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Non-uniform nets are widely used in the solution of various differential
equations by difference methods. However, little has been done to study
the convergence of the difference schemes.

The simplest examples show that the most freguently used criteria for
judging the quality of difference schemes, a uniform estimate or a mean
estimate of the approximation error of the scheme, are unsound for non-
uniform nets and can give an untrue idea of the order of accuracy of the
scheme.

For the differential equation
Lu=u"+f(z)=0 0<2<1), u(0)=u,, u(l) =u, (1)
let us consider two difference schemes on an arbitrary non-uniform net

(A)N:{xi, i=0. 1, ceey N‘ xo =0. IN=1}:

1 (Vi ™Y Yi— Y
1. Aw, =7;-( +;:t+1 T My + /=0, yo=u; yy=1uy

where y, = y(x;), h; =x; - %, ,, %, =0.5 (h; + h;y,): the approxima-
tion error of this scheme is:

pu— Y -
o = A — Ly = 27N 4 0 () + 0 (i),

i.e. the scheme -has first order approximation. It will be shown in § 2,
however, that this scheme gives second order accuracy on an arbitrary
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non-uniform net
— ufl, = max —uzx Mnd, 2
fy b i<£<N—1’ Y (=)< 2)
where E is the mean square mesh of the net:

R= (%hfm)'/'.

i=1

2. The following scheme is sometimes used:

1 g’H—l - g{ !-/i - 37{_1
A ='—'( — ) =V, 0 = " 1 - ,
V=5 o\ T, ) TA=0 ¥O=u y(t)=u

where

hy = 2y — Ty, By = 0.5(ks + Big))y ¥, =y (z), Zi= 0.5 (2 + z14y).
Calculation gives

b2 by,

"P‘= Aﬁ';i - (Lu) Ix-;{ - 4hi-{-l * + 0 (h‘) +0 (h‘H-l) + 0 (hH'.’):

i.e. generally speaking the scheme does not approximate to equation (1)
if the net is arbitrary. However, it is shown in point 5 of § 2 that

ly—2 @< M|hf |kl =maxh;(Theoren 4), @

i.e. scheme A2 has second order accuracy on an arbitrary net.

It is not difficult to see that both schemes are the same for a uni-
form net h; = h = 1/N.

It is shown in [1] that for homogeneous schemes for the differential
equation

(k@ %) —a@ s+ f(2)=0

with discontinuous coefficients, the accuracy of the difference scheme
is determined in the end by the integral approximation error, character-
ised by the norm

PEIIE (4)

k=1

vk = 2h

i=1

and not by the local error.

This type of norm, as we shall explain, is also suitable for estimating
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the error of homogeneous difference schemes on non-uniform nets.

We shall examine homogeneous difference schemes on non-uniform nets
using the boundary problem

L*%Py = (k(z)u’) —q(z)u+ f(z) =0, 0<”<1'} 5)

u (0) = u,, u (1) = u,.
as an example.

We shall consider the family of homogeneous conservative three-point
difference schemes of standard type defined by the generating functional:

Ay =Ly "y = (ayg):—dy + ¢ =0,
(+1) 4, (41 7 — -1
(ay;)£=%[a (.t,;l y) _aly hy ! )], E=05(kh+h,).

+1

We determine the coefficients a, d, ¢ of the scheme with the help of the
same pattern functionals A [p(s)] (—1<<s<<0), Dp(s)], F [u(s)]
(-0.5 <s <0.5) as are used in the case of uniform nets in [1):

a=Alk(@+sh), d=DIig+(s+ b)n),
e=Flf(z+(s+ DM, A&=(hy— h)/4h

In § 1 we consider a family of homogeneous difference schemes on non-
uniform nets, study the properties of Green’'s function and derive
a priori estimates that will be needed later.

In § 2 we examine the accuracy of homogeneous difference schemes on
an arbitrary sequence of non-uniform nets. In the class of smooth co-
efficients, a rational characteristic for a non-uniform net is its mean
square mesh h= ||h|| g9t in this case our schemes have second order accu-

racy with respect to h, i.e. [y — uly, < MR".

In point 4 it is shown that in the class of discontinuous coeffi-
cients our schemes have the same order of accuracy on non-uniform nets
as on uniform nets. More precisely, if k(x), q(x) and f(x) have discon-
tinuities of the first kind in some neighbourhood of the peint § = x +
ehnﬂ (0L o<, then

ly—ulp << MRB® + M’ (hy 4 Hags + hays),
where « = 1 for an arbitrary scheme of the given family, x = 2 for the
scheme whose pattern functionals A, N, F have the form

0.6

apel=[{ 2] DuE=FuE) = |n@d

-1 -0.6
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This estimate can be used to choose the net near the fixed points of
discontinuity of the functions k, g, f.

The results of § 2 enable us to drop the requirement 0 < M <
hiy/h; <M, used in [2].

Similar theorems concerning the accuracy of homogeneous difference
schemes on non-uniform nets are obtained for the multidimensional equa-
tion of elliptic type

p

Za—%(ka(xl,...,xp)g%)—q(xl,...,xp)u-{—f(xl,...,z,,)=0.

a==1

In this case we use the method of integral (energy) inequalities to con-
struct the corresponding a priori estimates.

It should be noted that special forms of difference schemes on non-
uniform nets have been considered in a number of works (see, for example,
[3]). However, to evaluate the accuracy of difference schemes on non-uni-
form nets the norm |y{, = max |y,|, was used, and this does not enable

the actual order of accuracy to be found.

