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Non-uniform nets are widely used in the solution of various differential 
equations by difference methods. However, little has been done to study 
the convergence of the difference schemes. 

The simplest examples show that the most frequently used criteria for 
judging the quality of difference schemes, a uniforol estimate or a mean 
estimate of the approximation error of the scheme, are unsound for non- 
uniform nets and can give an untrue idea of the order of accuracy of the 
scheme. 

For the differential equation 

Lu = ?A* + f (2) = 0 (0 < = < f), u (0) = Br, u (4) = u, 0) 

let us consider two difference schemes on an arbitrary non-uniform net 
oN = { xi, i = 0, 1, . . . . N, x,, = 0, %N = 1): 

where yi = y(‘i), hi = X’ - Xi-l* 

tion error of this scheml is: 
‘i = 0.5 (hi + hi+l); the approrima- 

4% 
- 4 = A,U( - Ly, = ““‘13 ut” + 0 v4) + 0 (G+,), 

i.e. the scheme.has first order approximation. It will be shown in 9 2, 
however, that this scheme gives second order accuracy on an arbitrary 

l Zh. uych. mat. 2. No. 5, 812-832, 1962. 
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non-uniform net 

where x is the mean square mesh of the net: 

2. The following scheme is sometimes used: 

nlsr=l k+1 - L iii - iii-1 
hi+1 ( %,I 

- 8, )+t*=o, Y (0) = Ulr Y (1) = h, 

where 

h‘ = zt- q-1, Ai = 0.5ei + hl+Jt Yc = Y ( Y *I, z* = 0.5 (zt+ s+& 

Calculation gives 

$= AaG - (W Ix_;, = hi+2g;y+1 •t hi u; + 0 vd + 0 (hi+,) + 0 (hi,,), 
t+1 

i.e. generally speaking the scheme does not approximate to equation (1) 
if the net is arbitrary. However, it is shown in point 5 of 9 2 that 

Il~--n(~)I~\<MIlhl% ~h~~=maxht(~heorem 4). (3) 

i.e. scheme A, has second order accuracy on an arbitrary net. 

It is not difficult to see that both schemes are the same for a uni- 
form net hi = h = l/N. 

It is shown in [l] that for homogeneous schemes for the differential 
equation 

with discontinuous coefficients, the accuracy of the difference scheme 
is determined in the end by the integral approximation error, character- 
ised by the norm 

,dl3= $1 B rp,hl. 
i=l k=l 

and not by the local error. 

This type of norm, as we shall explain, is also suitable for estimating 
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the error of homogeneous difference schemes on non-uniform nets. 

We shall examine homogeneous difference schemes on non-uniform nets 
using the boundary problem 

Lfk. Q. ‘)u = (Ic (z) u’)’ - Q (4 u + f (4 = 0, O<x<l, 

u (0) = hc u (1) = up 1 (5) 

as an example. 

We shall consider the family of homogeneous conservative three-point 
difference schemes of standard type defined by the generating functional: 

A!/ = Lik”q’ ‘1 y = (ay;);- dy + cp = 0, 

1 = 0.5 (h + h+l). 

We determine the coefficients a, d, 9 of the scheme with t!le help of the 
same pattern functionals A [p(s)] (- 1 <s<O), D [p @)I, F Lp (s)l 
( -0.5 <s GO.5) as are used in the case of uniform nets in [13 : 

a = A [k (z + dz)l, d = D la (5 + (s + A) h)l, 

cp = F If (5 + (s + A) h)], A = (h,, - h) /&. 

In 3 1 we consider a family of homogeneous difference schemes on non- 
uniform nets, study the properties of Green’s function and derive 
a priori estimates that will be needed later. 

In 3 2 we examine the accuracy of homogeneous difference schemes on 
an arbitrary sequence of non-uniform nets. In the class of smooth co- 
efficients, a rational characteristic for a non-uniform net is its mean 
square mesh x = llhll * 

2: 
in this case our schemes have second order accu- 

racy with respect to h, i.e. (Iv - u I[o\< ME”. 

In point 4 it is shown that in the class of discontinuous coeffi- 
cients our schemes have the same order of accuracy on non-uniform nets 
as on uniform nets. More precisely, if k(n), q(x) and f(z) have discon- 
tinuities of the first kind in some neighbourhood of the point < = x,, + 
tIh n+l (0 < 8 < 11, then 

1) y - u Ilo < A!# + M’ @“, + hit+1 + G+,h 

where K = 1 for an arbitrary Scheme of the given family, K = 2 for the 
scheme whose pattern functionals A, n, F have the form 
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This estimate can be used to choose the net near the fixed points of 
discontinuity of the functions 6, 7, f. 

The results of $ 2 enable us to drop the requirement 0 < M, < 
‘i+l/‘i <IV, used in [2I. 

Similar theorems concerning the accuracy of homogeneous difference 
schemes on non-uniform nets are obtained for the multidimensional equa- 
tion of elliptic type 

$& (ka h, . . . , zp) E) - q (G . . . , q,) u + f h . . . , qJ = 0. 
a a 

In this case we use the method of integral (energy) inequalities to con- 
struct the corresponding a priori estimates. 

It should be noted that special forms of difference schemes on non- 
uniform nets have been considered in a number of works (see, for example, 
[31 j. However, to evaluate the accuracy of dif.ference schemes on non-uni- 
form nets the norm Il$IjO = max IS,I, was used, and this does not enable 

the actual order of accuracyfto be found. 

1. Homogeneous difference schemes on a 
non-uniform net 

1. The initial family of homogeneous schemes 

Let us consider the first boundary problem for the differential equa- 
tion 

L(k. a. 1) .=$[k(s)$]-q(z).+f(z) =o, O<z<i, (5) 

24 (0) = Ul, 11 (1) = %, 

where k(n) > cl > 0, 7(x) >O, and c1 is a constart. 

