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Introduction

Let us consider the equation of parabolic type

P
ou F: ou ou
ar=le=2Las,  La=g (k) zm)+ren @

a=1
z=(zy,... Zp). (1.B)

with several space variables x, ..., %, ..., %,. Let {x; = (i}hy, --eh
lohor oer B ), = x T ig =0, H1, 42, .0 j =0, 01, ...} bea
space-time dff%erence net with steps h, and 7, y/ = y(x;, t;) a net
function, A the difference approximation of the operator Ly (A, ~Ly)-
We know that for the numerical solution of equation (1.B) the natural

multidimensional schemes of the form

PRV s+ —o) (A, A=A, O0<s<i (2B

are not suitable: the explicit schemes (¢ = 0) are conditionally stable
only for sufficiently small values of the step + in time, and although
the implicit schemes (o >»0.5) are absolutely stable, they necessitate
the solution of a multidimensional system of algebraic equations which,
even for two space variables (p = 2), takes many operations. In this

connexion various *economical" schemes have been suggested in a number
of works (see [1]-[11], [20]). The multidimensional equation is solved
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Solution of a parabolic equation 895

by stages by introducing intermediate (fractional, see [8]) steps in
each of which there is no accurate approximation or even stability,
generally speaking, these only occurring on going from the whole step t;
to the step t.,,. In the fractional steps the diagrams used lead to one-
dimensional algebraic problems (in a spatial direction) for a three-point
difference equation, the solution of which can be found using the well-
known successive substitution formulae [12]. The simplest algorithm for
the solution of the heat conductivity equation with constant coefficients

P
du *u
'5? = Ex Lau, Lau = sz (3.B)

for the parallelepiped G = (0<C %, <, « =1, 2, ..., p) and with the
boundary condition of the first type ("'r = W) has been suggested by
N.N. Yanenko (see [4]). This algorithm, which the author calls the
splitting method, consists in approximating to the multidimensional
scheme (2.B) by the scheme

yJ'+‘1/P _ yH- (a—1) /p
T

= oAyt | (1 — o) Ayit e /p (x=1,...,p). (4.B)

It is clear that the values of yj+“/P are determined from one-dimensional
equations, to solve which it is sufficient to use the boundary conditions
for x, = 0 and x, = la

Despite the variety of algorithms and terminological differences in
all the works listed above (method of variable directions, splitting
method, fractional steps method, and so on) a study of the stability and
convergence of their methods reduces to the study of the stability,
approximation and convergence of a multidimensional scheme connecting
the values of y/ and yf+1 at integral steps and obtained after eliminat-
ing the values of yf+“/P («=1, 2, ..., p-1) at the intermediate
steps.

If we do this, for example, for (4.B) we obtain

P
Il (£ — orA) i = lPI (E+(1—0)wA) y (By=v). (5.B)

a=1 a==13

This scheme is equivalent with respect to its order of approximation
to the multidimensional scheme (2.B). In particular, for p = 2, o = 0.5
scheme (5.B) has the form

V_’ZHT_"SL’ = 0.5 (Ayi1 4 Ayi) — _Z_ A, (yitr — yi). (6.B)
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By the error of approximation of the scheme (4.B) we understand the
error of approximation of the multidimensional scheme (5.B).

It has been shown in [9] that the scheme (4.B) can be considered as
the result of factorising (splitting) equation (5.B), i.e. an approxi-
mate factorisation of equation (4.B). The difference scheme (5.B) has a
troublesome feature: the space operator has order 2p and is not defined,
in general, near the boundary of the given region. This leads to the
problem of boundary conditions even for the simplest rectangular region
(see [10] and [11)). It follows from our results, in particular, that
for the splitting scheme (4.B) this boundary condition problem is re-
moved, and that, when interpreted differently and with a corresponding
definition of the concept of approximation this scheme is applicable to
an arbitrary region and, when o = 1, converges uniformly at the rate
O(h?y + O(7).

We note also that the approximation requirement for the scheme (5.B)
leads to an overstatement of the smoothness requirements for the solu-
tion u = u(x, t) of the differential equation.

In this article we consider a local one-dimensional method for solv-
ing linear and quasilinear equations of parabolic type with any number
p of space variables, for an arbitrary region G. Let us give a brief de-
scription of the method using equation (1) as an example. In each layer

a1/t < lijap =t + wip  @=1,2...,7
the one-dimensional differential equation

1 du _

7 -a—t — L = 0. (7.B)
is solved. To do this we use the implicit homogeneous difference schemes
y5+a/p ___,y5+ (a—1) /p

T

My = — Ayitar =0, {8.B)

discussed in [13]-[18].

For the special case k, = 1, r, = 0 the scheme (8.B) is formally the
same as (4.B) for o = 1.

The difference scheme lly corresponding to equation (1) is the set
(of blocks) T = {ﬂa, «=1, ..., p} of p one-dimensional schemes My An
important characteristic of every scheme is its approximation error. In
this case the ordinary approximation error of scheme T, as we saw in the
example of scheme (4.B), is not rational. Each of the schemes has an
approximation error
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uitem __ i+ (a=1)/p

Yo = Aquitelr — , . ba=0(1),

where u is a solution of equation (1.B). The approximation error of the
scheme T = {ﬂa} is rationally defined as the sum

P
¥ = > . (9.B)
a=1
If Aa is a scheme of the second order of approximation, i.e. A_u -
_ 2 «
Lau = O(ha) then

Y4
¥ = O (h?) + O (1), where h? =% SR,

a==]

We shall show in § 2 that the order of accuracy of scheme 1l is the
same as that of its approximation Y. This definition of the difference
scheme Il is independent of the shape of the region G and the actual form
of the operator Aa.

At each moment of time tj+a/ the equation (8.B) connects the values
y1+°/P at the nodes of the net fying on a straight line parallel to the
axis 0x,. Therefore at each moment of time at each point of the net we
solve the one-dimensional heat conductivity equation for a segment with
ends belonging to the boundary of the region. It follows at once from
this that it is possible to use this method for an arbitrary region and
for parabolic equations of a general form. It should be noted that in
solving equation (8.B) along each direction x, at the moment t ... ,  we
use the values ulr = u only at the points of intersection with I, the
boundary of G, of straight lines parallel to I' and passing through the

nodes of the net, and not over the whole of T.

To find yf+“/P we can use the boundary data u(x, t) and the values of
the coefficients ka(x, 1), ro(x, 1) at any moment t& e (¢, tj+1] (for
example, t. = t;4, for all a). All the schemes obtained will have the
same order of accuracy. For definiteness we take boundary data for

' = . .
ty t1+u/p without loss of generality

In § 1 we formulate the local one-dimensional method a) for a linear
and b) for a quasilinear equation

P
¢ (z, 1) %‘= Lo+ f,

a=1

a) Lau=5% (ka(x,t) 5"}) + ralz, ) :7‘: f=7(z,t)—q(zt)u,
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b) L.u=a%<ka(x,t) :7“)+ra(x,t,u):7“, f=f(a,t,u)

for an arbitrary region G and for boundary conditions of the first kind.
We consider some family of homogeneous difference schemes (see [13]-
[18]). defined by a given class of pattern functionals with the help of
which the coefficients of the difference scheme are calculated. In point
6 we consider the third boundary problem for a parallelepiped.