1. Homogeneous difference schemes on a
non-uniform net

1. The initial family of homogeneous schemes

Let us consider the first boundary problem for the differential equa-
tion

L%y = L[k (@) ] —a@u+ 1@ =0, °<=<1»}

(5)
u (0) = u,, u(l) = u,,

where k(x) = ¢, > 0, 72(x) =0, and c, is a constant.
1 1 1

The class of boundary problems (5) is defined if we indicate the
families of functions to which the functions k(x), q(x), f(x) belong.
Following [1] we shall denote by c(™ [a, b] the class of functions having
a continuous m-th derivative on the segment a <Cx <(b; by Q'™ [a, b] the
class of functions which, together with its derivatives up to the m-th
order inclusive are piece-wise continuous on [a, bl; by Ct™ 1) [q, b] the
class of functions whose m-th derivative satisfies the Lipschitz condi-
tion on [a, b); and by O™ D [qa, b} the class of functions of Nm) | the
m-th derivative of which satisfies the Lipschitz condition on its con-
tinuous intervals. If at some point £ & (0, 1) the function k(x) €
79 (o, 1) has a discontinuity of the first kind (k, =k(E-0) #k_=k(§+0))
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then at this point the usual junction conditions are satisfied:
du
[u] = u, —u, =0, [kgﬂ=0 for z = ¢. ©)

Dividing the segment [0, 1] into N parts by the points zj = 0,
Xy cees Xiy oeee, Xy =1, we obtain the difference net oy = {xi}. Gener-
ally speaking, the step hi =% - % is an arbitrary net function
satisfying only the normalisation condition

Dh=1. (7)

If all hi =h=1/N@=1, 2, ..., N) then the net wy = @, is uniform.
Let y, = y(x,) be some net function. We shall omit the suffix i as a
rule, and write

y=y (:t) =Y y(+1) = yi+l’ ytn = Vi, (zesoy).
Let us introduce notation for the "difference derivatives"

Vi Y%ia_y—y? _y—y oYy Ry
=% T h T BETo o BiE T =g

where % = 0.5 (h + hy;), h = hy, hy; = hy,,. Then the difference operator

1 (oW —%) ey —yiy)
Ay =% [ 3 - 3

i+1 i
can be written in the convenient form
Ay = (ayz);.
On a uniform net Ay = (ay;)..

We have considered problem (5) more than once using uniform nets (see
(1] for example). It was shown in [1] that in the family of homogeneous
schemes of standard type the only schemes that converge in the class of
discontinuous coefficients are the conservative schemes

Ay = LE* "y = (ay). — dy + @, (8)
whose coefficients are defined with the help of the pattern functionals
AMp(s))  —1<s<0), DMu(s)] (—05<s<05),

Frlp ()] (—05<35<0.5)
by the formulae

a=a(z)=A"k(z+sh)], d=D"lg(z+sh), ¢ =F"[f(z+sh)l,
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are in the class of discontinuous coefficients.*

On a non-uniform net too we shall only consider standard conservative
schemes (each coefficient of which depends only on one coefficient of
the differential equation):

Ay = (ay;);— dy + o. 9)

As the scheme is conservative, the coefficient ax;) cdepends only on
the values of k(x) on the segment [xi ~ h,, xi] of the net wy:

a; = AN [k (ry + shy)] or a = AN [k (z + sh)], — 1< 0.

The coefficient d (and ¢) is determined by the values of the function
7(%¥) (f(x)) on the segment [x - 0.5 h, x + 0.5 h+1]. Therefore, if we
wish to use the same pattern function Dh[p(s)] as for the uniform net,
in deriving a formula for d we must place the centre s = 0 of the pattern
~ 0.5 <. s < 0.5 at the mean point z = x + 1/4(hy, ~ h) of the segment
[x - 0.5h, x+0.5h,], writing

d = D" [q (z + sh)]. (10)

The displacement transformation will have the form x' = x + st = x +
(A + s)Ni, so that, instead of (10), we can write

d=D"[g(z+ (s+ DK A= (— Rk (10)

and, similarly, ¢ = Fh[f(x + (s + AM)]. The index h indicates that the
pattern functionals depend on the net, i.e. in the case of a non-uniform
net on the two parameters h, h+1' If the pattern functionals of the
scheme do not depend on the net, then we shall call them canonical func-
tionals, by analogy with [1], and denote them by A [u], D [u], F Jul. We
can call the corresponding scheme Ay a canonical scheme. All the dis-
cussion which follows will refer to the canonical schemes (9) for which

a=Alk(zx+sh)l, d=DIlg(z+ (s-+ A)ER], e=F[f(x+ (s+ A)R).

Thus we shall consider the following family of conservative homo-
geneous difference schemes defined on non-uniform nets:

Ay = (ay3);— dy + o, (11)

* A homogeneous difference scheme written in a form without suffixes is,
in essence, a generating functional (see [1]).
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a=Alk(z+ sh)] (—1<s<0), d=DI[g(z+ (s+ A)h],
o=Flf(z+4 (s+ Ah)] (—05<e<0.5),

where A = (h,;, - h)/4k. The pattern functionals are defined on a class
of piece-wise continuous functions p € Q) and satisfy the conditions
(see [1]):

1) Alu¢sy] is a non-decreasing (4 [u2] >4 [“1] for u2> H;), normal-
ised (A [1] = 1) homogeneous functional of the first degree (A [cu] =
cA [W, ¢ = const > 0) having a second differential;

2) Dlu(s)] and Flu(s)] are linear normalised (M1 =1, 7l = 1),
non-negative functionals (Dl >0, Flul > n for u >0);

3) the necessary conditions of second-order approximation on uniform
nets

A [s]=—05, DI[s]=F[s]=0, (12)

are satisfied, where A [f] = A [1, f] is the first differential of the
functional Al at the point u = 1.

These conditions define the initial class of homogeneous difference
schemes (11) on which this paper is based.

2. Difference boundary problems

Let us put the initial problem (5) in correspondence with the follow-
ing difference problem

Ay =(ay:); —dy +¢ =0 for z=g, 0i<N, y(0)=uy ¥ (1) =u,. (13)

It follows from the conditions k ¢, >>0, ¢ > 0 and the properties of
the pattern functionals that

a>cl>0v d>0.

In order to determine the accuracy of the solution of problem (13) we
must make an estimate of the net function z =y — u given the limited
division of the net, i.e. as A, — 0. The function z is clearly a solu-~
tion of the problem

Az = (az;), —dz = — 9, z2(0) =0, z(1) =0, (14)

where ¢y =Au — L*® Nu is the approximation error of our scheme Au
calculated for the solution u = u(x) of the differential equation (5).
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To answer the questions of the convergence and accuracy of scheme
(13) we first calculate the approximation error y, and then find an
estimate for the function z in terms of ¢ (an a priori estimate).