The class of boundary problems (5) is defined if we indicate the 
families of functions to which the functions k(x), r](x), f(n) belong. 
Following [ll we shall denote by C (JR) [a, bl the class of functions having 
a continuous m-th derivative on the segment a < n <b; by Qtn) [a, bl the 
class of functions which, together with its derivatives up to the m-th 
order inclusive are piece-wise continuous on [a, bl ; by CtR1 ') [a, bl the 
class of functions whose m-th derivative satisfies the Lipschitz condi- 
tion on [a, bl; and by (?( m* l) [a bl the class of functions of GCm), the 
m-th derivative of which satisfies the Lipschitz condition on its con- 
tinuous intervals. If at some point 5 E (0, 1) the function k(x) E 
Q(O)[o, I] has a discontinuity of the first kind (k,=k(<-0) Tkr=k(c+O)) 
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then at this point the usual junction conditions are satisfied: 

[ul=u,-u~=o, kg [ 1 
= 0 for 2= E. 

Dividing the segment [O, II into W parts by the points x,, = 0, 
x1, . . . , xi, . . . , XN = 1, we obtain the difference net oN = {xi). Gener- 
ally speaking, the step hi = xi - Xi 1 is an arbitrary net function 
satisfying only the normalisation condition 

ihi= 1. (7) 
i-1 

If all hi = h = l/N (i = 1, 2, . . . , N) then the net ~,v = ah is uniform. 
Let yi = y(zi) be some net function. We shall omit the suffix i as a 
rule. and write 

Y = Y (4 = ‘/ - i’ 
y(+l) = 

yi+1, 
yc-0 = y 

i-l 
(x E ONI. 

Let us introduce notation for the “difference derivatives’ 

Y-, = 
Yj - Yi-1 = y - Y(-l) y(+') - y 

hi h ’ yx = h,, ' 
y; - qz2 - !&ly,, 

where fi = 0.5 (h + h+J, h = hi, h+l = hi+,. Then the difference operator 

%+I (Yi+l- Yi) ai (Yi - Yi-1) - 
h i+l hi I 

can be written in the convenient form 

AY = by,);. 

Dn a uniform net fly = (ay;),. 

We have considered problem (5) more than once using uniform nets (see 
hl for example). It was shown in [II that in the family of homogeneous 
schemes of standard type the only schemes that converge in the class of 
discontinuous coefficients are the conservative schemes 

Ay = Lp ** ‘) y = (ay& - dy + CfJ, (8) 

whose coefficients are defined with the help of the pattern functionals 

Ah [p @)I (--1Qs GO), D” [p (a)1 (- 0.5 Q 8 < 0.5), 

F,, [p (s)] (-- 0.5 < o < o.5) 

by the formulae 

a = a (5) - Ah [k (z + sh)], d = Dh [a (z + sh)], cp = Fh [f (z + sh)l, 
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are in the class of discontinuous coefficients.* 

On a non-uniform net too we shall only consider standard conservative 
schemes (each coefficient of which depends only on one coefficient of 
the di fferent i al equation) : 

Ay = by&-- dY s cp- (9) 

As the scheme is conservative, the coefficient n(xi) depends only on 
the values of k(x) on the segment [xi - hi, xi1 of the net +,: 

a{ = A” [k (a, + Shi)J or a = Ah [k (z + ah)], ‘- I<* <O. 

Ihe coefficient d (and 9) is determined by the values of the function 
$1(r) (f(z)) on the segment [x - 0.5 h, x + 0.5 h+,l . Therefore, if we 
wish to use the same pattern function 3h[p(s)l as for the uniform net, 
in deriving a formula for d we must place the centre s = 0 of the pattern 

7.~ 

O. 5 <s ,<0.‘5 at the mean point 1: = n + 1/4(h+l - h) of the segment 

- 0.5 h, x + 0.5 h+13, writing 

d = Dh Iq (; + &)I. (10) 

The displacement transformation will have the form x’ = x + sfi = n + 
(A + s)tl, so that, instead of (lo), we can write 

d = Dh [q (z + (8 + A) fi)l, A = (h,, - h)/4fi w 
and, similarly, ‘p = F”[f(x + (s + A)%)]. The index h indicates that the 
pattern functional s depend on the net, i. e. in the case of a non-uniform 
net on the two parameters h, htl. If the pattern functionals of the 
scheme do not depend on the net, then we shall call them canonical func- 
tionals, by analogy with cl], and denote them by A 1~1, D [pl, F Ipl. We 
can call the corresponding scheme Ay a canonical scheme. All the dis- 
cussion which follows will refer to the canonical schemes (9) for which 

a=A [k(z+sh)l, d = D lq (z + (8 + 4 fil, q = F f/(x + (s + A) fill. 

Thus we shall consider the following family of conservative homo- 
geneous difference schemes defined on non-uniform nets: 

*Y = (a~&- dy -I- q, 

l A homogeneous difference scheme written in a form without suffixes is, 
in essence. a generating functional (see [ll). 
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a = A UC (a: + @I (--i8soo), d = D Iq (5 + (s+ 4 RI, 

cp = F If (5 + (s i- 4 WI (- 0.5 d 8 < 0.5), 

where A = (A+, _ h)/ti. The pattern functionals are defined on a class 
of piece-wise continuous functions u E e(O) and satisfy the conditions 
(see [II): 

I) A[u(s)l is a non-decreasing (,I IV,] > .? !cl,l for II,> cl,), normal- 
ised (A [l] = 1) homogeneous functional of the first de;;-ree (A [cd = 
o? [Ml, c = con& > 0) having a second differential; 

3) D [u(s)1 and ,Q(s)l are linear nonalised (?!ll = I, 511 = I), 
non-negative functionals (NJ > 0, p11.J > o for P >O); 

3) the necessary conditions of second-order approximation on uniform 
nets 

A, [sl = - 0.5, D [sl = F [sl = 0, (12) 

are satisfied, where A,[fl = A,fl, f] is the first differential of the 
functional <42[d at the point cr = 1. 

These conditions define the initial class of homogeneous difference 
schemes (11) on which this paper is based. 

2. Difference boundary problem 

Let us put the initial problem (5) in correspondence with the follow- 
ing difference problem 

&=(ayG)2_ddy+cp=0 for ~=a+, o<i<N, ~(O)=nl,~(1)=+(13) 

It follows from the conditions k > c 1 > 0, q > 0 and the properties of 
the pattern functionals that 

a > cl > 0, d > 0. 

