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Introduction 

Let us consider the equation of parabolic type 

- = Lu = 5 Lau, 
al4 
at L,u 

a-1 
= & ( ka(x, t) ga + ra(x, t) 6$a 9 1 

X= h xp). . . ., (1.W 

with several space variables x 

space-time d f#erence net with 
ioho, . . . , it ), tj = j x 

function, A, the difference 
We know that for the numerical solution of equation (1.9) the natural 
multidimensional schemes of the form 

$+I- # = 
0 (k#+’ + (1 - 0) (Ay)f, A = i A,, 0606i, 

T 
WV 

04 

are not suitable: the explicit schemes (u = 0) are conditionally stable 
only for sufficiently small values of the step -r in time, and although 
the implicit schemes (u >O. 5) are absolutely stable, they necessitate 
the solution of a multidimensional system of algebraic equations which, 
even for two space variables (p = 3, takes many operations. In this 
connexion various *economicaln schemes have been suggested in a number 
of works (see [II -[III, [201 j. The multidimensional equation is solved 
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by stages by introducing intermediate (fractional, see [gl) steps in 
each of which there is no accurate approximation or even stability, 
generally speaking, these only occurring on going from the whole step t 
to the step 2’1. In the fractional steps the diagrams used lead to one’ 
dimensional gebraic problems (in a spatial direction) for a three-point 
difference equation, the solution of which can be found using the well- 
known SUCCeSsiYe substitution formulae [12j. The simplest algorithm for 
the solution of the heat conductivity equation with constant coefficients 

for the parallelepiped G = (O\<X,< la, a = 1, 2. . . ., p) and with the 
boundary condition of the first type (~1 = cl) has been suggested by 
N-N. Yanenko (see [d). This algorithm, hich the author calls the 
splitting method, consists in approximating to the multidimensional 
scheme (2. B) by the scheme 

yi+WP _ yj+ N-1) IP 

T 
= ~A,g+wp + (1 - 5) A,$+ W-1) /P (z= 1,. ..,a (4.B) 

It is clear that the values of yj+alP are determined from one-dimensional 
equations, to solve which it is sufficient to use the boundary conditions 
for xa = 0 and xa = 1, 

Despite the variety of algorithms and terminological differences in 
all the works listed above (method of variable directions, splitting 
method, fractional steps method, and so on) a study of the stability and 
convergence of their methods reduces to the study of the stability, 
approximation and convergence of a multidimensional scheme connecting 
the values of yj and y it1 at integral steps and obtained after eliminat- 
ing the values of yj+a/p (a = 1, 2, . . ., p - 1) at the intermediate 
steps. 

If we do this, for example, for (4.B) we obtain 

fi (E - od4) yj+l = R (E + (1 - a) zA4) gj PY=Y). (5.B) 
4=1 4=1 

This scheme is equivalent with respect to its order of approximation 
to the multidimensional scheme (2.B). In particular, for p = 2, Q = 0.5 
scheme (5. B) has the form 

d+‘-yi= 
T 

0.5 (Ayj+l + Ayj) - $ f&A, (#+I - yj). 
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BY the error of approximation of the scheme (4.B) we understand the 
error of approximation of the mu1 tidimensional scheme (5. B). 

It has been shown in [91 that the scheme (4. B) can be considered as 
the result of factorising (splitting) equation (5.B), i.e. an approxi- 
mate factorisation of equation (4.8). The difference scheme (5.B) has a 
troublesome feature: the space operator has order 2p and is not defined, 
in general, near the boundary of the given region. This leads to the 
problem of boundary conditions even for the simplest rectangular region 
(see cl01 and [III). It follows from our results, in particular, that 
for the splitting scheme (4.B) this boundary condition problem is re- 
moved, and that, when interpreted differently and with a corresponding 
definition of the concept of approximation this scheme is applicable to 
an arbitrary region and, when u = 1, converges uniformly at the rate 
O(h2) + O(r). 