In point 1 of § 2 we prove the uniform stability of the local one-
dimensional scheme with respect to the right-hand side, the boundary
and initial data. The main result is Theorem 2 concerning the uniform
convergence and accuracy of the method. It is shown that local one-
dimensional schemes give the same accuracy O(h%) + O(t) as multi-
dimensional implicit difference schemes [18].

We shall restrict ourselves here to the case of smooth coefficients.
It must be emphasised that the maximum order of the derivatives required
for the convergence of the method does not depend on the number of di-
mensions (see [11]). If the coefficients of the differential equation
are discontinuous, then the order of accuracy of the scheme is reduced,
by analogy with the one-dimensional case p = 1 (see (151, [17], [18])-

The results we obtain are applied to the case of arbitrary non-uniform
nets.

In § 3 we give computing formulae for p = 2, and also the schemes for
other equations (parabolic and hyperbolic).

1. The local one-dimensional method
of variable directions

In this section we consider a homogeneous local one-dimensional differ-
ence scheme for the solution of a linear parabolic equation with any
number of space variables. The reasoning is given for the first boundary
problem and for an arbitrary region. In point 5 we consider a scheme for
a quasilinear equation, and in point 6, the third boundary problem for
a parallelepiped.

1. The initial problem

Let us consider the p-dimensional linear eauation of parabolic type

¢(z,1) 5o =Lu+f, "

P

Lu = z {% (ka(x, t) g;) + ra(z,t) 5%}——q(x, Hu,

Q=1
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x
coordinates Xy Xgy weny Zgs wee, X) and c(x, t) = C(Xy, vy X, t),

k= kq(x, t), 9= qx, t), f= f(x, t) are given functions. Let G be
an arbitrary closed p-dimensional region with boundary T,

where x = (X, ..., Xy, .-, xp) is a point of p-dimensional space with

C=G+T, §G=GxD0KtT], QG=Gx0<tLT).
It is required to find, in the cylinder -@T' a solution of the first
boundary problem for equation (1):

¢ 2 —Lut+f i Q (1)
ulp =p(z,t) torzel, 0<t<T, (2)
u(z,0) = u,(2) for z €G, (3)

where u(x, t) and u,(x) are given functions. The coefficients kcx and ¢
are bounded below:

ke (z, )y > ¢, >0, c(z,t) > c; > 0in0Q;, (4)
where €y, C, are constants.

We shall assume everywhere that: 1) the problem (1)-(4) has a unique
solution u = u(x, t), continuous in the closed region OT; and 2) the
following conditions are satisfied:

Conditions A:

a) the functions

o*u 0%k or

X x

6::::8:!:3 ' dz,9z5 + Oz

where p <« for a<[—§-] and where P >a for a>[-§—‘] (@ p =1,

2, ..., p) and also the functions 0¢/0zg, 0f/0xa, *u/0xp0t, "c/0xg

satisfy the Lipschitz conditions in x, and QT;

b) the functions du/dz,, 8*ul/dx,®, 0ul/dt, c, q, f. re, ke, Oka/0z,

(x =1, ..., p) satisfy the Lipschitz conditions in t in the closed
region Q‘r'

These conditions are sufficient for the proof of the hasic theorem,
Theorem 2, concerning the accuracy of the difference schemes considered
below and in a number of cases they can be replaced by weaker require-
ments. The smoothness requirements laid down for the surface I are, as
we know, connected with the properties of the solution u = u(x, t) of
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the problen.

We make only one assumption: the intersection of the region G by any
straight line Za. drawn through a point x € G parallel to the coordi-
nate axis Oxa consists of a finite number of intervals (we do not ex-
clude the case when the intersection of this straight line with the
boundary I consists of whole segments, and not only of isolated points).
To simplify the printing we shall always discuss the case when the inter-
section of La and G consists of one interval, or, more exactly, when
the straight line %. intersects ' in two points. The general case is
considered in a similar way.

2. The difference nets

We place the origin O = (0, ..., 0) of a rectangular coordinate
system (x,, ..., xp) inside the region G and draw p families of hyper-
planes

i
20 = hpia,  fa=0,4L42,...,  a=12...,p

. . (ip) (ig) (i)
The points of intersection x, = (x; ~, ..., Xy *, ..., X P’ of these
hyperplanes are the nodes. Two nodes are usually said to be adjacent if
they are at a distance of hcx from one another in one of the directions
xy (@ =1, ..., p). The node x; € G is said to be an internal node if

all its p neighbouring nodes belong to G. A node is said to be a hound-

ary node if at least one of its neighbouring nodes does not belong to G.
The set of all internal nodes forms the internal net region wp, and the
set of boundary nodes, the boundary y of the net o,. It follows from the
definition that m 2o, ty C G. Through some point of the net o, let
us draw the straight line %, parallel to the coordinate axis Ox The
set of all nodes of the net mh lying on this straight line is called the
z,~chain and we denote it by I[,. The set of boundary nodes of all
chains IJ, in a given direction x, is denoted by y,. It is obvious that

Ya Svovp teee Yy C y. Suppose G = {°<"a <la, «=1, ..., p}is
a p-dimensional parallelepiped. Then all the chains IJ, for given «
have the same number of nodes, and their boundary points are on the
planes x, = 0, %, = la. In this case y, is the set of nodes lying on

the pl_angs 2,==0, 2, = lq, 0<ap<lp, 0B,

Let us now introduce a net with respect to time t, by dividing the
segment 0 <t <.T into K equal parts by points t; = jt. j =0, 1, ...,k
Each of the segments [tj, toy ] is divided into p (the number of
dimensions) equal parts by 1ntroduc1ng the intermediate (fractional)
moments of time t}+u/p t. + Ta/p = (j t o/p)T, where « =1, ..., D
j=0,1, ..., K- 1. We call the point (x,, tito/p) where x; € G, a



Solution of a parabolic equation 901

node of the space-time net. The set of all nodes (0 tiyg/p)e where
X, E@p j=0 1, ..., K -1, « =1, 2, ..., pis denoted by Q.

1

Let us now denote by S the set of points (x., t.- ), where
ve () S RN IR B 7)

x, - Yo tj'+a p =@ tapT, j7=0,1, ..., K-1and « fs fixed

A <a<<p), S(o)vis the set of points (z,, 0), where x, € y,

S = S(o) + S(l) + ...+ S(p - The set of nodes S CC O is the boundary

of the net region Q. We sh 1 henceforth consider the net functions de-

fined on the space-time net Q = Q + S. Depending on the circumstances

we shall use one of the notations:

Yy =y (&, =y (% tiap) = Y7,
We shall also write

] + . " .
x(ima) — xg me) (zl(lmv e zig.;].) , xga) + mhm x::;l’, . ,xgp)), m>0,

y(:tma) =y (x(:tma) , t), ya_c,, = (y —_ y(-la)) /ha,
yxa=(y‘““’—— y)/ ha, y:?a = 0.5 (y;a 4 ?/xu), yTa — (y’*“/p _ yJ+(a—1)/P)/ T

3. Local one-dimensional homogeneous difference schemes

Let us now formulate the difference algorithm for the solution of the
problem (1)-(4) for an arbitrary region G.