In order to determine the accuracy of the solution of problem (13) we 
must make an estimate of the net function z = y - u given the limited 
division of the net, i.e. as 1 h jb + 0. The function z is clearly a solu- 
tion of the Problem 

Kz = (az;); - dz = - 9, a (0) = 0, 2 (1) = 0, (14) 

where 9 =Au - L’k*q*‘) u is the approximation error of our scheme Au 
calculated for the solution u = u(x) of the differential equation (5). 
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To answer the questions of the convergence and accuracy of scheme 
(13) we first calculate the approximation error y, and then find an 
estimate for the function z in terms of q~ (an Q priori estimate). 

3. The approximation error on a non-uniform net 

Let us consider the approximation error 

II, = Au - L’k. Q. ‘1 u - [(au;); - (ku’)‘] - (d - q) u + cp - f. (15j 

In our introduction we pointed out that, generally speaking, on a 
non-uniform net the order of approximation of difference schemes is re- 
duced. For, consider the special case k = 1, d = q, cp = f so that 

J, = ” u-*-u. xx It follows from the formulae 

J+l) 
= u + h+1 u' + 0.5 h:, I(” + $ h9,, u- + 0 (h”,), 

u( -1) = u - hu’ + 0.5 hBu” - +h” u”+ O(h’), 

u; = u’ - 0.5 hu” + $ hW”+ 0 (h3), 
htl-- hs 

uj; = u”+ T u’“+ 0 (h*) + 0 (h;,) 

that 

+ = + (h,, - h) u”’ + 0 (ha) + 0 (h%), 

i.e. $ = 0 (h) + 0 (h,,) for h # h,, and 9 - 0 (h’) on a uniform net 

(A = A+*). 

It was shown in [II that in the case of a uniform net a scheme satis- 
fying the necessary conditions for second order approximation (12) has 
only first order approximation if k(n) E C(‘l’) but that nevertheless 
this scheme has second order accuracy. A reduction in the order of y on 
a uniform net can also be associated with the reduction in the rank rA 
(see [l]) of the functional ALU(S)]. If the rank ‘A = 3 and 
k(x) E C(*n l) [o, 11, ,T, f E Cc lol) 10, 11 then q~ = 0(h2) on a uniform 
net. For a non-uniform net, even with these conditions, v = n(h) + 

O(h+,). 

Let us find an expansion of the net function (15) in powers of h and 
h,,. If q, f E C clel) then, due to the linearity of the functionals 
D, F we cm write 

d(z) =D [q(z+(s+ A)h)l=q(~)+fiq’(~)(D[sl+ A)+O(W+O(&)= 

= q (4 + + (h+, - h) q’ (z) + 0 (ha) -t- 0 (h:J (” IsI= 0, A = d (h+, -h)), (16) 

q(z) =~[f (z+(s + A)fi)l =f(r)+$(h+l--h)f’(X)+O(ha)+O(h:,). 
(17) 
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Lemma 1. The approximation error of any scheme Au of the initial 
class for k, ?, f E C(l*l) and an arbitrary non-uniform net o,,, can be 
put in the form 

$J = Au - LW.‘t) U = p; + $0, (18) 

where 

p = au; -iz+fqld, p = 0 (W, 9’ = 0 (h’) + 0 &), (19) 

m = ku’ Ix=;, % = x - O.%, and au=u(~c) is a solution of the differ- 

ential LCkaqaf)t4 = 0. 

It follows from the equation (ku’)’ = yu - f and conditions 
q, f E C(l**) that (ku’)“= (pz - f)’ E CCoel). Therefore we can write 

m = ku’ - 0.5h (ku’)’ + ;(ku’)” + 0 (hJ), 

(kq’+” = ku’+ 0.5h+, fku’)’ + $ h:, (ku’)‘+ 0 (kit, ). 

We have from this 

(ku’)’ = (ku’); - &(h2,, - P) (ku’)” + 0 (h’) + 0 (hf, ) = (20) 

=(klLI - + ha (ku’)“); + 0 (V) + 0 (h:, ), 

since (h2,, - h2) (ku’)“/8ri = + (ha (ku’)“) ; + 0 (& ). Using (16) and 

(17), we transform (d - 7)~ + 9 - f similarly: 

(d - q) u = f (h+i - h) q’u + 0 (P) + 0 (I$* ) = f Vq’u + 0 (k2) + 

+ 0 (h,: ) = f (hZq’u); + 0 W) + 0 ve, ), (21) 

cp - f = $ (W’); + 0 (ha) + 0 (Cl ). (22) 

Inserting (20)-(22) in (15). we obtain (18) where 

p =au;-kku’+$ha [(ku’)” - q’u + f’l. (23) 

We find from the differential equation Ltk#qsf)u = 0, (ku’) ” - q’u + 
f’ = qu’. After substituting this expression in (23) the fOInWla for ci 
takes the form 

7 p = au;-ku + $h2qu’. (19) 
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This transformation is valid for any a. Let us assume now that ,? has 
a second differential (is of second rank) and satisfies the necessary 
conditions for second order approximation A [I ] = 1, A, [sl = - 0.5. 

_ Expanding au(x) in powers of h in the neighbourhood of the point 
X=X- 0.5 h (see hl ) 

a (4 = A [k (1: + (s + 0.5) h)] = k (3 + k.4, [s + 0.51 k’ (z) + 

+ 0 (k’) = k fi) + 0 (h’) 

and noting that u;= u’(g) + 0 (IL*), we find 

au; - Xi? = @ - 0 (Ii*)) (2 + 0 (ha)) -Z? = 0 (ha), I.e. p = O(P). 

If ‘1 [H(s)1 is of third rank and k(x) E Cf2* ‘) where m > 1 then 

a (cc) =E+ hp {;(A, [SI] - $) + ‘y A, is]} + 0 (ha), 

% = ii’ + $i”‘+O(h3), 

p = (a& + & ku” + $qu’) h* + 0 (P) = p1 (T) ha + 0 (h’), 

where 

It follows that 

4’ = (h+i - h) ~1 (4 -t 0 (ha) + 0 (h:l ), 
i.e. the scheme alwsys has first order approximation if the net oN is 
arbitrary. If the net is specially selected to satisfy the condition 
h 

+1 - 
h = O(h2) then ‘y = 0(h2). _ 

4. Creen’s difference function 

Let us now evaluate the solution of the problem 

2 (0) = 0, 2 (1) = 0, (14) 

O<d< ca. 