We note also that the approximation requirement for the scheme (5.B) 
leads to an overstatement of the smoothness requirements for the solu- 
tion u = u(x, t) of the differential equation. 

In this article we consider a local one-dimensional method for solv- 
ing linear and quasi1 inear equations of parabolic type with any number 
p of space variables, for an arbitrary region G. Let us give a brief de- 
scription of the method using equation (1) as an example. In each layer 

tj+ (~-1)/p < t < tj+a/p = tj + Taip (a = 1,2,. . ., p) 

the one-dimensional differential equation 

1 au --- 
P at L,u = 0. (7-B) 

is solved. To do this we use the implicit homogeneous difference schemes 

nxy = 
yj+=;p _ $+ (a-1) lP 

T 
- &yiSah = 0, 

discussed in [131- [181. 

For the special case k, = 1, ro( = 0 the scheme (8. B) is formally the 
ssme as (4.B) for u = 1. 

The difference scheme ny corresponding to equation (1) is the set 
(of blocks) n = {I,, a = 1, . . . , p) of p one-dimensional schemes ma. An 
important characteristic of every scheme is its approximation error. In 
this case the ordinary approximation error of scheme li, as we saw in the 
example of scheme (4.B), is not rational. Each of the schemes has an 
approximation error 
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qa = Aauj+a/p _ 14j+“’ - .j+ (a-1’ ” , 
7 

*a = 0 (I), 

where u is a solution of equation (l.B). The approximation error of the 
scheme l’l = (1,) is rationally defined as the sum 

w = &.. (9.B) 
LX-1 

If A, is a scheme of the second order of approximation, i.e. h,u - 
L,u = O(h$ then 

Y = 0 (ha) + 0 (Z), where ha = f i h”, , 
(1-l 

We shall show in 5 2 that the order of accuracy of scheme ll is the 
same as that of its approximation Y. This definition of the difference 
scheme ll is independent of the shape of the region C and the actual form 
of the operator A,. 

At each moment of time tj+o., the equation (8.B) connects the values 
Yj+“/p at the nodes of the net fying on a straight line parallel to the 
axis Oxa. Therefore at each moment of time at each point of the net we 
solve the one-dimensional heat conductivity equation for a segment with 
ends belonging to the boundary of the region. It follows at once from 
this that it is possible to use this method for an arbitrary region and 
for parabolic equations of a general form. It should be noted that in 
solving equation (8.B) along each direction xa at the moment tjklp we 
use the values u[ = ~1 only at the points of intersection with r, the 
boundary of G, ofrstraight lines parallel to r and passing through the 
nodes of the net, and not over the whole of r. 

lb find #k/p we can use the boundary data I.I(X, t) and the values of 
the coefficients /2,(x, t), ra(x, t) at any moment t; E [t ., 
example, t: = t j+l 

tj+ll (for 
for all a). All the schemes obtained wl 1 have the 4 

same order of accuracy. For definiteness we take boundary data for 

td, = ‘j+a/p without los$ of generality. 

In 3 1 we formulate the local one-dimensional method a) for a linear 
and b) for a quasilinear equation 
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b) L,u = a; f=f(%bU) 
a ( ka (2, t) g 

a > + ra (5, t, u) g, 
a 

for an arbitrary region C and for boundary conditions of the first kind. 
We consider some family of homogeneous difference schemes (see [131- 
[l&II), defined by a given class of pattern functionals with the help of 
which the coefficients of the difference scheme are calculated. In point 
6 we consider the third boundary problem for a parallelepiped. 

In point 1 of 5 2 we prove the uniform stability of the local one- 
dimensional scheme with respect to the right-hand side, the boundary 
and initial data. The main result is Theorem 3 concerning the uniform 
convergence and accuracy of the method. It is shown that local one- 
dimensional schemes give the same accuracy 0(h2) + O(s) as multi- 
dimensional implicit difference schemes [181. 