Instead of writing down a multidimensional difference scheme which
enables us to find the numerical solution of equation (1) for t = tj+1
(at whole steps) we shall solve at each of the moments tj+u/p the para-
bolic one-dimensional differential equation

—%C(Zb, t)%=Lau + fa (:IJ, t)! (5)

where

Lt = g (ka (2, 0) g ) + ra (@ 0 5 — e (5, D) . (6)

Here Gy fa are arbitrary functions satisfying the same smoothness con-
ditions as 4, f and connected with 4, f only by the conditions

P P
D qa(z, t) = q (2, 0), zfuan=fmn. )

For example, q, = 9/p, fq = f/por 9, =0, fy=0fora=1, 2, ...,
p-1 B =7 fp = f. For each a we look for a solution of equation (5)
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at the moment of time tj /p* In order to find the solution of equation
(5) inside G in the time interval tiranysp <t <§tj+a/p it is suffi-
cient to use the initial data for t = tit(a_1),sp 2nd the boundary con-
ditions (2) at only those points where %he boundary I intersects the
straight lines parallel to the coordinate Ox . Let us illustrate this
point. Let G = {0~<§xot Sl a=1, 2, p= 2? be a rectangle in the
plane (%), %y). Then to solve equation (5), for « = 1 say, it is suffi#
cient to know the boundary conditions on the sides x, = 0 and x, = l1
only of this rectangle. The boundary conditions on the other part of the
boundary, i.e. on the sides x, =0 and x, = 12 are used for a = 2, i.e.
to solve equation (5) in the direction Oxz.

Thus at each moment tj+a/ we must solve the first boundary problem
for the one-dimensional equagion (5). To solve it numerically we use the
homogeneous difference schemes given in [13]-[18]. we approximate to the
differential operator L. u + f, by a three-point conservative difference
scheme of the second order of approximation:

Aay + @a (x’ Z)NhGreAa?f = (aa (x, t) y‘;a)x“ + b, (Z, t) y‘;;a-' d, (x’ t) Y, (8)

in which the coefficients a,, b,, d,, @, are functional of the corre-

sponding coefficients ka' Tor o fa' We shall not describe in detail

the properties of the pattern functionals which we use to express the
coefficients of the scheme Aa in terms of the coefficients of the differ-
ential operator La, but refer the reader to the articles [13] and [18].
We merely note that in the case of smooth coefficients we can use the
simpler expressions

ba (.’E, t) = Tq (x’ t)’ dﬂ = qa (IL', t)’ (PG = fﬂ (1‘, t):
q (2, 8) = ko (7%, 1) or a.(z,t) = 0.5 k™ + k),
where

—m, i (g—q) ..Ca) (iga1! (i)
g™ = (@, .., 2l 2l — mha, 22, L 2P,

m is any positive number (in the given case m = 0.5 and m = 1).

If conditions A are satisfied, then at any internal point of the net
A — Lou = O (h3). 9)

We put the differential equation (5) in correspondence with the four-
point implicit homogeneous difference scheme (leading scheme or majorant
scheme):

Py, =AMy + 9« @=12..,p), (10)
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where
yr = —y) /v, y=ytr  g=yites
Aay = (aa (z' t.) ysc'a)"a + ba (xr t.) y£a — dg (x’ t‘) Y, (11}
= Qa (2, 1), p=p(z,87) (<Ol < <Y,).

The coefficient p is, like by, d,, and ¢, a linear functional of the co-
efficient c(x, t), so that

p(z,8) —c(z,t) =0, &= Lpz K2 (12)
a=]
(in the simplest case p(x, t) = c(x, t)). We note that p does not depend
on the suffix «, i.e. the same value of p is taken at some time

te* & [t;, t;,,] for all directions x,.

All the coefficients are taken at some arbitrary moments t*; t. <
t* <;tj+l (for example, t* = t. t* = t.y,, t* =t 4, etc.).* We can
allow the choice of t* to be arbitrary since, as we shall show below,
all the schemes obtained for different values of t* are equivalent with
respect to the order of approximation (with an accuracy to O(T)) and,
from Theorem 1, have the same order of accuracy. In every actual case t*
must be selected from considerations of economy and convenience of calcu-
lation. There is also arbitrariness in the choice of ¢, and d, since we
require only that the conditions

S @@, £) = 1 (&, £) + 0 () + 0 (1),
“:1 (13)
S do (2, ¢) = ¢ (2, )+ O () + 0 (V.

a==]1

shall be satisfied. In particular, we can put

P = 0 for a=1,2,.,p—1, Pp = q)(x, t)v P =f+ O(hﬂ),
de =0 for a=1,2,0..,p—1, dp=d(x,1), d=q+ 0O(h?.

We shall be concerned henceforth with the whole class of difference
schemes described above.

s Generally speaking, the values of t* are different for the different
coefficients (ags bq, da' Py -
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By the difference scheme I = {na. a=1, 2, ..., p} corresponding to
equation (1) we mean the set (block) of homogeneous schemes ﬂuy = Py

Aay - Pge
The difference scheme 1 = {Ha} is homogeneous not only with respect

to space, but also with respect to time since the computational procedure
is repeated on going from j to j + 1.

x

In order to define the difference problem which corresponds to the
problem (1)-(4) we must formulate the boundary conditions.

4. Statement of the boundary problem

Let us consider some chain I[.. The difference equation (10) contains

(~1) (t1,)
the values of y at the points x <&, x, x &* of this chain at time
t tj+a/p and the value of y at the point x in the previous step
t = tiy a1 /pr In Order to define y/*/P at the nodes of I, it is

sufficient to give the values of y at the ends of this chain only. It
follows that at all points of the net o, the function y1+“/P is deter-
mined merely by the boundary conditions on y,, since each internal node
of w, belongs to some chain of the given direction 0x,. The boundary
problem will be stated if we formulate the boundary conditions for the
separate chain If,.

Let us draw a straight line L. parallel to the axis 0x, and passing
through some node of the net. It will intersect the boundary I in the
points xl' and Xpe.

To simplify the argument we shall assume that straight lines parallel
to the coordinate axes intersect the boundary I' in two points only. If
the intersection of &, and G consists of a finite number m > 1 of inter-
vals, then K, consists of m parts ln:) (k =1, 2, ..., m) for each of
which a boundary problem has to be solved.

Let us assume that the coordinate x, increases from the point x? to
the point %z . We consider the node x which is nearest the point x; and

the node x{+1“) which is adjacent to the node x, on the chain .. The
node %, is clearly a boundary node of the net w,(x, & y,). We can find
the value of y at the boundary node x, Ry using linear interpolation on
(*1,)
the values of y at the points x} and x, " putting y = u at the point
x3 :
y =By + (1 —B)p(zl, 1) for z==ETa 1=t 4, (14)

where B, = x,/(1 + x,), x h, is the distance of the node x, from x} and
u(x, t) is the function given in (3). Similarly we can write down the



Solution of a parabolic equation 905

condition on the right-hand end x = x_ of the chain La:

y=B8y + 1 —B) p(a1, t) tor s=2, €1,y t=t;,,,

where B, =« /(1 + ), x h, is the distance of the node x_ from x7. It
is clear from this that, for a uniform chain IJ,, we obtain boundary con-
ditions of the third type, with

0B <t, 0B <t (>0, x%.>0).