;iz = (az;); - dz = - $, 

o<c,<a\<c;, 

We shall be interested in the case where y(x) has the form 
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To construct IZ priori estimates for the solution of problem (14) we use 
Green’s difference function, by analogy with [I]. 

We shall use the following notation for t!le SUDS and norms (see [41) : 

N-I N-I N-l 

(9, 4 = 2 !/ivihi, G/P 4’ = 2 ?wihi+l, (Y* v)* = 2 yivitii I 
I=1 i=1 i=l 

(~7 VI = i yivihi, II Y II D = max [?/i/p 
i=1 

II?lIIa=(l9 IYI”P or I1!&= (1, ~y~‘)+“*,I~y;$J =(l, I?/_XIV,a=1,2, 

where y = y(r), v = v(x) are arbitrary net functions. 

Let us give some of the simpler formulae (see [41) : 

1) formula for summation by parts: 

(9, v.$* = (y, vzJ+ = - (v, y;) + y(---1) Vlx=l - yv(-tl) 1 x_o = 

= - (v, ?/;I + yv 1 x4 - !/UC+‘) 1 x=ij; 

(24) 

2) Green’s first difference formula: 

(Y, (a~~);)* = (9, (uQ,)+ = - (a, Y;V;I + a9vz lxal - J+%, lx+; (25) 

3) Green’s second difference formula: 

(~9 (q);)’ = (~9 (a~-,);)’ + Q (z/v;-- T/;) Jxzl- o(+‘)k - r@],, (26) 

or 

(y, q* = (&,’ + = (YV; - vy;)l,_;, - a(+‘) wx - vy,) jx4. (26’) 

We introduce Green’s difference function C(x, 5) of problem (14) with 
the help of the conditions 

Kc = (a(z) C;(z, &));-- d(z) C(z, &) =-y, 
(27) 

G (0, E) = 0. c (1, E) = 0, 

where 6(x, <) = 1 for x = <, 6(x, I) = 0 for n f < (the dependence of 
C(x, <) on the net is not indicated explicitly). The expression 

G (2, 8 = 1 a(5) $ (@/a (1) for z<E, 

a(t) p (s)/a (1) for z&E 
(28) 
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obtained in [il is also valid for a non-uniform net, if we define a(x) 
and p(x) as the solutions of the following poblems with initial condi- 
tions: 

xa = (au;);-- da = 0, a (0) = 0, a(+‘) &x 1*+) = 1, @9) 

xp = (up;);); - dp = 0, p (1) = 0, “P;/x=l=-l’ (30) 

Writing y = a, u = F in the second Green formula we find 

a (1) = P (0). a (pa;- a&) = a (1) for O<s<i. 

It is clear from formula (28) that Green’s function is symmetric: 

G (G El = G (E, 4. 

We write y(x) = C;(r, <), u(x) = z(x) in (26’), where z(x) is a solu- 
tion of problem (14). 3oth functions satisfy homogeneous boundary con- 
ditions, and so the substitutions for x = 0 and z = I are equal to zero. 
Using equations (29) and (30) and the symmetry of Green’s function, 
after replacing x by 5 and C:_ by r we obtain the formula 

z (x) =I (G (x, EJ, $ (&))* or z = tG- II)‘* 

which we shall use below to derive IZ priori estimates of the solution 
of problem (14). To do this we need estimates of Green’s function C(x,<) 
and of its difference derivatives G;. Cc, Gza. 

Lemma 2. Green’s difference function C(n, 2) of problem (14) and its 
difference derivatives G;, Gg satisfy the conditions 

where Mi = l/c,, 

= sinh ~GI /vc%, M; -(I +c; +c,)/c,, M, = Mj + Mj, 

Proof. Estimates (32) were obtained in [ll for a uniform net. Let fl 
be Green’ s function of problem (14) for d = 0. In this case 

a, = a; = i &/a,) < _!_ , 
Cl 

/3, = pf = 5 (Jt&Jak) < 4 
k=l k=i+l 

61 

and it follows from (28) that Go\< l/c,, [ C;t 1 <l/c,, lG2 I\< l/c,, since 
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a’(x) <a’(l) < l/cl, p’(x) < p’(O) < l/cl. Then, using the inequality 
G <Go together with the formulae C(r, E_) = Go (x, j) - (@(x, s), 
ii(s) c(s, <))*, $ = 3 - (q, &)*, we obtain (32). For ciz we use 
formula (28) with the inequalities (see 111): 0 < a(x) <a(l) for 
0 < x Q 1, 0 < P(x)< p(O) = a(1) for O\<x ( 1, l/c; <a(l) < cj = 

sinh vcF1 / vzp, aI(z)la (1) Q (c; + c,)/c,. The calculations give 

This proves the lemma. 

5. ?he a priori estimates 

Lemma 3. If v(x) has the form 

9 = P; + VT 

then the solution of problem (14) satisfies the inequalities 

U4b <Ma @III +IIS’lldt 
ll4l < MIlls’b + M*ll& 

where 

~VIl.9 = ?I1 hi 15; qk UPL& = (k lk41= &Pi. 
s i=1 

Using formula (31) we find 

z = (G, pte)* + (G \p’)‘. 

Let us take each term separately. From (24) and (27) we find 

(18) 

w 
(34’) 

(3.5) 

(G, PC)* = (6 IQ+ = - (G<t PI, since the substitutions for < = 0 and 

< = 1 become zero. 

