theorem 3 follows
from (41).

We now consider the general equation (26), when ggf) # 0. We express
its solution in the form of the sum z = v + w, where v and » are deter-
mined by the conditions

v;—Av+-dw=0Q,() + ¥, (42)

v=2 forz€y, t€o,; V(z,0=2(z,0) for zca,
Ql (v) = 2 (—b_azv;:cm -+ Tav;a) = Q (v) - 02 (v),
a=]1

w; — Aw+dyw = Q @) + Q2 (w),
w=0 forrey, ts o, w(x,0)=0 for r = @y
The estimate (41) is evidently true for v(x, t). To estimate w we use

the integral estimate (37) of the n-th rank. We transform terms of the
type 2"((gv)x , wa") on the right hand side as follows:
o4

2" ((g0)x,r W) =—2" (v, @"");), o, =2"—1
a
Hence, using the formula for (w ")E we find
x
n
2" ((82) 5,y ™) | << 2"M (1, w) + + I + (M 27| ])*".
As a result we have the following estimates:

lw (@, O <M (2, ) o | @3
lw(x, O <M[v(z, oexp M VIn(/H), H=h...h]

Combining (41) and (43) we find that the following is true.
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Theorem 12. Let z(x, t) be the solution of equation (26) defined on
the network Q. If conditions (30) and (31) are fulfilled, the following
inequalities are true:

1) for a sufficiently small v < T,
¢

I2(e, Ob < M {2 @ O b+ Th +| 3 wtv@ R @)

=<

2) for sufficiently small 7 < T, and h < h,

Iz(z, )l <M {2 (2, 0o + 2 (z, O, v + 19 (z, O s, }exp (M VIn(1/H)). (45)

The second estimate contains a factor dependent on H = hl, ey hp.
If will be used in dealing with the problem of the uniform convergence
of difference schemes corresponding to quasilinear equations of the
parabolic type with the coefficient of heat conduction k = k(x, t, u)
dependent on the required function u = u(x, t).

6. The convergence and order of accuracy of homogeneous schemes
for a quasilinear equation

We now return to the problem (20)-(24). It is a special case of the
problem (26)-(30) considered in subsection 5. We can therefore use the
a priori estimates used in that subsection and enunciate a number of
theorems on the convergence and the order of accuracy of the solution
of the problem (16)-(19). Particular attention is paid to the proof of
uniform convergence.

Theorem 13. If conditions A are satisfied in Qp and k, = k (x, t)
does not depend on u, the solution y = y(x, t) of the problem (16)-(19)
converges uniformly to the solution u = u(x, t) of the problem (1)-(5)
as ha (x =1, ..., p) and T independently tend to zero in such a way
that for sufficiently small v < To

ly—ul <M +v, h— DK (46)

Theorem 14. If the conditions A are fulfilled in Qh-and ka==ku(x,t,u)
depends on u, the solution of the problem (16)-(19) converges to the
solution of the problem (1)-(5) in such a way that

1) for a sufficiently small T < To

|y —ule << M (h? 4 T) (convergence in the mean); (47)
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2) for sufficiently small 1 < T, and h < h0

ly —ulo << My (k% + t)exp (MyVIn(1/H) ) (uniform convergence) . (48)

Both theorems are true for any p >>1. Estimate (48) cannot be im-
proved even for p = 1.

To prove theorem (13) it is enough to use condition (25) and estimate
(33) of theorem 9. Theorem 14 follows from theorem 12 and (25).

The a priori estimates (34), (35) and (44), (45) (theorems 9, 10, 12)
can be used to prove the convergence of the difference scheme (16) in
the case of discontinuous coefficients ka and f, because these estimates
were obtained on the assumption of the boundedness of the coefficients
of equation (1) only. Let us assume that the coefficient ka(x, t, u) has
a finite number of discontinuities of kind I for x_ = §q = const. Then

(e

the conjugation conditions (5) are fulfilled along the hyperplane X, = §a,
and the scheme Acu, as we have seen in [1], [3], [5] does not approxi-

mate the operator L_u in the neighhourhood Xy = §a. It is sufficient to

[o 4
consider the case when, for example, the coefficient klfx, t, u) has a
discontinuity for x; =§, = xi"l) +8,h;, 0<C8, <1, xlnl) = nh,. Ve

shall assume that in each of the regions into which the hyperplane

x, = §, divides the cylinder Qp the conditions A are fulfilled, i.e. the

conditions B ar? valid. In calculating the error of+approximation at the
s — n.) = (n;t+1) :

points xn1 = (x1 1/, Xy, ey xp) and xn1+1 (x1 1 » Xgs ey xp) it

is sufficient to confine oneself to a study of the term

Y1 =Au—Lu

(for simplicity we assume that c(x, t) and f are continuous for x, = §1),
since y =y, = Q(h%) + Q(7) at the points x = x"l and x = x"1+1'

Moreover, we have y = Q(h?) + Q(7) everywhere in Q, in addition to
the points (xnl, t) and (xn1+l' t), where t O, Noting that y, is the
error of approximation of the one-dimensional scheme Alu, and using the
results of (1] and [5] we obtain