3. The approximation error on a non-uniform net

Let us consider the approximation error
Y=Au— L%y [(au_) — (ku') ] —(@—g)u+o—f (@5}

In our introduction we pointed out that, generally speaking, on a
non-uniform net the order of approximation of difference schemes is re-~
duced. For, consider the special case k = 1, d = q, ¢ = f so that
Y= u-»— 8" It follows from the formulae

u = u 4 By’ + 0.5 kw1 B u” 4 0 (hy),
u ™ —u—ha'+ 0.5 hu” — -:—ha u"+ 0 (h*),

hﬂ — ke
ur=u'—0.5hu"+ 3 hu"+ 0 (), ug =u"+ "’nghi u”+ 0 (A%) + O (hy)
that

¥ =5 (ha—h)u"+ 0 () + 0 (13y),

i.e. p =0 (h) + O (hyy) for h == h,; and Y = O (k*) on a uniform net
(h = hyy).

It was shown in [1) that in the case of a uniform net a scheme satis-
fying the necessary conditions for second order approximation (12) has
only first order approximation if k(x) € C(1.1) put that nevertheless
this scheme has second order accuracy. A reduction in the order of y on
a uniform net can also be associated with the reduction in the rank r,
(see [1]) of the functional Alu(s)]. If the rank r, = 3 and
k(xy € Cct2.10p, 1], 7, f € c1+ Vo, 1) then y = O(h?) on a uniform
net. For a non-uniform net, even with these conditions, y = O(h) +
O(hy ).

Let us find an expansion of the net function (15) in powers of h and
hypr 1£ g, f € CU11) then, due to the linearity of the functionals
D, F we can write

d(@) =D [q(z + (s + A) B)] = g () + A’ (2) (D [s]+ A)+ O (:*) + O (hiy) =
=q(@) + L (ha—h) ¢ (@) + O () + 0 (h2) (D(s]=0,A = g5 (b, —h), (16)

Q@ =FIf (x4 + JB] = f(@)+ L ha— B [ (2) + 0 (k) + O ().
(17)
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Lemma 1. The approximation error of any scheme Au of the initial
class for k, 9, f € C!1+!) and an arbitrary non-uniform net wy can be
put in the form

b =Au — L&ADu =py + ¥, (18)
where
p=aui —F+5qw, p=0@), ¥ =00 +0¢) (19

ku' = ku’ |e=x » Z =z — 0.5k, and au=u(x) is a solution of the differ-
ential L(k.9.f)y = o,

It follows from the equation (ku')’ = qu — f and conditions
7, f € CLeD) that (ku')" = (qu - f)* € C'0 1), Therefore we can write

R’ = ku' — 0.5k (ku') + 5 (ku')" + O (49),
(kﬂ(ﬂ) = ku'+ 0.5hyy (ku')" + ‘:‘ Ky (ku’)"+ O (B3 ).
We have from this

(u') = @)y — gy — b%) (kw') + 0 (W) + O (b} ) = (20)
= (ku’ — L1 (ku')); + O (%) + O (¥ ),

since (b3, — h?) (ku')" /8% = -+ (h* (ku')") . + O (h3, ). Using (16) and
(17), we transform (d - Q)u + ¢ — f similarly:

2 2
(@ —qyu="thy— k) qu+0 () +0 0% ) =25 "Zgut o0 +
+O®E) = Lgu: + 0 () +0 (R ), (21)
o — f=10): + O (W) + O (). (22)

Inserting (20)-(22) in (15), we obtain (18) where
p = auz—ku’ + Lh? [(ku')" — q'u + f']. (23)
We find from the differential equation L(k+4:flu =0, (ku')" - q'u +

f’ = qu’. After substituting this expression in (23) the formula for p
takes the form

p = auz—ku' + L hqu’. (19)
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This transformation is valid for any a. Let us assume now that A has
a second differential (is of second rank) and satisfies the necessary
conditions for second order approximation A [1] = 1, 4, [s] = — 0.5.

_ Expanding au(x) in powers of h in the neighbourhood of the point
x=x_-0.5h (see [1])

a(z) =Alk (z+ (s+ 0.5)h)] = k (z) + kA4, [s + 0.5] k' (z) +
+ 0 () = k(z) + 0 (%
and noting that u_=u’ (z) + O (h*), we find
au. — k' =k — 0 () (@ + O (&%) —ku’ = O (b)), i.e. p = O().

1f A [k(s)] is of third rank and k(x) € C‘2-1) where m > 1 then
a@=F+m{5u, -1)+ B4 a1} + 0 ),

S=u + 5 uro),

p=(agu’ + gku"+ Lqu)ht + 0 (h%) =p, () h* + O (),

f

where
k* 3 1 (k)
oy = 5 (A [s*] —_T)+__E Aq [s].
It follows that
¥ = (hys — B py (2) + O (%) + O (3),
i.e. the scheme always has first order approximation if the net wy is
arbitrary. If the net is specially selected to satisfy the condition
hy, - h = O(h?) then y = O(h?).
4. Green’s difference function

Let us now evaluate the solution of the problem

Az = (az7); — dz = — ¥, 2 (0) =0, z (1) = 0, (14)
0<a<a<e, 0<d<a.

We shall be interested in the case where y(x) has the form

¥ (2) =p; +¥(2).
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To construct a priori estimates for the solution of problem (14) we use
Green’ s difference function, by analogy with (1).