Then using (32) we find 
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Introducing the function q(x) with the help of the conditions 

we find (G,$*)'= (G, q)+= -(G,(z, f), q (E)) and therefore _ 

N-l 
where IJ (r) qi = - 2 $,&. (34) f 0 ows at one from (35), (37). 11 

k-i 

Lemma 4. If 9 = p; f $*. then the difference derivative zE of the 

solution of problem (14) satisfies the conditions 

Using the expression I = - (GE (z, E), p (&)I + '(G, S')', obtained 

above, we find 

z; = - (G,? p] + (G;, I@‘)’ == -- (CGe, F;] = - (G;,, jij’ - hG,-, (5, xj c(x), 

where p = p t u, and the bar denotes that the summation 
all < 9 X. Now using the inequalities of (33) we obtain 

is taken over 

since IIp !I1 \<I p !I,,. The second inequality of (39) follows immediately 

from (40), since (1, Ipll=Ilr~il,, (1, 1~1]-(1, l~l)-j\VIb. 

Lemma 5. Let 2 = z(n) be a solution of problem (14), where y(x) has 
the form 

9(x) -PL;+V(rJ 

at all points of the net oN apart from the points x = n, and n = xntl. 
Then z = z(x) satisfies the inequality 

II s 10 < M, II P II; + fv, (I IL,, I + I P,,+~ I) + JI, (II+,’ II; + I fita% + fin+l%+l I) + 
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where 

n-1 N-l 

ns’II;= c 1s;p,+ 2 14w* 
G-1 i=n+S 

Using formula (31), we put z(x) in the form 

z (4 = (G @7 El* $ (E))’ = (C (G EL pf* (8 + 9,’ (E))” + Z(z), 

where i (5) = c (5, G) %h i- c (r, J,,+J %,+1 fin+,, md (C, pc + 9,‘)‘” 

denotes the sum with respect to < = x,, . . ., x,,_r, _x,,+~, . . . . x,, I - 

(S # XnD zn+l). Let us first transform t(x): 

i (5) - G (r, r*+,) (fin%l + ~?l+l%+l) - c, k, G+A h,, fin$n, 

and apply Lemma 2. Vie obtain the estimate 

The formula for summation by parts (24) gives 

I(~~Cr@)‘“I~~~~23~ll;-1-“~1(lII.,I-t- IP,+.,I)* (43) 

Using (42), (43) and the inequality j(C, $*)*” ) < M, ji$‘[l;, we arrive at 
the inequality (41). 

Lemma 5 is used in estimating the order of accuracy in the class of 
discontinuous coefficients (see $ 2, pt. 3). 

Similar n priori estimates are obtained for the third boundary prob- 
lem 
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I,2 = a(+%, - ulz = - v1 for z = 0, 1,~ = az; + o,z = v, par t--_i, (44) 

0 < 6 < a < ci, O<d\<c,, a,>09 a&O, ~1+u&c,>O. > 

In this case Green’s function of Problem (44) defined as the solution 
of equation (14) satisfying the boundary conditions l,C = 0, l,G = 0 has 
the form 

a (4 P (%I / A for z<%, 
’ & ‘) = (c( (%) f3 (z) / A for x>,E. 

The functions a(x) and F(X) are determined by the conditions 

ila=O, a(+l) a, = i,l,a=O 

Q=O, ap; 

We can find an expression for 
(26’) (see [41): 

=-I, r,p=o 
for 1: = 0, 

for x-i. 

A = a(& - (lr,,) using Green’s formula 

A=&(i)+ $ (1 + (d, p)‘) = P (0) + $ (1 + (d, aU9 

(45) 

with a(x) > 0, p(x) > 0. If, for exsmple, u1 = 0 then a(x) can be deter- 
mined from the conditions a(0) = 1, ax(O) = 0. In this case 

A = 1 + (a J3)' = a (1) + -$ (1 + (d. al’). 

The solution of problem (44) csn be put in the form 

s (r) = (G (5, %), 9 (S))’ -t G (5, 0) Vl + G (z, 1) VP. 

Fk Green’s function G and its difference derivatives we have 

where ,?I,, 
ci *. 

hl,, I!!;, !$’ are positive constants depending on cl, c2, c3 and 
Lemma 3 can be generalised to the case of the third boundary Problem 

(44) - 

Lemma 6. If t# = p; + $‘, then the solution of problem (44) SatiS- 

fies the a priori estimates 



Homogeneous difference schemes on non-uniform nets 943 

where 

The Proof of this lemma is analogizes to that of Lemma 3. Lemmas 4 and 5 
Can Similarly be generalised to the case of the third boundary problem. 

U. 9 Concerning the accuracy of homogeneous difference 
schemes on non-uniform nets 

1. Concerning accuracy in the class of smooth coefficients 

Using representation (18) for v(x) (Lemma 1)) and al so Lemma 2, it is 
not difficult to see that Theorem 1 is true. 

Theorem I. Let Ay = (uy;); - dy -j- cp ‘be any homogeneous scheme of 

the initial family. If k, 1, f E C ( ’ * ’ ) CO, 11 then scheme Ay has second 
order accuracy on any sequence of non-uniform nets, or more exactly 

UY- mlb < MEa, (47) 

where y is a solution of the difference 
tion of problem (5) and II is a constant 
and 

problem (13). u = u(x) is a solu- 
which does not depend on the net, 

x = Uhb = (I, h*l’/* (48) 

is the mean square mesh of the net. 

To prove the theorem we need an estimate for the difference z = y - u 
which is determined from conditions (14): 

(uz;;);-dz=-+, z(O)=O, z(l)=O, O<Cl<G Oid<c, 

From Lemma 1 

9 = p; i-q,‘, where p = 0 (h*), 9’ = 0 (h’) + 0 (h:J. (18) 

Using estimate (34) of Lemma 3: 
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Then since /lpbb = 0 (It”), us* US < llS’ III = 0 (@), we have 1 z lb \< A@. 

For Practical Purposes the accuracy with which the flow ku’, the 
difference expression of which has the form a~,, is determined, is often 
as imPortant as the accuracy of the solution of Problem (5). Let us find 
an estimate for the order of accuracy with which the flow is determined 
on a non-uniform net using the given homogeneous difference schemes. We 
are interested in the error 

V = oy; - k7 = az; + p’, 

where p’ = aux - k? is the approximation error of the flow. We see 
that 

i.e. the estimate of v converges to 
Lemma 1, V+ = 0(h2) and therefore 

Il4ll<a4n~,-nI +lWlh* 

the estimate of // ~~1, since, from 

where g = II h b. F’rom Lemma 4 

IP; 0 < Ma (II P lb + llv ill) < M ll h I&? 