We shall restrict ourselves here to the case of smooth coefficients. 
It must be emphasised that the maximum order of the derivatives required 
for the convergence of the method does not depend on the number of di- 
mensions (see [ll]). If the coefficients of the differential equation 
are discontinuous, then the order of accuracy of the scheme is reduced, 
by analogy with the one-dimensional case p = 1 (see [151, [I?], [ld). 

The results we obtain are applied to the case of arbitrary non-uniform 
nets. 

In 3 3 we give computing formulae for p = 2, and also the schemes for 
other equations (parabolic end hyperbolic) . 

1. The local one-dimensional method 
of variable directions 

In this section we consider a homogeneous local one-dimensional differ- 
ence scheme for the solution of a linear parabolic equation with any 
number of space variables. The reasoning is given for the first boundary 
problem and for an arbitrary region. In point 5 we consider a scheme for 
a quasi1 inear equation, and in point 6, the third boundary Problem for 
a paral 1 el epiped. 

1. llze initial problem 

Let us consider the p-dimensional linear ecluation of parabolic type 
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where x = (x,, . . ., xa, . . ., np) is a Point of p-dimensional space with 
coordinates x1, x2, . .., xa, . . ., x ; 

I.2 = k,(% t). q = q(n, t), f = fc%P 

and c(x, t) = c(xl, . . ., x L. t), 
t) are given functions. Let ‘G be 

an arbitrary closed p-dimensional region with boundary r, 

z=c+r, & = f? x m < t < 57, QT = c x (0 < t < q. 

It is required to find, in the cylinder 4, a solution of the first 
boundary problem for equation (1) : 

c $-=Lu + f in QT, 

u L = p (z, t) for XE r, Obt<T, 

U(X,O) = h(X) for 2 EC, 

(1) 

(2) 

(3) 

where P(X# t) and U@(Z) are given functions. The coefficients k, and c 
are bounded below: 

kz (5, t) > cl > 0, c (x,0 > c,>OinQ,, (4) 

where cl, c2 are constants. 

We shall assume everywhere that: 1) the problem (1) - (4) has a unique 
solution u = U(X, t), continuous in the closed region oT; and 2) the 
following conditions are satisfied: 

Conditions A: 

a) the functions 

where P\<a for a\< $- 
[ 1 and where p>a for a> $ 

II 1 (a, r\ = 1, 

2, ..*, p) and also the functions Q/ax@, af/dxB, il”ulcYx~~t, ‘c/tYg 

satisfy the Lipschitz conditions in np and 9; 

b) the functions aulaxm,, awax2, au/at, C, q, f! r,, r;,, akataxa 

(a = I,_..., p) satisfy the Lipschitz conditions in t in the closed 
region Q.r. 

These conditions are sufficient for the proof of the basic theorem, 
Theorem 2, concerning the accuracy of the difference schemes considered 
below and in a number of cases they ten be replaced by weaker require- 
ments. The smoothness requirements laid down for the surface r are, as 
we know, connected. with the properties of the solution u = u(n, t) of 
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the problem. 

We make only one assumption: the intersection of the region G by any 
straight line % drawn through a point n E G parallel to the coordi- 
nate axis oxa consists of a finite number of intervals (we do not ex- 
clude the case when the intersection of this straight line with the 
boundary r consists of whole segments, and not only of isolated points). 
To simplify the Printing we shall always discuss the case when the inter- 
section of % and G consists of one interval, or, more exactly, when 
the straight line 3, intersects r in two points. The general case is 
considered in a similar way. 

2. l%e difference nets 

We place the origin 0 = (0, . . . , 0) of a rectangular coordinate 
system (x,, . ..* 
planes 

xp) inside the region G and draw p families of hyper- 

(ia) 
XL% = h,i,, i,=O,_Ci,f2 ,..., a = 1,2,. . . , p. 