We shall use the following notation for the sums and norms (see (4]):

N—1 N—1 N—1
¥, v) = Z Yvihs, @, ) = Z Yivihiga, @ v) = Z Yol
=1 N =1 i=1
(. v]1= IZ yvh, |y lle = max |y,
=1

1Y lle= (L 15192 or [y o= L [¥]) o [lyztlo = (1, lyg] I 5= 1.2,
where y = y(x), v = v(x) are arbitrary net functions.
Let us give some of the simpler formulae (see [4]):

1) formula for summation by parts:

W 22) = o) = — (0 ¥3) + YV Vet — Yy |y = (24)
== (v’ y§] + yle=l — yv‘+"|x=°:
2) Green's first difference formula:

gty

(¥, (av3);) = (¥, (a2;))" = — (@, yz5) +ayvz |, YVx |y (25)

3) Green’'s second difference formula:
v, @v);) = (v (ay3)3)" + 6 (Yo — vy [, — eV (o — )|, (26)
or
@, Koy = 0. K" + @ (yo, — )| o, — a0 (g — )|,y (269)

We introduce Green's difference function G(x, §) of problem (14) with
the help of the conditions

AG = (a (2) G=(2, 8); — d (2) G (z, ) = — 2= 8

A @7)
G(O,8 =0 G, =0,

where 5(x, §) =1 for x = §, 8(x, ) = 0 for x # { (the dependence of
G(x, ) on the net is not indicated explicitly). The expression

a(z) B (E)/a(l) for z<E,

(28)
a(t)B(x)/a(l) for=z>§

G(x.a>={
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obtained in [1] is also valid for a non-uniform net, if we define o(x)
and (x) as the solutions of the following problems with initial condi-
tions:
Ra=(any)3—da=0, a(@=0 "o _ =1, (%)
AB = (aB;)s — dB = 0, B() =0, af;f_,=—1. (30)

Writing y =« v = [ in the second Green formula we find
a (1) = B (0), a(B&;—ﬂB;):a(i) for 0<2 1.

It is clear from formula (28) that Green’s function is symmetric:

G(z,8) =G, 2).

We write y(x) = G(x, &), v(x) = z(x) in (26'), where z(x) is a solu-
tion of problem (14). Both functions satisfy homogeneous boundary con-
ditions, and so the substitutions for r = 0 and x = { are equal to zero.
Using equations (29) and (30) and the symmetry of Green’s function,
after replacing x by { and { by x we obtain the formula

z(x) = (G (z, &), ¢ (§))* or z = (G, V),

which we shall use below to derive a priori estimates of the solution
of problem (14). To do this we need estimates of Green’s function G(x,%&)
and of its difference derivatives Gg, GE' G

Lemma 2. Green’s difference function G(x, ) of problem (14) and its
difference derivatives G, GE satisfy the conditions

0LG(r8) <M, |G(z8|<My |G(z,8)|<<M, (32)
(655 (2, ) | <M, tor k2, |hG3(x, @) | < Mi (1G5 (2, B)] 1) SMa,(33)

where M, = 1/c;, My = (c; + ¢} led, M, = (c] +cg) (1 +coc))/ 2, o, =

1

= sinh VJI/V‘E M;z(i—{—c;—{-cz)/c‘, M,.=M;+]ll;.

Proof. Estimates (32) were obtained in [1) for a uniform net. Let G°
be Green’s function of problem (14) for 4 = 0. In this case

f

. N
o, =af = :.2 (hilar) < ‘}; » By=f= 2 (rular) < a_ix
ot

k=i+1

and it follows from (28) that G°<(1/c;, |Gg|<i/ey,|GE|<<1/e,, since
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o2y L1y L 1/¢y, PO B 1/c,. Then, using the inequality
G <<G° together with the formulae (‘(x, §) =GY%x, ) - (GPx, s),

d(s) G (s, €%, Gy = G2 - (G}, di)*, we obtain (32). For G;; we use
formula (28) with *the inequalities (see [1]): 0 < a(x) <a(1) for

0 <21, 0<PERO) = (1) for 0Cx <1, Ve (1) ey =

sinh  Vegley ! V erta a (z)/a (1) < (¢] + ¢,)/c;. The calculations give

az (%) Bz (B)/a (1) for 2§, . a(z)B- (z)
el 8 =\ ar @p@/a (1) tor 23, =E D =igmm T =m
|Gz (2, B) | (e, + ea) (1 + cac))fect = My, =+
h[G;a-(.'L', I<(1+h(cl+cg))/cl<(1+c1+c,)/cl=M;,

(1C5z (2, B)], DK< My + My= M,

This proves the lemma.

5. The a priorti estimates

Lemma 3. If y(x) has the form

then the solution of problem (14) satisfies the inequalities
Iz < My (Il + %", (34)
Nzl < Mol + Malpls (34"
where
N-~1 N-1 N
19" = ;2 h‘lzzi Vifie,  [uh= (L[H“:‘Z“"tlk"
=1 = i=1

Using formula (31) we find
z = (G, P'E). + (G, $°). (35)

Let us take each term separately. From (24) and (27) we find
(G, pp) = (G,p)" = — (Gg, p], since the substitutions for { = 0 and

€ = 1 become zero.

Then using (32) we find

(G s | <My (1 [ |) = My ]y (36)
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Introducing the function n(x) with the help of the conditions

'fl;=‘|"v "IN‘—‘TI(i)‘—’Ov

we find (G, ¥) = (G, n)" = — (G; (2, £), n (E)) and therefore

HG ) [ <M (1, ) <M nfh = M| ]s. (37)
N—1
where n () n, = — 2 Y. By. (34) follows at one from (35), (37).
k=i

Lemma 4. If ¢ =p. 4 ", then the difference derivative z; of the
solution of problem (14) satisfies the conditions

N2zl < Mslilo + Ma]¥" (38)
Pzzh <M (Iule +09" 1), lzzlh <Ms(ph+ k). (39)
Using the expression z = — (Gz(z, §), p (§)] + (G, ¥’)", obtained
above, we find
z; = — (Gz 1] (G, ¥) = — (3, M = — Gz wl - — kG (2, z)p 1 (2),

where ; = p + 1, and the bar denotes that the summation is taken over
all £ # x. Now using the inequalities of (33) we obtain

|25 () | < Ma|p o+ Ma | (2) |+ o] |
Lz (@) | < Ms (Il +nl) + Ma(p (@) ]+ @)D (40)
Fozlo <Ml f+ Malp o+ Mo |9 e <Ml plo + Mo ¥ b,

since |pl; <jul,- The second inequality of (39) follows immediately
from (40), since (1, {p{l=[nl €, Inll= |n])=]¥"}s.