The value B, = 0 (3, = 0) corresponds to the case when the node
x, (x.) belongs to the boundary " of the region G.

We know that this method of setting boundary conditions "with carry,
using linear interpolation", has second order approximation. We shall not
discuss here the simplest condition for first order approximation when
the value of y at the point x, is taken to be equal to the value of the
function u = u at the point x§: y = u(xf, t) for x = x; and, similarly,

y S ux}, t) for x = x_.

Let us pass now to the statement of the difference problem correspond-

ing to the problem (1)-(4):

it is required to find a function y defined on Q satisfying, inside Q,
the difference equations
pYr, = Ay 4+ Qo for TE Wy, ,t = tjpap for a=1,2,..,p,
i=01,.,K—1 (15)
the boundary conditions at time t = tj+a/p for x € Yo

y= Bly(ﬂa) + (1 - Bl)l" (I;v t)v =12 € Yay t= ljsamp (16)
y= Bry(‘la) + (1 - Br)“' (x;, t)v T=2: EVay L= tita/ps

and the initial condition
y(,00=1u(z), 2z€on (17

It is clear from this that for fixed « we solve, for each chain U,
the one-dimensional equation (15) with the boundary conditions of the
third kind by using as initial data the values of y(x, tj+(a-1)/ ) at
internal nodes, these values being found by solving the same proﬁlem at
time ¢4 o )/, fOr the chains L,—; in the direction Ox, ,. Thus, in
order to find the value of y over the whole step t.,, from the data in
step t., it is necessary stage by stage to solve p one-dimensional prob-
lems in all the coordinate directions.
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We could call this method the fractional step method, or the variable
direction method. However, we consider that the name "local one-
dimensional method" is a better reflection of the essential points: at

any point of the net at any moment of time a one-dimensional equation is

AN A NS TCygucs v AL

solved. Besides, the term "variable directions method* is used, for ex-
ample, for the multidimensional scheme of [1] and the term "fractional
step method" is used in [11) to characterise schemes which are one-
dimensional for a« > 1 only and are multidimensional for « = 1, and so on.

The local one-dimensional homogeneous difference scheme (15)-(17) is
the most economical of the schemes suggested n1[1]-[3]. (5], [el, [11].
We note that for the special case of an equation with constant coeffi-
cients (k, = 1) and ry, = ¢ = f = 0 a similar scheme is considered in l4].
However, the method there is based on eliminating y’+“/P for a = 1, 2,

.+, p - 1 and studying the resulting equation which connects the values
of y at whole steps (yJ and yJ l) Since this equation contains a space
operator of order 2p, the transition to the case of an arbitrary region
has no obvious solution, and the problem of boundary conditions arises
even for the simplest region, a parallelepiped. In [4] the method was
called a splitting method, the name originating, it follows from [10],
in the splitting or (rough) factorisation of the multidimensional differ-
ence operator into one-dimensional operators.

5. The approximation error
Let u = u(x, t) be the solution of problem (1)-(4), and y = y(x, t)
the solution of the difference problem (15)-(17). The difference
z =¥y — U
is a characteristic of the accuracy of the local one-dimensional method.

Writing y = z + u in (15)-(17)_we obtain the following conditions for
the net function z defined on Q:

pz, = Aaz + %o 00 €, (18)
Z = Bl;z(ﬂa) G+ vy forz=z,E7, =ty (19)
2 =Bz fv, forz=gz, €1, t=tiqp,
z(z,0) =0, (20)
where
Yo = Au + Po — 9ut—u (21)

denotes the approximation error of the one-dimensional scheme Ha and v,
and v _ are the approximation errors of the boundary conditions.
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The approximation error of the local one-dimensional scheme Il = {ﬂa,
a=1 2 «.., p} is naturally defined as the sum of the errors

W=é%- (22)

In fact, using the one-dimensional schemes (15) an approximation to
the multidimensional equation (1) can be found on the whole step

(tj, tjﬂ) only.

Lemma 1. If the conditions A are satisfied, then
¥ =0+ 0(7) for a1l Q. (23)

Let us consider first the local error y, and put it in the form

q’a = w‘(z) + "«p;a where llﬁg =(Lau + fa - 'ip‘ c a—;ft‘):H-B ] (24)
v = A — (L)) + Pa— fi+ — [Put’a _ % (c _gTu')ma] . (25)

where 0 & [0, 1] is an arbitrary pumber.

Summing the yJ over all « =1, 2, ..., p and taking equation (1) into
account for the function u, we obtain (for fixed j)

=0 (26)
Let us now show that for any ¢" & [¢;, tj,], " € [¢tj, tj]

Vo = 0 (K°) + O (v). (27)

In fact, if conditions A are satisfied, then

(Lau _17 ¢ %)HB — L;uimlp___%c. ( )J+G/P+ 0(1.') (28)

where
. /] + Ju * Ou . .
Lau=6_x‘(aax)+ aa ka=ku(xrt)a
a
Fo= Tq (z,t ), ¢ =c (z, t").
Since the scheme Aau has second order approximation, and

. 1 du \ita/p
p—c" =0, pup—— (a,) =
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(au )J‘+a/p

= ’:,‘ (p—c") ) +r (u?a _% (%_:)Ha/p) =0(#)+0(,

(27) follows from (28) and (25) and the estimate (23) follows from (26)
and (27).

Thus the local one-dimensional scheme (15) has first order approxima-
tion in time and second order in space. In § 2 we shall show that the
order of accuracy of this scheme is the same as the order of approxima-
tion.

6. Muasilinear equations

The local one-dimensional method is also applicable to the solution
of the quasilinear equations

P
c(a:,t)—gt'—‘=2Lau+f(x,t,u), 1

a=]

(29)

d 9 4
Lau = 5;; (ka (xr L, u) 55:) +ra (.’l?, t, u) ‘% ]

In this article we shall consider the case where the "heat conductivity
coefficient" kcx does not depend on u:

ka = ka (x, t),

since the basis of our method for such an equation can be laid down in
the same way as for the linear equation (1). The proof of the con-

vergence of our method for equation (29) requires a fairly cumbersome
system of integral (energy) inequalities and will be given separately.

Thus, let us consider the following problem in the cylinder @T =G X
lo <t KT
14
c@t) B =NLa+f(x,t,u) (ka=ke (2 0, (=0€ Qr, (30)
a=]
ulp = p (2, 8), (31)
u (z,0) = 1, (2). (32)

The coefficients of the equation satisfy the conditions

) ko (2, 0) >¢, >0, (1) >c, >0y, (33)

Or
2) — 9 gre continuous functions of the argument u. (34)
ou ’ du
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We shall also assume that the solution u = u(x, t) of the problem
(30)-(34) and the coefficients k (x, t), c(x, t), ro(% t, W), f(x t,u)
as functions of (x, t), satisfy the conditions A formulated in point 1.