(i,) 
The points of intersection xi = (xl x 

( ia) ( ip) 
of these 

hyperplanes are the nodes. Two nodes &e’;$lal& sh;l’t6 be adjacent if 
xP 

they are at a distance of ha from one another in one of the directions 
xa (a = 1, . . . . p). The node xi E G is said to be an internal node if 

all its p neighbouring nodes belong to z. A node is said to be a bound- 

ary node if at least one of its neighbouring nodes does not belong to ?% 
The set of all internal nodes forms the internal net region ah, and the 
set of boundary nodes, the boundary y of the net o,,. It follows from the 
definition that $, = uh + y C ‘6. Through some point of the net ah let 
us draw the straight line Ze, parallel to the coordinate axis Oxa. The 
set of all nodes of the net i,, lying on this straight line is called the 
x,-chain and we denote it by 4,. The set of boundary nodes of all 
chains Qa in a given direction xa is denoted by ya. It is obvious that 

y, c y, Y1 + 'a- + y, C Y. Suppose E = (0 6 na <Z,, a = 1, . . . , p) is 
a p-dimensional parallel epiped. Then all the chains 4, for given a 
have the same number of nodes, and their boundary points are on the 
nlanes x0: = 0, na = 1,. In this case ya is the set of nodes lying on 
the planes x,==O, x, = l,, O<xp<lp, a#p. 

Let us now introduce a net with respect to time t, by dividing the 
segment 0 < t < T into I! equal parts by points tj = j,, j = 0, 1, . . . ,I:. 
Each of the segments [t ., t 1 is divided into p (the number of 
dimensions) equal partsjby !&oducing the intermediate (fractional) 
moments of time t .+ = t . + Ta/p = (j t a/p)T, where a = 1, . . . , p; 

j = 0, 1, . . . . I( L y!Ppe c&ill the Point (xi, tjtilp), where xi E c, a 
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node of the space-time net. The set of all nodes (xi, t j+Ct/p) P 
‘i E @h, j = 0, 1, . . - , f( - 1, a = 1, 2, . . . , p is denoted by 

981 

where 
R. 

Let us now denote by St,) the set of points (xi, tie*, ), where 
‘i C Ya, tj’talp = (j’ + a/p)v, j’ = 0, I, . . . . R - 1 and a Ps fixed 
(1 <o<p), StO) is the set of points (xi, o), where xi E y, 
s = s,,, + Sfl) t . . . t sip * 

A 
The set of nodes S C $. is the boundary 

of the net region R. We sh 1 henceforth consider the net functions de- 
fined on the space-time net 5 = R t S. 
we shall use one of the notations: 

y = Y (r7 t> = Y i5ir 

We shall also write 

Depending on the circumstances 

tj+=@) = yj+=.@. 

,(*md = x!*mQ) = fxfd, 
1 . . ., &z-l) , ga’ + & 

a-1 a, 
x(fa+l) 

a+1 ,***9 xp>, m > 0, 

y(*mQ) = y (x(*m=) 9 t), Ysa = (Y - Y(-1’)) / h (I, 

yx,=ty(+l”)- YV ha, y;= = 0.5 (y;= + y,,), yih = (yj+=‘p - yj+(=-l)‘P)/ r. 

3. Local one-dimensional homogeneous difference schemes 

Let us now formulate the difference algorithm for the solution of the 
problem (1) -(4) for an arbitrary region G. 

Instead of writing down a multidimensional difference scheme which 
enables us to find the numerical solution of equation (1) for t = tjtl 
(at whole steps) we shall solve at each of the moments tj+o,p the para- 
bolic one-dimensional differential equation 

+ c (5, t) g =L,u + fQ (x9 t)9 (5) 

where 

Lau = & k, (x, t) ‘f&= 
cl ( 1 

+ ra (c, t) g - qa (z, t) u. 
a 

(6) 

Here Qaa fa are arbitrary functions satisfying the same smoothness con- 
ditions as 7, f and connected with 1, f only by the conditions 