II~,llld~a(nlLb+U~~Qs)\<~II~l~~ IP;ll!4 =G WlWii~ 

As a result we obtain the following inequalities for the flow: 

(49) 

II aYg - kT b\<MOh 11, (50) 

1 ay; - k2 iI < M II h c. (51) 

We can see from inequality (50) that the scheme (13) gives second 
order accuracy for the flow also, but a uniform estimate for the error 
in determining the flow contains the maximum value of the mesh, i.e. 

II q 0 ad not Iv1 lk=fi as for the function itself. Therefore good accu- 

racy cannot be obtained for the flow on just any sequence of non-uniform 
nets. To find the solution we can use any nets for which the mean square 

mesh z = Ih us is sufficiently small. It sometimes happens that high 

accuracy for the flow is only required at individual fixed Points (for 
exiunpl e, at the boundaries of regions with different prisical Para- 
meters). In this case the estimates for the flow can be made more Pre- 
cise. Without giving the reasoning, which is based on the use of Lelnmas 
1, 2 and 4 as well as inequality (33). we give an estimate for 1 ziil at 
some fixed point x* = zi of the net: 

0 
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I by,- - kT), I< Mh;, + Mi?. (52) 

l3y selecting the net so that the point x* is a nodal point of the net 
;“+ = x. 

'0 
) and hi 

0 
= O(x) we obtain 1 u (9) [ < Mh*, where v = ayr - &‘. 

2. ‘Ihe third boundary problem 

Let us consider now the boundary problem 

LW.cr.f)u = (ku’)’ - qu + f = 0, o<x<i, 
k (0) u’ (0) - uIu (0) = ul, k (1) u’ (1) + ~2u (1) = ~2, (;,i4) 

k (5) > Cl > 0, qw >,ov ‘J&O, a,),& 61-t a2>c,>O. 

The corresponding difference problem will become: 

AY = (a~$; - dy + QI = 0, O<‘i <i* 

a(+“yx - zly = u 1 for I =O, 03;; + 02y= Us for x=1, 

& = Ul + 0.5h,q (O), ‘1?, = u, + 0.5hNq (i), 

ul = ut + 0.5hJ (0). u2 = u, + 0.5h,f(l). 

The difference boundary conditions (54) have second order approxima- 
tion 

v1 = u(+l)u, - k (0) u’ (0) + 0.5h, (q (0) u (0) - f (0)) = 0 (hi), 

1’ - au; - k (1) zz’ (1) - 0.5hN (q (1) u (1) - f (1)) = 0 (h;) 2- 

for the solution u = u(x) of the differential equation. 

Let u(r) be a solution of problem (53)‘ and y a solution of (54). 
Then their difference t = y - u satisfies the condition 

(a& - dz = -$, 

a(fl)=, - &z = - v, for x=0, azi + Z2z = v2 for %=I. 
(5.;) 

where \y = Au - L( ka q+ f) u is the approximation error of the scheme AU 
calculated in Pt. 4 of 5’ 1, and v1 and v2 are the approximation errors 
of the boundary conditions. To estimate z we must use Lemmas 1 and 6. 
Then, repeating the argument given in pt. 1 in the proof of Theorem 1, 
we arrive at 

Theorem 2. If the conditions of Theorem I are satisfied, then the 
difference problem (54) has second order accuracy on any sequence of 
nets, or more precisely 
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(5Ci) 

where 

In this case the estimate for the error z = y - u involves the steps 
h, and I$ near the boundary as well as the mean square mesh h = 1) 1~11 2 

of the net. It follows that the solution of the third boundary problem 
(54) satisfies the inequality 

UY- U/b < MIIh$ = ACE+, (5ij 

if 11, = O(L), h, = O(E), i.e. the order of smallness of h, and h, is not 

lower than that of x (thus (57) is true for the first boundary problem 

even if hl = f1(7;2/3), ;zN = 0(Z2j3)). 

3. ??le approximation error in the neighbourhooc! of a point of 
discontinuity 01 the coefficients 

Let us calculate the approximation error 

on a non-uniform net in the neighbourhood of a point of discontinuity of 
the coefficients k, 7, f of the differential equation. We shall assume 
that k, 7, f E O(‘* ‘I. Let t = z,, + 0h,,, (0 <O \<l, h,+, = x,,+~ -n,J 
be a point of the interval 0 < x < 1 at which the coefficient k(x) (and 
also 7(x) and f(r)) has a discontinuity of the first kind. Let k, = 

k(< - o), kr = k(< t 0) denote the limiting values of k(x) from the left 
and from the right at the point x = <. At this point the solution 
u = u(x) of the differential equation L(k*qgf)u = 0 satisfies the .iUnC- 
tion conditions 

[ul = 0, [liU'] = (lCU’)r - (kU’)l = 0. 

To simplify printing we shall assume that there is only one point 
x = c at which k, 7, f are discontinuous. Since the scheme is a three- 
point one, at all points of the net .apart from x = xn and x = xntl it 
is possible, according to Lemma 2, to put the function y(x) in the form 

lc) = p; j- I$‘, p rz nn,; - 12 + $h?qu’ for x#x,, “#Xn+,, 

(58) 
p = 0 (h"), l)‘ =- 0 (/I”) + 0 (A:,). 
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Let US calculate y(x) for x = xn and x = x,+,. We write ‘+J in the form of 

the sum IJI = & + I& where I$~ =: (cN~),~ -(AX’)‘, $l’d = - (‘I - q) ZJ -k 

‘p - f. Expanding h(x) and u(x) in a neighbourhood of the point x = < we 
find 

a, .= a (5,) = k, -- (0.5/l,, f- Oh,,,) 1i; -’ 0 (hf) -I- 0 (/!f+l), 

&I+2 - - k, -/- (0.5k,+, ,- (1 - 0) lln+l) ii: -!- 0 (hi+,) + 0 (h:+z), 

lLGn = ZL; - (0.5h, _t- Oh,,,) u; + 0.5 (0.5k, + flh,+,)2 1LY’ f 0 (IL;) + 0 (h;ll,,. 