We write the homogeneous local one-dimensional scheme in this case
by analogy with (15):

It is required to find a net function y, defined on Q, and satisfv-
ing on Q the difference equations

Wi, = Aa¥ + @as
» . v v (35)
Ay = (02 (2, ) Yz )y +0a (2, 59) Y2 0 0= 0a (7, 1, y),
and the boundary conditions on S:
y=By" + (U —B)p (L)), T=nET, =ty (36)

y= Bry(-lc) + {1 — Bou (x:v t), 2=2%,CETqr t=1lyqyp,
y (2, 0) = u, () (37)

(see point 4, and compare (16) and (36)).

We recall that yr = (y —_— 3"/) / T,y = y5+¢/p 3; — yi+(¢—1)/1l The

difference equation (35) is linear with respect to the values of

y = y1+“/P at each step. Therefore, to determine y/ ta/P we can use the
known formulae for the one-dimensional chain IJ, with boundary condi-
tions of the third kind (36) at its ends.

This algorithm is convenient in that when finding the solution in the
(j+a/p)~-th row it is necessary to remember only the values of the re-
quired function from the previous row.

The coefficients of the scheme are calculated according to the same
formulae as the coefficients of scheme (15) for the linear equation (1).

Together with (35), we can consider a scheme with coefficients which
depend on the values of the required function in the new row, so that

Aay = (au (Z, t. ) y;:a)xa + ba (27, t.I y) yx;' (Pa = (Pa (x' t.' y) (35’)

In this case we need iterations to solve the resulting non-linear
equations for y, and the computation must be done using the formulae.
For certain problems the non-linear scheme (35’) is to be preferred,
since in this case the step can be increased with respect to time v
(with a given accuracy).
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In order to find an expression for the approximation error of the
scheme, we write the solution of the problem (35)-(37) in the form of a
sum y = z + u where u is the solution of the problem (30)-(34). Writing
y =z + uin (35) we obtain

pzi; = Kaz + \pal (38)
Aqz = (aq (2, t%) z;a)xa + by (2, 1, y§ ze + d,z, (39)

Yo = (02 (2, 1) ug )= + ba (2, 17, 8) U2, + @a (2, &, B) — p (2, ) ui,, (40)

99, ob, .,
dy, = 737(”" tiu)+ W(z, ', u)

The bar means that the derivatives are taken at mean (between 5" and )
values of the argument u.

In § 2 when we discuss the convergence of the solution of problem
(35)-(37) to a fixed (unique) solution u = u(x, t) (|ul <Mo) of problem
(30)-(34) we shall assume that d, and b, (x, t, y) are bounded, since
the functions r_ and f can be continued in the region lul > Ho and there-
fore in this region r,, dr,/0du, 8f/u are bounded.

For the non-linear scheme (35°) we obtain the equation (38) where
Koz = (aq (z, 1) 2z )e, T ba (2, £, ) 22 + daz. (41)
Let us now formulate the conditions for the error z = y - u
prp =Aaz + Va5 DER (42)

g= B.lz(+lu)+ Via for =2 Ev,, t=t; 4 @3)
2=B 27 fvp . fOr T=2,ET, =ty

z (z,0) =0, (44)
where Vi,a Vi, BT€ the approximation errors of the boundary conditions.

The approximation error Y of the homogeneous local one-dimensional
scheme (35) is found as the sum of the local errors

¥ = 3 b (45)

By analogy with point 4, we can establish the truth of Lemma 1:

Y=0Fr)+0(), (zneQ (46)
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where

P
Ya=P2 4+, Ya=O0(H)+0(v), X $2=0. (47)
a=1

We recall that

Vie =0 (h3), via =0 (k). (48)

To estimate the accuracy of (15)-(17) and (30)-(34) it is necessary to
prove the stability of the solution of problems (18)-(20) and (42)-(44)
with respect to the right-hand sides g, and v, ., v_ .. using (47).

We shall prove the corresponding stability theorem in § 2.

7. The third boundary problem for a parallelepiped

Let G = {o<x, <1, «a=1, 2, ..., p} be a p-dimensional parallele-
piped on the boundary of which the boundary conditions of the third kind
apply:

2
ke g7 = 0¥ + e (2, 0) for 2, =0, a=1,2,..,p,

'—kag':— = Ogalt + Max (T, 1) for 2, =1, (49)

The coefficients O1a{% 1)) Opu(x, 1) satisfy the conditions

O1a (2, 8) > ¢4 >0, Oaa (T, ) > ¢4 >0, (50)
where P is some constant.

The simplest difference analogue of these conditions are the boundary

conditions
ac(:la)yx, = Oy + Paa (2, 8) for 2, =0, t=t;,,,

(51)
— aay;a= OaqY +P'2a(x, t) for z, =1, t=1t;omp-
These boundary conditions have first order approximation. Let u=u(x,t)
be the solution of equation (1) (or (29)) with boundary conditions (49)
and the initial condition

u (z, 0) = u, (2), )

and let y = y(%, t) ((x, t) € Q) be the solution of (15) (or (35)) with
boundary conditions (51) and initial condition

y (z, 0) = u, (2), rEwy,. (52)
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Then we obtain equation (18) for the difference z = y — u with the bound-
ary conditions

(+14) .
Qg “%;, = G102 — Vi for z, =0,

t= ‘i+¢/p' (53)
— GaZz, = Ol + Via  for s =1, t= tisa/py
where
= (o, b 82)_, =0 0

. ou
— u- k ]
Voa (aa « 3z )xa=’a 0 (ha)'
Let us rewrite conditions (53) in the form

zZ = Bl.z('ﬂa) + Via for z, =0, 0<zﬂ< lﬁ' Bska,t =t a/my (53,)
% = Brz('la) + Voa for Zy = lay 0< zﬁ< 13’ B#‘-‘a' t= lf-ﬂz/?o

where
B a(+la.) B a“. Ng hav].,a hav;a
l——"‘—_y r= -3 Via= —— Vaq =—
la Aza ! A1¢ ! Au !
aa.o = Qq ,xa=0’ aa-Na. =Qa I za=Nah“=l¢, A1¢ = a(""ld) + Ulakai

Aza = Qq,N, + azaha

Thus the error of the solution of the difference boundary problem (15),
(51), (52) also satisfies equation (18), the zero initial condition
z(x, 0) = 0 and the boundary conditions (53) analogous in form to the
conditions (19). We can therefore examine at the same time the con-
vergence of our difference method for the first houndary condition in
the case of an arbitrary region and for the third boundary problem for
a parallelepiped.

2. On the uniform convergence and accuracy of
the local one-dimensional scheme

In this section we shall prove the uniform convergence of the local
one-dimensional method for the linear equation (1) and the quasilinear
equation (29) for an arbitrary region, and we shall give a uniform esti-
mate for the order of accuracy.