5 q= (x, t) = q (2, t)* i .fa (xv t) = f (29 0. 
a=1 ll=l 

For example, qa = l/P, fa = f/P or la = 0, fa = 0 for a = 1, 2, . . . , 

P - 1. lp = ?B fp = f. For each a we look for a solution of equation (5) 
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at the moment of time tjti, . In order to find the solution of equation 
(5) inside G in the time in erval e tj+(a_,j,p < t <tj+a,p it is suffi- 
cient to use the initial data for t = t.+(, lj,p and the boundary con- 
ditions (2) at only those points where i he boundary r intersects the 
straight lines parallel to the coordinate 0% . Let us illustrate this 
point. Let E = (0 \(na < I,, a = 1, 2, p = 2 g: be a rectangle in the 
plane (x1, +. Then to solve equation (5), for a = 1 say, it is suffi& 
cient to know the boundary conditions on the sides x1 = 0 and x1 = 2, 
only of this rectangle. The boundary conditions on the other part of the 
boundary, i.e. on the sides x2 = 0 and x2 = I, are used for a = 2, i.e. 
to solve equation (5) in the direction 0x2. 

Thus at each moment 
fo,r the one-dimensional 

ti+a, 
equa ion (5). To solve it numerically we use the F 

we must solve the first boundary problem 

homogeneous difference schemes given in [131- [181. We approximate to the 
differential operator L,u + fa by a three-point conservative difference 
scheme of the second order ‘of approximation: 

in which the coefficients aa, b,, cl,, tpa are functional of the corre- 
sponding coefficients k,, ra, qa, far. We shall not describe in detail 
the properties of the pattern functionals which we use to express the 
coefficients of the scheme A, in terms of the coefficients of the differ- 
ential operator La, but refer the reader to the articles [131 and [181. 
We merely note that in the case of smooth coefficients we can use the 
simpler expressions 

b, (z, t) = r’a (5, t), & = qa (z, 0, Ta = i’.. (2, 0, 

aa (? t) = k, (-J+-“‘$ t) or uor (z, t) = 0.5 (kh-‘a’ + &I, 

where 

m is any positive number (in the given case m = 0.5 and m = 1). 

If conditions A are satisfied, then at any internal point of the net 

A.,u - L,u = 0 (h:). (9) 

We put the differential equation (5) in correspondence with the four- 
point implicit homogeneous ‘difference scheme (leading scheme or majorant 
scheme) : 

PYF- = &Y + Cpa (a = 1, z,..., PII WV 
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where 

903 

vi-= = (y _ $ 1 %, y = yj+olP, i = yf+(=--rVP, 

&Y = (aa @, t’) y;;,)x, + ba lx, f) y;, - da (x, t’) y, (Il’r 

cpa = cpa (x, q, p = p (z, t**) ('j Q t*.i tj+ls 'j G t** < tj+a)- 

The coefficient p is, like &,, da, and qza a linear functional of the co- 
efficient c(x, t), so that 

P (g* 0 - c (5, t) = 0 (ha), ha = $-.jj hi (W 
a-1 

(in the simplest case p(x, t) = c(x, t)). We note that p does not depend 
on the suffix a, i.e. the same value of p is taken at some time 
t+* E Ct., 

I 
ti+ll for all directions xa. 

All the coefficients are taken at some arbitrary moments t*; tj < 

t* < tj+l (for example, t* = tj, t+ = tj+l, t+ = tjh p etc.).* We can 
allow the choice of t * to be arbitrary since, as we s all x show below, 
all the schemes obtained for different values of t* are equivalent with 
respect to the order of approximation (with an accuracy to O(T)) and, 
from Theorem 1, have the same order of accuracy. In every actual case t* 
must be selected from considerations of economy and convenience of calcu- 
lation. There is also arbitrariness in the choice of ~~ snd da since we 
require only that the conditions 

5 qa (2, t’) = f (5, t’) + 0 (h’) + 0 (T)* 
0x1 

i da (5, t3 = q (5, t3 + 0 (ha) + 0 (9. 
a==1 

shall be satisfied. In particular, we can put 

CPU = 0 for a=1,2 ,..., p--l, VP% cp W% 

da = 0 for a = p f, dP = ~I.G t), d = q + 0 

We be concerned henceforth with the whole class of difference 
schemes described above. 