Lemma 5. Let z = z(x) be a solution of problem (14), where y(x) has
the form

Y (x) =py+ 9" (7)

at all points of the net wy apart from the points x = x, and x = x_4,.
Then z = z(x) satisfies the inequality

Pzl <Malnl + My(p, |+ 1, D)+ My (07 + | Bntpn + Batanta |) +
+ Myhppy Bin| ¥nl, (41)
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where

M, =1/, My = (e + ¢5)/ed,

Inf, = Elu,lhwr Z ity | By

i=1 i=n+3

n—1 N—1
W= 20 A+ D |5

i=] i=n<+3

Using formula (31), we put z(x) in the form
2(z) = (G (2, B, 9 (B)) = (G (. &) g (B) + ¥ ¥)" + 2z (2),

where z (x) = G (z, Zn) Yalin + G (7, Tny1) P Bnyy, and (G, We +9)”

¢ -
denotes the sum with respect to { = Xpo eeen Xp 1s Xpgos eees Xy

G # x., X.4). Let us first transform -z-(x):
z () = G (z, Zpyy) (FnPn + Bap1Pnipr) — Gg (%, Tnt1) Aoty BnPn,

and apply Lemma 2. Ve ohtain the estimate

1Zlo << My | Binbn + Fingr¥nga |+ Moy Fin | Bal. (42)
The formula for summation by parts (24) gives
n N
(G, ne) Z £ (2, Z) phi — 2 G: (z, ri)wpix + G (2, za)p —
k=1 k=n+2

-G (xv xﬂ+1) P’n-&-2'
so that

NG )" | SMefpl A My (el -+ Trg, D) (43)

Using (42), (43) and the inequality |(G, ¢*)™
tke inequality (41).

HL Y[, we arrive at
Lemma 5 is used in estimating the order of accuracy in the class of
discontinuous coefficients (see § 2, pt. 3).

Similar @ priori estimates are ohtained for the third boundary prob-
lem
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_ 7 Kz:(az;);—dz:—\p,
hz=Mma—ﬂg—~—mfmz_o lﬂ=a@+4¢=v,mru¢}(ﬁ)
<cl cl: O<d<cz- al>0i Ga>0, 01+02>68>O'

In this case Green’s function of problem (44) defined as the solution

of equation (14) satisfying the boundary conditions llG =0, ZZG = 0 has
the form

_fa(2)B(E)/ & for z<E,
G 8= {Ot (B)B(z)/ A for z>¢. ()

The functions a(x) and [(x) are determined by the conditions

Ka:O,a“ﬂax=i,ha=0fuz=ﬁ,
KB:O,a%=v—L LB=0 for z=1.

We can find an expression for A = a(Pa; - of’;) using Green’s formula
26"y (see [4]):

A=a(l)+ o (1 + @) =8O+ (1 + @ a)),

with a(x) > 0, P(x) > 0. If, for example, ¢; = 0 then o(x) can be deter-
mined from the conditions «(0) = 1, « (0) = 0. In this case

=1+ (@.p) =al)+ ?{ (1 + (d. o).
The solution of problem (44) can be put in the form
2(z) =(G (%, 8,9 (€) + G(z,0) v, + G (z, 1) v,.

For Green’s function G and its difference derivatives we have

O<G<M17 IG;|<N12’ iGE‘<M2v

|Goz (2. ) IS M tor 246, |hGyg (2, 2) | <My, (1Gg (7, B)), 1<
= M, + M;,

where h IF fW' are positive constants depending on ¢, c,, ¢, and
cl'. memn 3 can be general1sed to the case of the third boundary problem
44).

Lemma 6. 1f ¢ = ps +¢°, then the solution of problem (44) satis-
fies the 2 priori estimates
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Pzl <M, (ol + W' 1) + My (V1] + [val + 10 (z) | + |p (1)]), (46)

where

N-1

ﬂ'l?'ll« = [¢° [s + [ 1), n\l’.ﬂa =in}w nm = kZ‘ ‘P;hk-

The proof of this lemma is analogous to that of lLemma 3. Lemmas 4 and 5
can similarly be generalised to the case of the third boundary problem.

2. Concerning the accuracy of homogeneous difference
schemes on non-uniform nets

1. Concerning accuracy in the class of smooth coefficients

Using representation (18) for ¢(x) (Lemma 1), and also Lemma 2, it is
not difficult to see that Theorem 1 is true.

Theorem 1. Let Ay = (ay-)s — dy + be any homogeneous scheme of
Yy Y:) 2 ¢

the initial family. If k, ¢, f & C{1+1D) [0, 1] then scheme Ay has second
arder accuracy on any sequence of non-uniform nets, or more exactly

ly — 2l < MP?, (47)

where y is a solution of the difference problem (13), u = u(x) is a solu-
tion of problem (5) and Y is a constant which does not depend on the net,
and

h = |hl = (1, h2}h (48)
is the mean square mesh of the net.

To prove the theorem we need an estimate for the difference z =y - u
which is determined from conditions (14):

(az;),'g"dz=—‘l7v Z(O)=O, 2(1)=0, 0<Cl<a' O<d<cr

From Lemma 1

P=pyHP mere p =00, Y =0@)+0R,).  (18)

Using estimate (34) of Lemma 3:

12 1 < My (Il + 1¥7]9)-
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Then since [uf, = O (A?), [V'|s <"} = O (2%, we have [z < Mp,

For practical purposes the accuracy with which the flow ku’, the
difference expression of which has the form ay=, is determined, is often
as important as the accuracy of the solution of problem (5). Let us find
an estimate for the order of accuracy with which the flow is determined
on a non-uniform net using the given homogeneous difference schemes. We
are interested in the error

v=ay;-—k?=az; + p’,

where p* = au, — ku' is the approximation error of the flow. We see
that

1ol <taldzzl +1vle  Ivh<[laldzzh +

i.e. the estimate of v converges to the estimate of ﬂz; u, since, from
Lemma 1, wu* = O(h?) and therefore