1. Uniform stability

Let us show that the difference problem (15)-(18) has been correctly
described, i.e. its solution depends continuously on the right-hand side
of (15), the initial and the boundary values. Let us consider the follow-
ing problem: to find a function z, defined on the net Q and satisfying
Q the equations
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pzr = A,z + ¥ (2, 2) forzc o, t=t

[ i+a/p? _
. (5%)
Aoz = (aq (2, 1) z;a)xa + blazxa 4 bzazga — dyaz — dyz,
the boundary conditions on the boundary S of the net region
z = Blz‘““) + v forz=2xE€71,, t= tj+a/pr ‘ (55)
z = Brz(_la) 4 vy fOor 2=z €7, =ty ‘
and the initial condition
z (z, 0) = z, (). (56)
The coefficients ay, b, by diov dyq Py, D, satisfy the condi-
tions
a, > ¢, >0, p>ca>0, |d,a|<c,. lbna|<ch s=1,2, (57)
O <Y, o< <Y, (58)

where ¢, ¢,, ¢;, ¢, [* are positive constants which do not depend on
the steps hcx (=1, 2, ..., p) and T of the difference net. Two cases
arise:

1) a boundary problem of the first kind for an arbitrary region:
B =x/(1 +x) (we omit the suffixes I, r, « for the time being) where
0<§u<$;c5, ¢y > 0 is a constant which does not depend on the net; then

1—B=1/(1+%x)>1/(1+¢)=8,>0,
t—B >, 1—B>8;

2) a boundary problem of the third kind for a parallelepiped:

(59)

a
B= s
(omitting all suffixes).

For a parallelepiped in the first boundary problem (z = v, z =v))
B =0, B, =0, B, =1.

All the schemes A,z considered in § 1 are special cases of tlie scheme
(54). Therefore the results obtained below will be valid for the problems
(18)-(20), (38)-(40) and (38), (53), (40).

Theorem 1. Let z = z(x, t) he the solution of the problem (54)-(58).
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Then for sufficiently small + < T, and any ha

t i
'

2(2 Ol <My (2, Ol + v (2, ) + Mo (3} (= ) ),  (60)
t'=1t/p
where
lz(z, ) = max |z (z, )}, |V (2, O)fo,s = max |v (z, 2)],
XS0y (ER) =]
V(Z,8) =Vja T=23 €TV V= Vea F=FET t=lj,

Ml., Mz are positive constants which depend only on ¢,, ¢,, ¢,, Cyr B T.
*

The theorem is proved by the method described in § 1 of [18], based
on the use of the principle of the maximum for the parabolic difference
equations. We introduce a new function v by writing

Zitalp = (1 4 Mr)pitayia/p, (61)

where M is an arbitrary positive constant which we select later. For the
net function v we obtain the equation

F_;vt-‘z = A;v — dav +\F’ A;v = (ax”;a)xa + blavx¢ + bza”;“ — Eza;;s (62)
the boundary conditions

v = Bt + v, for z=2, €% ="lisap, (63)
v = Brv(—la) + ;r for r=2z, €7, = ti+¢/m

and the initial condition
v(z, 0) = z(z,0). (64)

where we have used the notation

= pg&, Zza = Ggq8, dy = dla +M B’ €= (1 + Mt)-l’

= e =yt = p (b, V= Ve

(65)

€| oI

Multiplying (62) and (63) by 2v and using the same arguments as in
[18) we obtain the first rank equation

5(”’)‘—1 —(@a (%) )=, + Ra (2) + 2d20® = 20 (bravn, + baa¥;) —

-— (222.,2;1) + 27/'1_')',
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2 (1 — 8)) v® + Bikati, = By (¥)x, + 20V,

. _ (66)
2 (1 — Bo) ¥* + Brhat = B: (v’);a + 2vv,,
R. (v) = o0 + agt +af™@f (F —(op Vol =(0,)" ete).
By analogy with {18} we arrive at the inequality
p (), — (@ (¥%)z),, + 2d »* <1:o— ywhere d >0, (67)
or
pv? — T (@ (W1)3, ), + 2d,702 < po? + iﬁ% T, (68)

which is satisfied for sufficiently small values of Tt and sufficiently
large M-

(cs+¢)e, +0.5¢;

14
czc .

o M —
T<1"01 TO<T(1'—'M.)| j”>M.=

%
c, = '; + ¢35 + 0.500.

Here <o is an arbitrary positive constant which is selected to make the
constant ""2 in (60) a minimum.

Using the fact that 2| wi<< B + ;Z/B., we obtain from (14)
o* — BB (V)x, < VIS,
2 + BB (7);, SVI/BL

where § =1 - p* > 0.

(69)

We put v in the form of the sum v = v‘1) + v?), where »(!) is the
solution of the problem (62)-(64) for y = 0 and v{?) is the solution of
the same problem with homogeneous boundary and initial conditions
(v, =0, v, =0, v*¥ (x, 0) =0). Te function v = (v''))? takes its
maximum value on the boundary of the region Q. Thus, suppose w has a
maximum at some point P inside Q. Then at this point wr, >0,

(@aws )z, < 0, which contradicts the inequality Bwt—a —~ (aawg )s +
2w V. If P =Dz, 0) then |wiy <[z (2, O)F. If /= DP(xp, tgg )
then at this point w, <O and the first of the inequalities (69) gives
- o [e 4
w < [viff /@ Writing then P = P(x_, t;,. ) and using the fact that
w: > 0, we obtain from the second inequality of (69) w||vele/ BT -
X
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It follows that the inequality

199 (z, 9 <[7 (@, Qo+ 5 (5, D, (70)
is always satisfied.

We have inequality (68) for the function w = (v{2))2. Due to the
homogeneity of the boundary conditions the function » must take its
maximum value at some internal point of the region @y,. Since at this
point (2 w- ) <0, it must follow from inequality (68) that

[o I * ¢
[wh <lwh+ct|$f, ¢ =(cca) (1 + M),

where

J=0,1,...,

w=w (x; tj+a[p)r w=w (3, tj+(a-—1)/p)! a=1,2,...,p.

Sumning these inequalities for all values of t’ S tjpgp = ¢t and
using the initial condition w(x, 0) = 0 we find

! _ Y
R I

t'=xt/p

jo (2, t)ﬂo<Vc7[ ()

It follows from (18) and (20) that

R )

t=z/p

Io 2, ) b1 O+ H17 (@, 0, + V7|

Returning to the function z(x, t), in accordance with (61) and (65)
we obtain, from (72), the estimate (60).

This proves the theorem.

Notes. 1. Theorem 1 is true for the first boundary problem (z =v,,
z =v,). In this case

B]=Br=or Be=1.

2. Theorem 1 is true for the third boundary problem in the parallele-
pired GO <%, K lp « =1, 2, ..., P):
(+1q) ,
g g, =Gt~ Vie for 2, =0, I=t;1,,, (73)

_.aaz;1=czaz+v2a for z, =1,, t=1t; ,p,

if 0,4 Eack >0, 0y 2>c6 > 0. In this case we must formally put
P, = cghg in (10, replacing Vv by vh,. Therefore, those v which enter in
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conditions (73) will figure in (60).

8. If by = by = dy =0, d,, & c, > 0 where c, is some positive
constant which does not depend on h, and 7, then the inequality (60) of
Theorem 1 is valid for any T and hy (x =1, 2, ..., p). In this case
there is no need to pass to the function v using (61), and we can, for
example, put ¢y equal to 0.5 Cqe

2. The accuracy of the local one-dimensional scheme

Let us turn now to the problem (18)-(20) for the error z =y - u,
where u is the solution of the initial problem (1)-(4) and y the solu-
tion of the difference problem (15)-(18). In order to estimate the func-
tion z, write

z=1v+4n9,

where 1 is a net function defined by the conditions

e inside Q,
Pﬂga ‘Pﬂ } (74)
M(z, 0)=0, zEa,
The function n is introduced so that the property
4
2 ¥ =0. (75)
a=1

can be used. Equation (74) enables us to find =_nj+“/P only inside the
region Q. We find n on the boundary S of the net Q by writing

(Balz, Jeg =0 (76)
+1

( ) (=1,)
at the nodes x, «, x, " of the chain I[,, these being adjacent to the
boundary nodes x, and x . Using (76) we can find n at the boundary nodes
X, and x

1, +2 ) +1q) +Hg)
+H1a) _.ai o) (.n(‘l"q, _n( x )/ai «

n=1n for =z, E17,, (77)
M= .q(—la) + a(a—lg) (n(_lg) . n(—-l,,) )/aa for z=z,E1%,.