(13) 

l Generally speaking, the values of t* are different for the different 
coefficients (aa, b,, d,, Q~). 
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Ry the difference 
equation (1) we mean 

&Y - Qo. 

scheme II = {IT,, a = 1, 2, . . ., p) corresponding to 
the set (block) of homogeneous schemes IToy = m - 

a 

The difference scheme ll = {If,> is homogeneous not only with respect 
to space, but also with respect to time since the computational procedure 
is repeated on going fran j to j + 1. 

In order to define the difference problem which corresponds to the 
problem (l)-(4) we must formulate the boundary conditions. 

4. Stateaent of the boundary problem 

Let us consider sane chain i&. 

the values of y at the points 

The difzce equation (10) contains 

x 
(-la) 

, x, x a of this chain at time 
t = tj+a,p and the value of y at the.point x in the previous step 
t = tjt(a_,)/p. In order to define yjti/p at the nodes of & it is 

sufficient to give the values of y at the ends of this chain only. It 
follows that at all points of the net o,, the function ,jti/p is deter- 
mined merely by the boundary conditions on y,, since each internal node 
of Qk belongs to some chain of the given direction Oxa. The boundary 
problem will be stated if we formulate the boundary conditions for the 
separate chain J!&. 

Let us draw a straight line % parallel to the axis Oxa and passing 
through same node of the net. It will intersect the boundary r in the 
points x1 + and $0. 

To simplify the argument we shall assume that straight lines Parallel 
to the coordinate axes intersect the boundary r in two points only. If 
the intersection of Se, and C consists of a finite number ffl > 1 of inter- 
vals, then 4, consists of I parts IJ(k) (k = 1, 2, . . ., m) for each of 
which a boundary problem has to be sol;ed. 

Let us assume that the coordinate xa increases from the point x; to 
the point xr. We consider the node x, which is nearest the point “1’ and 

the node xl(‘la) which is adjacent to the node x1 on the chain 4=. The 
node za is clearly a boundary node of the net 6+,(X1 GZ ya). We can find 
the value of y at the boundary node x1 by using 1 inear interpolation on 

(+la) 
the values of y at the points x; and x, 
x; : 

, Putting y = cc at the point 

y = pJ+lJ + (I-&)&, f) for Z=qErcrP “tj+a/p, (W 

where p1 = ~~/(l t K1), Klha is the distance of the node x, from x; and 
~(x, t) is the function given in (3). similarly we can write down the 
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condition on the right-hand end x = xy of the chain 1.1,~ 

y = p,y(-l”) + (1 - pr) p (G 9 f) for = = =r E ?-a, t = tj+qp, 

where p1 = ~~/(l + K~), K,ha is the distance of the node xr from %:. It 
is clear from this that, for a uniform chain J$, we obtain boundary con- 
ditions of the third type, with 

The value p, = 0 (?, = 0) corresponds to the case when the node 
x, (x~) belongs to the boundary r of the region G 

We know that this method of setting boundary conditions “with carry, 
using linear interpolation”, has second order approximation. We shall not 
discuss here the simplest condition for first order approximation when 
the value of y at the point x1 is taken to be equal to the value of the 
function u = v at the point n;: y = p(x;, t) for n = x1 and, similarly, 
y = lq, t) for x = x r* 

Let us pass now to the statement of the difference problem correspond- 
ing to the problem (l)-(4): 

it is required to find a function y defined on 5 satisfying, inside R, 
the difference equations 

P yr, =A& + oa for zE6hs , t = tj+a/p for Cl=i,2 ,..., p, 

1 ‘=0,1,..., K--i (15) 

the boundary conditions at time t = titi,p for z E ya 

y = p1y’+h’ + (1 - Bl) IL cc, 01 2 = z1 E Ta, t = tj+a/p, 

y = pry/‘-h’ + (1 - FL) P <G, t), 

(16) 

x = xr E Tat t = tj+a/pt 

and the initial condition 

y (x, 0) = uo b-9, 2 Em,,. (17) 