(e <<MR)2  |p°h < MR,

where h = |k [,. From Lemma 4

Iz o < Ms @l + 19"k < M2
lzzh <Ma(ph+I1V R < MRE < M[2E (49)

As a result we obtain the following inequalities for the flow:

fayz — ku' o< M R |G, (50)
lay; — ku’ |y <M |2 (51)

We can see from inequality (50) that the scheme (13) gives second
order accuracy for the flow also, but a uniform estimate for the error
in determining the flow contains the maximum value of the mesh, i.e.

l%], and not ||p ;=% as for the function itself. Therefore good accu-

racy cannot be obtained for the flow on just any sequence of non-uniform
nets. To find the solution we can use any nets for which the mean square

mesh h = |h|, is sufficiently small. It sometimes happens that high

accuracy for the flow is only required at individual fixed points (for
example, at the boundaries of regions with different physical para-
meters). In this case the estimates for the flow can be made more pre-
cise. Without giving the reasoning, which is based on the use of Lemmas
1, 2 and 4 as well as inequality (33), we give an estimate for |z;| at
some fixed point x* = xio of the net:
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| (ay; — ku'), | < MBS, + MPA3. (52)

By selecting the net so that the point x* is a nodal point of the net
(x* = xio) and hio = O(h) we obtain | v (%) | < MA®, where v = ay; — ku'.

2. The third boundary problem

Let us consider now the boundary problem

Lkahy = (ku') —qu+f=0, 0<=z<1,
k (0)u’ (0) — oyu (0) = u,, E(@)u (1) + oz (1) = u,, (73)
k(2)>e; >0, q(x)>0, 0,20, 0,20, o0,403>¢>0.

The corresponding difference problem will become:

Ay = (ay;); —dy + ¢ =0, 0 <1, )

a#y, — Oy = u, for z=0, ay; + O3y= U for x=1, ‘}(54‘
o, = 0, + 0.50,9 (0), 0y = 0, + 0.5hxq (1), |
Uy = u, 4+ 0.50,f (0), up = uy + 0.5hn7 (1). |

The difference boundary conditions (54) have second order approxima-
tion

v, = atdu, — & (0) w’ (0) + 0.5k, (g (0) u (0) — f (0)) = O (kD)
vy = auz — k (1) v (1) — 0.5ky (g (1) u (1) — f (1)) = O (k)

for the solution u = u(x) of the differential equation.

Let u(x) be a solution of problem (53), and y a solution of (54).
Then their difference z = y — u satisfies the condition

—}A — d = - y
(azx)ac z P } (53)

atlz, — 6,z = — v, for z=0, az; + 042 = v, for z=1,

where y = Au - L'*.4./) 4 is the approximation error of the scheme Au
calculated in pt. 4 of § 1, and v, and v, are the approximation errors
of the boundary conditions. To estimate z we must use Lemmas i and 6.

Then, repeating the argument given in pt. 1 in the proof of Theorenm 1,
we arrive at

Theorem 2. 1f the conditions of Theorem 1 are satisfied, then the
difference problem (54) has second order accuracy on any sequence of
nets, or more precisely
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ly — ul < M|RE, (56)
where
12lz =Rl + hy + Ay

In this case the estimate for the error z = y — u involves the steps
h1 and hN near the boundary as well as the mean square mesh h = Hh“2
of the net. It follows that the solution of the third boundary problem
(54) satisfies the inequality

ly — uly < MRz = MR?, (57)

if h = O(ﬁ), hy = O(E), i.e. the order of smallness of h1 and hy is not
lower than that of h (thus (57) is true for the first boundary problem
even if h = O(h?/3y, hy = O(h?/3y).

3. The approximation error in the neighbourhood of a point of

discontinuity of the coefficients

Let us calculate the approximation error

P = Au — L(k'q'!)“

on a non-uniform net in the neighbourhood of a point of discontinuity of
the coefficients k, 7, f of the differential equation. We shall assume
that k, 9, f € 01D Let § =x, +8h 4, (0O hpgy = %4 -%))
be a point of the interval 0 < x < 1 at which the coefficient k(x) (and
also 7(x) and f(x)) has a discontinuity of the first kind. Let k1 =

k(G - 0), k, = k(§ + 0) denote the limiting values of k(x) from the left
and from the right at the point x = §. At this point the solution

u = u(x) of the differential equation L(ki9.f)y = o satisfies the junc-
tion conditions

[wl =0,  [hw'] = (kw), — (kw')) =

To simplify printing we shall assume that there is only one point
x = § at which k, 9, f are discontinuous. Since the scheme is a three-
point one, at all points of the net apart from x = x and x = x4y it
is possible, according to Lemma 2, to put the function ¢(x) in the form

b=y 4 B o= au; — ku’ - %h‘zqu' for xsx,, zFz, .,
(58)
=0, ¢ = 0@+ 0@.
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Let us calculate y(x) for x = x_and x = x nt)- Ve write y in the form of

the sum ¢ =1, + P4, where ¢, = (au;)y —(ku'), Y4 = — (d — q)u +

¢ — f. Expanding k(x) and u(x) in a ne1g11b0urhood of the point x = { we

find

an = a (zn) = ky — (0.5h, + 0hn-l~1) l'l -0 (/I'ﬂ) A% n+1)

Gnge = ki & (05hnge < (1 — 0) huya) Ky + O (Rha) + 0 (i),

uz, = uy — (0.5h, +- 0hy ) ul -+ 0.5 (0. 512n 4 ) ul + 0 (h3) 40 (kflﬂ‘)

Uen = U, + (0.5hn10 - (1 — 0) hpyy)ul +0.5 (O.5hn_-rq (=0 A2l
+ 0 (k) + O (Hayy),

Ugne, = Uxn = Gu' + (1 —=0)u, 40 (k) + O (hpyy) =

( + 3 ) 4+ 0 (hn) + O (hpyy), w= k| =ku

Using these expressions we obtain

9 —90 h
ﬁn\pa,n = h-n'q)a (xn) =W {an-H (k_' + i"k—) — 1] T Ungg ";—1 X

X [(1—0? v, — 0] — (0.5 — ) hpyy (ku')] + O (R2) + O (h2 2
Anan + Bnpianys = (0.5 — 0) [(ku'), — (hu') i+ 0 (R2)+ O (k2 ) -0, )

(59)

Consider now the term

Yg=—(d—-—qu-+¢—f

1t h [a(s)], F [?(s)] are arbitrary functionals of the family defined
in § 1 pt. 1, we have

Ya,n = 0 (1)1 Ya,ny1 = 0 (1)

Thus for an arhitrary scheme of the initial family the conditions

ﬁn\Pn = 0 (1)) hn+1‘pn+1 = 0 (1)’ } (60)
BinPn + Fingy P = O (hn) + O (ngy) + O (Rags),

must be satisfied, and these are analogous to the conditions which were
obtained in (1] for a uniform net.