Lemma 2. If condition (75) is satisfied, then the function n defined
on Q by conditions (74) and (76) has the form

/s

=

N(Z, tiyasp) = %

e

[

Ve (78)

n(z, tj) =0

at:
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for any j, i.e. n = 0 on whole steps and n = O(t) on fractional steps.

We note first of all that for fixed j the coefficient p does not
change when « changes, i.e. on all the steps j +a/p, a =1, 2, ..., P
(J fixed) p has the same value. It follows from equation (74) that

nHe/p = pite-n/p L Yo/p.

Writing j = 0, summing with respect to « and using conditions (75) and
n(x, 0) =0, we find nl = 0. Continuing the argument we arrive at (78).

Let us formulate now the conditions for the function v = z - n. To
do this we write z = v + n in (18) and (19) and use conditions (74).
Then we have

Po; = Aav + Ve on Q, (79)

v = B¢t L 3 for =2, €%, =t m ] (80)
D= B,v(—l“) + ;; for z= z. (= Yas t= tj+¢!p’

v(z,0) =0, (81)

where

%u = tp; + éa-q)
w=vi+ @G —n),  vo=v + @17 —n).

The values gf n for x = x, and x = x_ are found from formulae (77). At

(+1 )
the node x, %" adjacent to x, on the chain I. we have

N a(+1"’
n; = (e — n)m =5 (1 + = ) Nz,

¢y

and hence

1 / a(+1a)
A =~ b, (1 4 % ) Ny — dal. (82)

Cy

(-1g)
We obtain a similar expression for A n at the node x_ ®°, It follows
from this and from (78) that An = O(7) if conditions A are satisfied.

From Lemmas 1 and 2 we have
P=0()+0(), V1=0@E)+0(x), ¥.=O0h)+0(7). (83)

To estimate the function v we use Theorem 1, taking into account the
fact that it follows from conditions A and the properties of the pattern
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functionals of the scheme® that the coefficients

ae 26, >0, p=>c >0, |da|<ca, [a | <eas
0B SA <L, OCR B <!

are bounded and so Theorem i is applicable. Using estimates (60), (83)
and Lemma 2, we conclude that the following theorem is true.

Theorem 2. The local one-dimensional difference scheme (15)-(17) con-
verges uniformly in Q at a rate O(h?y + O(1) as h and T tend independ-
ently to zero; more exactly, if conditions A (point 1, § 1) are satisfied,

then for sufficiently small T < T,

P
1y (2, ) — u (z, Yl <M (B* + 7), h'=—:,-2hﬁ (84)
a=s]

for all t = =0, 1, «oe, R =1, a=1, 2, ..., p where u is
the solution of éﬁe problem (1)-(4), y the solution of the difference
problem (15)-(18), and M is a positive constant which does not depend
on the choice of the difference net.

Thus from Lemma 2

n=0(1) or [qf<Mr.

It follows from Theorem 1 and (83) that

o (z, O <M (B2 + T

We conclude that

12 (2, O =]y (z,8) —u(z, e <[n(z, o+ |[v(z, Do <M (R + 7).
The next theorem can be proved similarly.

Theorem 3. 1f conditions A are satisfied, then the local one-dimen-
sional difference scheme (35)-(37) uniformly converges at the rate
0O(h*y + O(7) so that for sufficiently small 7 < T, estimate (84) holds,
where u is the solution of the problem (30)-(34) and y the solution of
the corresponding problem (35)-(37).

Notes. 1. The solution of the difference boundary problem for a
parallelepiped with boundary conditions of the third kind (51) converges
uniformly at the rate O(h) + O(t) both in the case of equation (1) and
in the case of equation (29).
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The order of accuracy with respect to h can in this case be increased
by selecting a finer net near the boundary. If, for example, the first
step near the boundary is of order O(h?), then the magnitude of the
error arising from the approximation to the boundary conditions will be
O(hz). As a result, we obtain a non-uniform net on which the order of
approximation for the scheme is, generally speaking, lowered. In this
connexion a new examination of the ‘integral order ot accuracy of the
difference scheme is called for. To do this special a priori estimates
are needed, and these will be obtained in the second part of this article.
The question of the converzence of homogeneous difference schemes for
arbitrary non-uniform nets will be considered separately.

2. If p = 2, the conditions A can he relaxed. In this case we do not
make use of the existence of the mixed derivatives of the functions
u, k

r "o

3. Appendix

1. To illustrate the use of the local one-dimensional method, let us
write out the computing formulae for the two-dimensional heat conduct-
ivity equation and for a rectangle (0 < x, < lp a=1, 2, p=2):

u _ 0 (k, (21, %2, 1) __) + o (k (%1, 23, 1) ——) + 1 (21, 7, 1),

at dx;
u (0, 7y, §) = pn (22, 1), u (11. %3, 1) = Pae (%2, £), (85)
u (zlr 01 t) = pa1 (xlt t)v u (21, 125 t) = iz (1-'1, t)r
% (21, 22, 0)= Uo (21, %) )
{iy) .
Consider the net x, & = ‘aha =1, . = jT where iy = 0, 1,
cor Ny by = l /hu, j = 1, ... K, 7 77] In this case one
fractional step t;,, = t; + 0.5 7 is introduced. Let ylta/2 = yita/2 =
12

y(ilhl, izhz' (j + 0,5 @71), « =1, 2 denote the net function.

We write the local one-dimensional scheme

i+,

- A:yj +'/’1+ o1,

(86)
i+1 +1/, .
l’._";"_'__ = A’ 1,
J s __ By (igha, S +‘I‘), ygv*:"{: =Py (i oRgy ; +n/,): (87)

,ol = Wo; (lghp i +1)’ yf, Ny = Poo ("1"1’ f] "‘1)'

W = uy(iyhy, ihy), (88)
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(~1g)

+1 +1q4)
s )

—y) —a, (y—y
Ay= (“ayiu)"a= = &

ke

Pa = i‘ F &y %o tygpa) OF @ =0, 9=/ (2, 7, 1;,,) etc.,

a,(2), 2, 1) — k1 (1 — 0.5k, Zy, 1) = O (h?), a, — k{05%) =0 (h2y,

Let us give the simplest expressions for ay:

=% i e a =k (2, —0.5hy, 7, 1), ay=ky (7, 7, — 0.5k, ) (2, =ih,),
a, = 2610k (1) L k), ey = % tk, (z, — 0.5k, 2, — 0.5 by, 1) +
~+ Kk (zl — 0.5 h[, T3 + 0.5 hs, t)] etc.