1) ks (@n, ) =0(1), %1 (Tnyy 1) + 1 (X0, 8) = 0 (1) (49)

for an arbitrary scheme from the initial family of difference schemes
defined in subsection 2,

2) Py (2n, t) =0(1), V1 (Zn,, £) + 1 (20,41, 1) = O (Ry) (50)

for the best schemes defined by pattern functionals of the type (11) or
(12).
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It follows from (25), (49)-(50) that:
for any scheme (16)
Ry $ (@, £) =0 (1), (70, 1)+ (Tn1, 1) = O0(1) (51)

for the scheme (11)-(12)

hy § (2, t) = 0 (hy), Y (Tn, t) + P (Fn41. 1) = O (hy). (92)
If the functions f(x, t, u, Al, eess A) and c(x, t) also have dis-
continuities of kind I for x, =, = 2™+ 8k, 06, <Shi, ™ = nhy,

conditions (51) are satisfied for any scheme and any of the representa-
tions (14) or (15). For a scheme defined by the functionals (11) and
(12), and also the expression (14) for Aa(y), conditions (52) are
satisfied.

At the remaining points of the network
¢=OM%+0mfmx#%ﬂx#%H
for any of the schemes of the family considered.

By analogy with § 3 of [5) we find

s, <M (B2 + v -+ A2 | § (@ ) |+ Ba |9 (%00 8) 4 P (Znptn )]}, (53)

where ¥ is a constant independent of h and T (and dependent, in particu-
lar, on the volume of the region G).

Now taking theorems 9 and 10 in turn we see that the following state-
ments are true:

a) if none of the coefficients ka = ka(x, t) depends on u, and each
of the functions ka, ¢, f has a finite number of discontinuities of kind
I for x = §és’ =const., s =1, 2, ..., my, =1, 2, ..., p, the
solution of the problem (16)-(19) converges uniformly to the solution
of the problem (1)-(5) as ha - 0 and v - 0 such that for sufficiently
small h < h0 and T < T, the estimate

ly —ufo << M (hy In®(1 / H) + k% 4 1), (54)

is true. Here x = 0.5 for any initial scheme, x = 1.5 for schemes (11),
(12), § > 1.

b) if even one function k, = k (x, t, u) depends on u, for suffi-
ciently small T < T, We have
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ly —ule <M (A + b+ 7) (55)

and

ly —ufo <M (4 12+ 7)exp(M YV In(1/H)) tor v<w, h<ho (56)

In a number of particular cases the estimates given of the order of
accuracy of the schemes considered can be improved.

With the method of studying the convergence described here similar
estimates can be easily obtained for an arbitrary region with a suffi-
ciently smooth boundary. The main difficulty here will arise in the case
where the conditions on the boundary [ of the region G are transferred
to the boundary y of the network o, by means of linear interpolation
(see [9]) This method of specifying boundary conditions is easier to
use for the so-called method of fractional steps (see [8)). This method
will be formulated and its convergence and accuracy studied in a sub-
sequent paper.

We now take the third boundary problem. Instead of (2) let the
following conditions be given

ou du
kaa—r———-cmu:/m for xa=0, ka"a;;+62ﬁu=f2a for $a=la,d,=1, 2,,.., P
a
. (+1y)
The difference boundary conditions e, Yy — Oy = f1o fOT x5 =0,

a“yx t 0,y = faq fOr %, = l have a first order of approximation. The

follow1ng estimates are true for the corresponding difference problem

ly —ulo << M (h -+ 7) instead of (46).
ly—ulo<< M (Y In®(1/H) + h + 7) instead of (54),
ly — uly << M (h{ 4k + ) exp (M Vin(1/H)) instead of (56),

It is interesting to study boundary conditions of kind III with the
second order of approximation (compare [5]).

7. Some remarks

1. If k =k, (x, t) has a derivative Ok,/Ot bounded in Qp, and hence
|(a )?l < M theorem 5 can be genera11zed for the multidimensional case.
In particular it follows from this that for the linear equation (1) for
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P
ko = ko (2, t), f=/(x,t)+zra(a:,t)g—;——q(x,t)u

a=1

the estimates (54) and (55) can be improved. In particular instead of
(54) we obtain

%y 1
Iy —ulo< M (hIn 57 + £ + 7),

where x, = 1 for the entire family of initial schemes and K, = 2 for
the scheme (11)-(12). Without going into the proof of this we shall only
note that for p # o, Ok,/9xy is bounded along the hyperplane x, = §, =
const. on which ka has a discontinuity of kind I. It is also assumed

that f, Ty and g(x, t) have finite derivatives with respect to t.

2. For the linear parabolic equation

P o ° Ju
3 L+ /(z 6w M@)o A @), ) =0,

a==m]
a du
Lau= a—x-;(ka(x, t)a_:t‘a) ,
where
u du
ha(u) = bz, °F ha(u) = 2’5«5;11,

the investigation is carried out as for the one-dimensional case (see

(5]).
Translated by R. Feinstein
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