II x.n = u; + (0.5h,,, -j- (i - 0) A.+,) 11.; -/- 0.5 (0.5h,,., -;- (1 - 0) hn+J2 ui* 

-!- 0 v&J + 0 N+*), 

u- s.n+1 = U x,n - - eu:, -b (1 - 0) u; -1- 0 (h,) + 0 (hn+l) = 

=W 
c 

;+ y) +O (12n) -t O (b1+J7 W = IC,lU’l = li,U’ . r 
r I’ 

Using these expressions we obtain 

i- 0 (“;+J> 
(59) 

~n~la.n + fLn+l%.n+l. = (0.5 - 0) [(ICU’): - (liU’);;+ 0 (hi)+ 0 (hi+l) -! O(h’,+,)* 

Consider now the term 

If I, &,I, F [j(s)1 are arbitrary functionals of the family defined 

in 5 1 pt. 1, we have 

\Pd.n = 0 (I), $d,n+l = 0 (1). 

Thus for an arbitrary scheme of the initial family the conditions 

k&I = 0 (11, fin+l%+l = 0 (1)~ 

hb4h + tin+l.ll?L+l = 0 (kJ -+ 0 (b+d + 0 (ka+z), > 
(W 

must be satisfied, and these are analogous to the conditions which were 
obtained in [II for a uniform net. 

The scheme with pattern functionals 

A ix(s)1 =( z)]-‘. 
0.6 

D[7 @)I = F rf @)I = s f(s) ds, (61) 
-0.6 
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for which 

a*= [$&j-l, CJ,=~~~~~s(z)dr. cpi =+X~~;~;j(z)&. 

i . . 

will play a special role in our work. In this case calculation gives 

%+I= e + ( q-l+ 0 (hn+1), 
r 

tin (4, - Qn) un = (0.5 - 0) firs- 41juk) + 0 V&J + 0 (ktd, 

tin+1 ((%+I - qn+J un+l = 0 (%+a,) + 0 (h&) for 8 < 0.5, 

ti, (4s - Qn) un = 0 (ti) + 0 (G+l)t hl tdn+l - Qn+*) Un+l = 

= (0.5 - 0) far - Ql) rJ GJ + 0 &-I) + 0 (hI+z) for e>o.5* 

Similar expressions are obtained for & (cpn - f,,), &+I (%+I - fn+l). 
It follows from this and from (59) that 

h*n = 0 Pn) + 0 &n+l)7 h-l-19nt1 = 0 &+I) + O h-2). (62) 

Instead of (60) we obtain 

Mb + k+,~n+l = (0.5 - 0) &Ll I (L’k**41)r - (L(k***‘)U), ] + 0 (hi) + 

+ 0 (G+*) + 0 (h&,)7 

i. e. 

4. Concerning accuracy in the class of discontinuous coefficients 

Let us now find the order of accuracy of our homogeneous difference 
schemes in the class of discontinuous coefficients on an arbitrary 
sequence of non-uniform nets oN He shall assume that k(x), 7(n), 
f(X) E p l) [O, 11, It is sufficient to consider the case of one dis- 
continuity at the point < = xn + 0h,+,, 0 <<e \<l. From Pt. 3 of 5 2 and 



Homogeneous difference schcaes on non-uniform nets 949 

where z = y - u is a solution of problem (14). It follows from this and 
from (62) that for any scheme of the initial family 

il4b < M $a + h, + h,+, -t h,+t), (64) 

where M is a positive constant which does not depend on the net. 

For scheme (61). according to (62)-(62’), 

If k, q, f have discontinuities of the first kind at the points cj = 
n +h n .+I ‘j, Obej < 1, j = 1, 2. . . . . j,, then instead of (63) and 

(id) we Obtain 
. 

%here K = 2 for the scheme (61), and K = 1 for the whole family of 
schemes. Ry the seme token we can prove the following theorem. 

lheoren 3. The homogeneous difference scheme (13) is uniformly con- 
vergent in the class of discontinuous coefficients on any sequence of 
non-uniform nets oW If k, 7, f E Q(lo ‘) [O, I] then 

11~ - u lb \< ‘~~ + M’ ~~ (‘Zj + ‘~j+, + ‘ij+z)* (66) 
W 

where y is a solution of problem (13), u is a solution of the initial 
problem (5). M and ill’ are positive constants which do not depend on the 
nets, j, is the number of Points sj = x,. + Ojhn.tl of the interval 

0 < x < 1 at which at least one of the t&efficieits k(x), q(x), f(x) 
has a discontinuity, K = 2 for scheme (61) and K = 1 for the whole 
initial family of homogeneous difference schemes. 

Note 1. Unlike the case of smooth coefficients, in this case the 
error z = y - u depends not only on the mean square mesh &=[hl}, which 
is an integral characteristic of the net, but also on the meshlengths 
of the net in the neighbourhood of the point of discontinuity 

Ej = ‘+n . + ‘jhn .+I of the coefficients of the differential equation. It 

followsj in part i cular that if the Position of the Points of discontinu- 
ity kj of fixed k(x), q(x) and f(x) is known then, by choosing a finer 
net in the neighbourhood of the points < ., the order of accuracy of the 
scheme can be increased. Thus, for examp e, if we choose h,,j = 0 (x9, f 
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h nj+l = 0 m, hnj+2 = 0 @), we obtain 

UY--llOd~~‘, $=IIh g, 

i.e. on these nets any initial scheme will have second order accuracy. 

Note 2. If the point of discontinuity ij = z,,, is a nodal point of 

the net (ej = 0) then it is not difficult to shoi that 

Clearly in this case we have, instead of (661, 

‘I y - u lb < Mi’ + M’ fj ‘hij + fb;j+l), 
j=l 

(67) 

i.e. any initial scheme has second order accuracy on a sequence of nets 
for which the points of discontinuity of the fixed coefficients k, 7, f 
are nodal points. If k, 7, f are known, then clearly we can always change 
the net near the points of discontinuity <. and arrange for all the Ej 
to be nodal Points of the net. The nets ob ained i in this way will no 
longer be arbitrary, but will depend on the actual functions k, 7, f. It 
is convenient to use these nets in cases where the positions of the dis- 
continuities of the coefficients of the differential equation are known 
beforehand. It must be stressed that we have been discussing above the 
whole class of discontinuous coefficients and any sequence of nets ON 
obtained by an arbitrary division of the segment 0 <x <l into N parts 
by the points x0 = 0, x1, . . ., xi, . .., xN = 1. 