We shall give the computing formulae for problem (86)-(88). We can re-
write the difference equations (86) in the form

341 h2 1 141 1
(@) ¥t — (("1)m. + )i, T Tl) T @)y YT = — FIRP
0 <ir <Ny,
ni, = l"u (ighgy tirns)s I.Zl./f. = Hyp (Eghys tiny)s
j+, 1 j 2 (89)
Fin' = — Y, T M@,
hg j +1
(@) Y1t — ((“e s + @e)gn + T\) T+ @)y it = — FIL
(O < i’< N, l)v (9()\
Vz, o = Bag (ighys 254 ), Vg: Ny = Bag (hy, 15,0), !
F%‘:a e iz_ y’+‘/l + h (q,z)h{' )

It is clear from this that similar problems are presented by y1+" and
‘1!

)’{:1 : problem (89) is solved for the segments 0 < x, <!, for different

i,=1, 2, ..., Ny -1, and problem (90) for segments 0 < x, <, for

different i, =1, 2, ..., N| - 1. Using the notation y'® = J{*f/z
_ - Yy (£1y) _ 172
(x =1, 2), a4 = (a )1112- 4 - (al)tltl.lz’ ¢

we can write the formulae (89)-(90) in the form

= (a,)
2 211,21
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- h? (@) )
ay —( o el —:—) ytale 2 G
(x) . (a)
Yo =Pl Ylegm, =pi™,  0=1,2, (91)
@ A2 (a-D) o
F=—2 "y +he, y=v.
The boundary problems (91) can be solved using the recurrence
formul ae
(+14)
a a
g = z , E,=0 forz,=h,, (92)
afla) L (1 —E)a, +hL jr . v
E("’lﬂ) (@)
(Hg) = r - (agng + F), Ny = Moy for z, =h, (93)
(a} (@)
y= §£+1,)| y(ﬂ,) +n(+1¢‘; Y=y = M, for za =1l = Naha. (94)

The formulae as given are suitable for programming. At time t = t} 0.
the computations follow formulae (92)-(94) with o = 1, at time ¢t = t
we put « = 2 in formulae (92)-(94).

In the special case of an equation with constant coefficients ka =1
we have e, = 1 and formulae (92)-(94) are simplified.

2. For the sake of comparison, let us give other economical schemes,
discussed in (1), [2], [41, for the equation

du __ 0%u , u
2 2"
ot a2 ask

with constant coefficients.

yiﬂ _ ?,i+‘/.

+1/s j 3 3 4 j
In [1]: '»"_r;”.' =0.5 (A" + Asy'), = 0.5 (Agi+s + Asyi+1)-

__ it s R
Yy b — A2y1+1__A2yJ_

In [2]: !"_”_T:_!i’_ = Ay o Agy, ¥

In [4]: Yy = Aoyt + (1 —0) ),

. s ‘ where 0<o<x 1. (95)
ﬂ_-:_yl = A, (51/”1 +(1—q) yf""'/ﬂ)'

Since each equation contains the variables in two lavers j + «/2 and
j+ (x-1)/2 (x =1, 2), we need the boundary conditions (for o # 1) at
the points %, = 0, x, =1, for t = t; and ¢t = t;,, to determine yI™H aqi
the values at x, = 0, x, = l2 for t = tity and t = tiy) to determine y/"!.
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' y

In [11): y__f_' = 0.5 (A™ + A + 0.5 A + L My,

J+r __  d+'s .
l__ti’__. =0.5 Agf*'h,

In this case, for t = t. and t = ¢ i+ We use the boundary conditions
over the whole boundary, and for t = t'+% the houndary conditions for
x, = 0 and x, = l1 are determined, in terms of u{{l and uézl from the
formula

Pt = 0.5 AL

These values are used to find yj+" from the first equation. The first
equation for ylﬂ‘ is complicated because we have attempted to increase
the order of accuracy with respect to 7.

All these schemes are absolutely stable and convergent in the mean.

3. For the parabolic equation of general form

P P p
¢ (z, l)%':— = Z 2 .ai_ (lsaa(z, t) a%'.‘) + 2 re (=, t)z%,
as=) =l B a=1 @
where
P P
2 kap&aEp > co 2 tl, co=const>0,
a,f=] am]

we can also write down a number of absolutely stable and (mean) con-
vergent economic schemes.

We give a few of the schemes for the case p = 2, ka[B = const, k12 =k21:
yyp =AuvHoALy,  Vp=Awyt+d—oALy  0<e<Y,
where y = vi+1! V= y’.+|/’v ;= yj: Agey = "aay.;q,xa +r “y;a’ y;ta, = (y(ﬂ“)._

- LT = — (yita/p __ i+ (a=1)/
—yldy 2k, ALy= 2kygY o AV =2kabz o ¥, = (¢ y Py ¢

(a=1,2;p=2);
2) yp=Ayy+ oAy, Vo= Ay + U —9)Ay, 0oL A, =AL+ AL
3 y; =05Ay,  Yr=@—9/T=054,0—y+AY, Ay=>Auy+Auy+ Any.
The scheme
v = Any + Ay, yi, = Any -+ Avy, Awy= "121/;2;;

(for r_ = 0) is suggested in [71. 1f » = 3 and "L‘ap = const, then we can

[0 4
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use the following absolutely stable and mean convergent scheme:
y‘-l = Any, Yy = A227+ Ay, IIT = Agy + Az:s; ﬁ+ Ay,

where

S e =
Aapy =kap (g x, TV, ) Kap = kgy for 2 £8, y=y T, Y=yt

If p =3 and ka = const, r, = 0 the scheme suggested in [9] uses five
fractional steps (where we use two). The schemes for an equation with
variable coefficients are written similarly.

4. For the hyperbolic equation

2

92 9 0

_57(;= Z Lau, Lu = (ka (=, t)aTu.) +r,(z,?) gTu (p=2)
a

a==1 Lo a
we can use the local one-dimensional scheme

yj+a/2 __2y5+(a-1)/2 + yj—1+a/2

S = 0.5 [(Agyy* 2 + (A )12, a=1,2,

1?2

where Aay:=(a;y;)xa4—buy§ , with boundary conditions (2) and an arbi-
a3 a

trary region G. This scheme is absolutely stable and (for a rectangular
region () has second order accuracy in T and h?. Other types of schemes
for an equation with constant coefficients are discussed in [19].

5. Finally let us give an absolutely stable and mean convergent
scheme for the quasilinear equation

»
du A ou fu a ou
o N 9% Y pu=2 du
at QZ_—,-I a+7 (:t “ oz, 8:::p ) Ch Az, (kﬂ (=, ) 6xu)

This scheme has the form

y‘. =A“yi+a/p, a=1,2,,.,p—1,
a
— i+ i+(p—1)p J+1/p i+(p —1)/p ,,J =
yTp - Apy + f (x; tj+1v y ' y;" ,.”,yép—- M ’ yx’p)v a=p.

We shall give the proof of convergence and stability for the schemes
in points 3, 4 and 5 elsewhere.

In conclusion, the author expresses his gratitude to A.N. Tikhonov
for his discussion of these results and to B.M. Budak for a number of
comments concerning the editing of the article.

Translated by R. Feinstein
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