The scheme with pattern functionals

0 _ _ 0.5
A (% (9)] =[S Ed_(;]l D)) =F[f(s)] = g f(s)ds, (61)

—0.6
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for which
x4 "‘o-wi_l X3 +O.§hi +1
e 4z m 1 1
a = [h,S ,;(‘;)] o di=g S q(@)dz, Q=g S }(x)dz
Ty x4 —0.5hg x; —0.5h;

will play a special role in our work. In this case calculation gives

“n+1=( +1I‘—0> + 0 (Anya),

Fin (dn — qn) up = (0.5 — 9) (qr —q1) u () + O (ha) + O (hnt),
Fing1 (@nys — Gngr) Bnya = O (Rhyy) + O (Rags) for 605,

Fin (dﬂ It qﬂ) Up =0 (h'!l) +0 (h'l+1)r ﬁn+1 (dn-l-l ha Qn+1) Upyy =
=(05—90)(q: —q1) 2 (§) + O (hnys) + O (hnys)  for 6>0.5.

Similar expressions are obtained for ki (@n — fn), Bnys (@npa — frtr)-
It follows from this and from (59) that

hﬁ‘l’n =0 (h'n) + 0 (hn+1)’ hﬂn+1‘|71l+1 =0 (hn+1) + 0 (hn-i-z)- (62)
Instead of (60) we obtain

Ba¥n + BnpaPngs = (0.5 — 8) knyy [(L*%Du), — (L*%u))] + O (B}) +
+ 0 (i) + O (A24a),
i.e.

BnPn + FingrPnys = O (h2) + O (hnga) + O (hnrta). (62')

4. Concerning accuracy in the class of discontinuous coefficients

Let us now find the order of accuracy of our homogeneous difference
schemes in the class of discontinuous coefficients or an arbitrary
sequence of non-uniform nets wy. We shall assume *hat k(x), 7(%),
f(xy € 04D [g, 1]. It is sufficient to consider the case of one dis-
continuity at the point § = x + 6h 4, 0 <8< 1. From pt. 3 of § 2 and
Lemma 1 we have

b = pyt+ ¥ Y* =0 (h?) + 0 (r2)) for =k z,, Tz,
p = au;—-—k_u' + }-;—;-qu’ =0 (h?) for=zskz,,,

Lemma 5 gives

Izl << M (B® + % + hiye) 4 Ly | Ban + Fingrdnsa |+ Mobatiin [ $a s (63)
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where z = y — u is a solution of problem (14). It follows from this and
from (62) that for any scheme of the initial family

lzl, < M (B2 4+ hy + h,, ha
A} ) n ]

z i a) {84)
e ‘a4l 1 +87 \WVEg

/

where M is a positive constant which does not depend on the net.

For scheme (61), according to (62)-(62°),

B+ Prti¥uia | + ntfinl ¥n] <M (5 + Boyy + Roa). (65)
Nzl < MR* + M (5 + kg + Ray).

Itk 9, f have discontinuities of the first kind at the points §j =
x, th o4 )., 0<6 <1, 7=1,2 ..., Jo then instead of (63) and

n .

( 64) we ébtain

I2fe < MR* +M'2 (hn; + hagpy + hagpa),
j=1
‘where k = 2 for the scheme (61), and x = 1 for the whole family of
schemes. By the same token we can prove the following theorem.

Theorem 3. The homogeneous difference scheme (13) is uniformly con-
vergent in the class of discontinuous coefficients on any sequence of
non-uniform nets wy. If k, 7, f € N1 [, 1] then

Jo
ly — ulo SMR* -+ M 3 (hn; + ks + ki), (66)
=1
where y is a solution of problem (13), u is a solution of the initial
problem (5), M and M’ are positive constants which do not depend on the
nets, j, is the number of points §j =x, * ejhn_+1 of the interval

0 < x < 1 at which at least one of the coefficients k(x), 7(x), f(%)
has a discontinuity, x = 2 for scheme (61) and x = 1 for the whole
initial family of homogeneous difference schemes.

Note 1. Unlike the case of smooth coefficients, in this case the
error z = y - u depends not only on the mean square mesh E::ﬂhﬂ? which
is an integral characteristic of the net, but also on the meshlengths
of the net in the neighbourhood of the point of discontinuity
§j = x 6 :h, 4+, of the coefficients of the differential equation. It

n.
follows}in particular that if the position of the points of discontinu-
ity §) of fixed k(x), gq(x) and f(x) is known then, by choosing a finer
net in the neighbourhood of the points §., the order of accuracy of the
scheme can be increased. Thus, for exampie, if we choose & ,_.O(h%,
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h";'+1 =0 (m?), h,.j+2 = 0 (h?), we obtain
ly—uh<< MBY, A= &,

i.e. on these nets any initial scheme will have second order accuracy.