5. Homogeneous diff erence schemes of the second type 

The homogeneous difference schemes we have been considering above can 
be obtained by the integral interpolation method (see 111) by writing 
down the balance equation for the interval (ni_r \< x<xi = 6.5 (xi + 
xi+l)). If we write down the balance equation for (Xi <X \<Xi+l) and 

refer the values of the function y to the point Ti by putting 7; = Y(‘iI 
then we can obtain homogeneous difference schemes of the second type 

hg = (a?j& - CEg + Cp = 0, Y (0) = 49 Y (1) = +a! (68; 

where 

9; = (g - gc-1)) fi, fi = 0.5 (h + h,,), h = h{ = q - 5i_-1, 

(a?& )x*4 = & [ ai+l “ii;; Qi - ai gi ;pq. 
i 
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The values of the function y’ refer to the Points Go, ;I, . . . , ;N_l, i. e. 
there are N internal points and not N -1. 

The coefficients (z, d, Q are defined with the help of the same 
Pattern functional s A, I) and F as in Pt. 1 of 5 1, by the formulae 

a = A fk (z + @I, d = D [q (z + sh+,)l, cp = F [f (z + sh+,)l F= z + 0.5h+~) 

We can obtain equations (68) at the Points i0 =0.5h,, ;,,,,I =xN-0.5/a,,, 

by Putting formally h, = h,, = 0, iV = y(l), “-1 = y(O) so that A, = 
0.5 h,, Ii,,, = 6.5 Ip/ 

Writing y = z + u(x) we obtain the conditions 

x2 = (az;), - al2 = -q, 2 (0) = 2 (1) = 0 (69) 

(0 < cs d 3 B c;* oGd<ca), 

for z, where ‘y = Ai - (L( kJ q*f) u)~=W is the approximation error of the 

scheme (68). 

Let us assume that !z, Q, f E C(‘* ‘) and therefore u(x) E C(3*1); 
arguing by analogy with pt. 3 of 6 1 and using the relations 

(ku’)’ = @‘),S 0 (0, d = j + 0 (hi,), 

we find 

9 = px + $‘, p -_ au; - ku’, 

v = 0 (W + 0 (G) + 0 (&). 

It follows 

that 

P= 

from the expansions 

u; = u’ + f (h,, - h) U” + 0 (h’) + 0 VG)c 

a=k++(h +1 - h) k’ + 0 (ha) + 0 @:J 

V; + CL** q = $h:, (kn’)‘(+‘) += ;h:,(qu - f)(+‘), 

IA+ = 0 (h’) + 0 (C), (71) 

Thus formula (70) takes the form 

‘II, = p: +rp* + ‘l&xc (72) 

where p*, q and q~y* are of second order with respect to jjhb = max hi. 
6) 
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The solution of problem (69) is given by the formula 

2 (4 = (G (z, E), ‘c) (E))’ = ;i + v, E = (G pL; + $*I+, v = (G tl&+ 
(73) 

N-I 

(Y, v)+ = yy;i4hi+1, (9, 4 = c giGi 
i=a ko 

where C(x, <) is Green’s difference function, defined by the conditions 

(~‘2 (5, %))x - d (4 G (5, %)= - 6 (5, E) / h+l, G (0, %)=G (1, %)=O. 

Ihe inequal ities of Lemma 2 apply to C(n, <). Therefore Lemma 3 is 
applicable and so 

Green’ s second formula (26) gives 

(74) 

(75) 

v (5) = (G (z, 8, qE t%))+ = (GtE (2, %), q (%))+ + Gy k=x, - ‘$+),,,. 

Let us insert here the expression for Gk found from equation (74): 

If k(x) E do*‘) then In,/ <cd (c, is a constant which does not depend 
on the net) and 

(76) 

Let k(x) E Qf”- ‘) (0 < c1 <a <cl ‘) and % = Z,, + f%,, be a point of 

discontinuity of the function k(x). Then 1 uxl < cq for x # “,, and 

x y G,,+r. It is clear from the formula 

(&, tl)+ = ++I - an)Gc (G 4 + & (a,+, - u,+~)G~ (5, z,,+~) + 

n-1 N-I 

+2l i a& ( z, $4 hi+1 + 2 
i=o i=n+2 

;;?; a, (3 Gz @,%) h-j-, 

that the estimate (76) is valid. In this case b? = I!! (cr, c;, c2, cr). 

By the same token we prove Lemma 7. 
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Lemnrl 7. If 0 < cl<n\(c;, O<;i<c, and )nx/ <c4 everywhere 
apart from a finite number of points of the net (for any P), and v(n) 
has the form (72), then the solution of problem (69) satisfies the rela- 
tion 

where i”!, > 0 is a constant depending only on cl, cl, ~2, cd, 1”‘2 = 

(Cl + q/c;. 

Theorem 4. If k, 7, f E C(‘s ‘) [O, 11 then any homogeneous differ- 
ence scheme (68) has second order accuracy on an arbitrary sequence of 
nets o,~Y: 

II!7 - u @)Ilo < Jqp16, (77) 

where y is a solution of problem (68), U(X) is a solution of the initial 
problem (5) and !! > 0 is a constant which does not depend on the net. If 

b, 7, f E r! (lo ‘) [O, 11 then 

where K = 1 for the whole family of schemes (68). K = 2 for scheme (61). 

The relation (77) follows from Lemma 7 and the estimates for p*, q, q~*. 

When ‘I = f = 0 we have instead of (77) 11 g - u (5$, < M Ilh[$. The esti- 
mate (78) can be derived by using the analogue of Lemma 6. 

Translated by R. Feinstein 
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