Note 2. 1f the point of discontinuity §j = x, is a nodal point of
J
the net (ej = 0) then it is not difficult to show that

B, = O (hz) + 0 (b, 1), ,,+11b,,+1—0(h 0+ 0B,

Clearly in this case we have, instead of (66),

e
ly—ulo< M M D) (i + g ), (67)
j=1
i.e. any initial scheme has second order accuracy on a sequence of nets
for which the points of discontinuity of the fixed coefficients k, 7, f
are nodal points. If k, 7, f are known, then clearly we can always change
the net near the points of discontinuity £. and arrange for all the §.
to be nodal points of the net. The nets obtained in this way will no
longer be arbitrary, but will depend on the actual functions k, 7, f. It
is convenient to use these nets in cases where the positions of the dis-
continuities of the coefficients of the differential equation are known
beforehand. It must be stressed that we have been discussing above the
whole class of discontinuous coefficients and any sequence of nets wy
obtained by an arbitrary division of the segment 0 < x <1 into N parts
by the points x, = 0, Xy vees Xgy oveny Xy T 1.
5. Homogeneous difference schemes of the second type

The homogeneous difference schemes we have been considering above can
be obtained by the integral interpolation method (see [1]) by writing
down the balance equation for the interval (x; <<.x<(" = 0.5 (x; +

x;4,)). If we write down the balance equation for (%; <(.x <:xl+1) and

refer the values of the function y to the point x by putting y, = y(x )
then we can obtain homogeneous difference schemes of the second type

Ag=(@gy):—di+o=0, y©0) =u, y(1)=u, (68)
where

Gy =(§— §0)h  E=05(h+h,y), h=h=z—12_

- 1 Yiga— Y Vi— by
(wﬁ”—MHPHIMM THTTE '
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The values of the function y refer to the points ;o' - IVEERRY ;N-l' i.e.
there are N internal points and not N -i1.

The coefficients a, d, ¢ are defined with the help of the same
pattern functionals A, D and F as in pt. 1 of § 1, by the formulae

a = Alk (& 4 sh)], d = D [q (& -+ sh.,)], ¢ = F [f(E + sh,,)] (@ =2+0.5h,)

We can obtain equations (68) at the points x, =0.5h,, xy_, =xy—0.5hy
by putting formally hy = hy, =0, yy = y(1), ¥_, = y(0) so that %, =
0.5 h), iy = 0.5 hy.

Writing ; =z + u(;) we obtain the conditions

Az = (azy), —dz=—vy, 2(0)=z(1)=0 (69)
0<a<a<e, 0<d<a),

for z, where y = Au — (L(k'q'f’u)x=; is the approximation error of the
scheme (68).

Let us assume that %, ¢, f € 1. 1) and therefore u(x) € C(3.1);
arguing by analogy with pt. 3 of § 1 and using the relations

Fw) = (ku')e+ O (BY), d=T7+0(), o¢=7+0 (@,

we find
P o= pe + P h~=auy — ku’, (70)
P =0 (h?) + 0 (%)) + O ().
It follows from the expansions
uy =u + %(hu — h)u" + 0 (h*) +Q (hdy),
a=k—+—%(h+1 —h) K + 0 (R?) + O(hil)
that
p=ng ot n=ghh (k) en = Skl (qu — e,
u* = 0 (%) + O (%), )
Thus formula (70) takes the form
Y= p. +¥ + Ny, (72)

where u*, n and y* are of second order with respect to |k J, = max ;.
0]
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The solution of problem (69) is given by the formula

z(2) = (G (z, §), Y (§))+ =zt v, z= (G¢ p'; + “7‘)+’ v = (Gv UES )
(73)

N-1 N—1
((.7/, o)t = D) §iBihisy, (¥, 2) = D) §ivik etc-),
=0

=0

where (i(x, §) is Green’s difference function, defined by the conditions
(aGx (z, §))x — & (2) G (x, §)=—8 (2, §) / hyy, G (0, §)=G (1, §)=0. (74)

The inequalities of Lemma 2 apply to (i(x, §). Therefore Lemma 3 is
applicable and so

1zl < My (Ju*f + [l (75)
Green’s second formula (26) gives
v (z) = (G (x, §), N (E))+ = (G‘g’g (z, &), m (E))+ + GE"I [E=xN““ ﬂ("é‘ =0~

I.et us insert here the expression for GE’E found from equation (T74):

z' ()
v(@)=— 10 (%86, (2,5) — 286(2,8), 1)) + Gyt fimey — 6 ke

If k(x) € C% 1) then |vle <S¢, (¢, is a constant which does not depend
on the net) and

vl < Mlnle (M =M, e, c). (76)

Let k(x) € Q%1 (0 < ¢ <a<c;") and § = &, + 6fi, be a point of
discontinuity of the function k(x). Then |axl <c4 for x # x, and

x 7 ;nﬂ' It is clear from the formula

'aE + 4 1
(—;Gg, n} == ’a—;(an-l—l — an) Gp (2, zn) + r (@nte — ny1) G (2, Zayd) +

n—1 N—1

2 —ax tG o (x, Z;) ht+1 -+ Z ax (51)6 (z, ;) ht+l
=0

t—-n+2

that the estimate (76) is valid. In this case ! =/ (c,, c;, Cyr €4)-

By the same token we prove Lemma 7.
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Lemma 7. 1f 0 < c1<§rz<<ci, 0<§¢i<§c2 and lax|<§c4 everywhere
apart from a finite number of points of the net (for any M), and y(x)
has the form (72), then the solution of problem (69) satisfies the rela-
tion

Izl < Mz (fp*l + 19" ) + Malnlo,

where M4 > 0 is a constant depending only on ¢, ¢, ¢, c,, Mz =
(c; + )/l

Theorem 4. If &, 7, f &€ ¢th.1) fo, 1] then any homogeneous differ-
ence scheme (68) has second order accuracy on an arbitrary sequence of
nets @y

17— u @ < M|k, (1)

where ; is a solution of problem (68), u(x) is a solution of the initial
problem (5) and Y > 0 is a constant which does not depend on the net. If
k, 7, f € 0L [p, 1] then

[ —u @ <M, (78)
where x = 1 for the whole family of schemes (68), k = 2 for scheme (61).

The relation (77) follows from Lemma 7 and the estimates for u*, n, y*.

When 7 = f = 0 we have instead of (T7) |§ — u (&)| << M |h[z. The esti-
mate (78) can be derived by using the analogue of Lemma 6.

Translated by R. Feinstein
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