It is clear from this that Tar fixed a we solve, for each chain ua, 
the one-dimensional equation (15) with the boundary conditions of the 
third kind by using as initial’ data the values of y(r, tj+(,_,,, 

1 
) at 

internal nodes, these values being found by solving the same Pro lem at 

time for the chains ua-1 in the direction &a-l. Thus, in 
order 

t ‘+(a_l) / 
c o find {he from the data in 

step tj, 
value of y over the who1 e step t j+l 

it is necessary stage by stage to solve p one-dimensional prob- 
lems in all the coordinate directions. 
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We could call this method the fractional step method, or the variable 
direction method. However, we consider that the name nlocal one- 
dimensional method” is a better reflection of the essential points: at 
any Point of the net at any moment of time a one-dimensional equation is 
solved. Resides, the term “variable directions methodll is used, for ex- 
ample, for the multidimensional scheme of [l] and the term “fractional 
step method” is used in cl11 to characterise schemes which are one- 
dimensional for a > 1 only and are multidimensional for a = 1, and so on. 

The local one-dimensional homogeneous difference scheme (15)-(17) is 
the most economical of the schemes suggested in [ll -f?31, [51, 161, [ld . 
We note that for the special case of an equation with constant coeffi- 
cients (k, = 1) and ra = q = f = 0 a similar scheme is considered in 141. 
However, the method there is based on eliminating yj+Ol/p for a = 1, 2, 
. ..) p - 1 and studying the resulting equation which connects the values 
of y at whole steps (yj and y jtl). Since this equation contains a space 
operator of order 2p, the transition to the case of an arbitrary region 
has no obvious solution, and the problem of boundary conditions arises 
even for the simplest region, a parallelepiped. In i41 the method was 
called asplitting method, the name originating, it follows from 1101, 
in the splitting or (rough) factorisation of the multidimensional differ- 
ence operator into one-dimensional operators. 

5. The approximation error 

Let u = u(x, t) be the solution of problem (l)-(4), and y = y(x, t) 

the solution of the difference problem (15)-(17). The difference 

z=y--u. 

is a characteristic of the accuracy of the local one-dimensional method. 
WritSng y = z + u in (15)-(17) we obtain the following conditions for 
the net function z defined on 5: 

2 (2, 0) = 0, (20) 
where 

denotes the approximation error of the one-dimensional scheme Wa and vl 
and vr are the approximation errors of the boundary conditions. 
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The approximation 
a = 1, 2, . . . . p) is 

error of the local one-dimensional scheme ll = {ll,, 
naturally defined as the sum of the errors 

Y =firp,. (22) 
a=1 

In fact, using the one-dimensional schemes (15) an approximation to 
the multidimensional equation (1) can be found on the whole step 

(tj, tj+l) only. 

Lemma I. If the conditions A are satisfied, then 

y = O fh2) + 0 (r) for all Q. (23) 

Let us consider first the local error va and put it in the form 

9, = QZ + d, where $a” = 
( LU + fa - au i+P 

fc;ri , ) (24 

4,; = [&&i+=‘P - (L,u)~+~] + cpa- fj,‘fl - 
[ 

puih - + (c $#+‘I , (25) 

where F E 10, 11 is an arbitrary number. 

Summing the t& over all a = 1, 2, . . . , p and taking 
account for the function u, we obtain (for fixed j) 

equation (1) into 

(26) 

Let US now show that for any t’ E [tj, tj+iI, t” E [tj, tj+iJ 

9: = 0 (h2) + 0 (z). 

In fact. if conditions A are satisfied, then 

(27) 

( LU_LiCjj+@ a 
P at ) = L;,j+alp _ _!f (fg)j+Q’p+ 0 (rt), (28) 

where 

+r;$, k:=k&,f*), 
a 

r; = ra (5, C), c** = c (5, t**). 

Since the scheme A,p has second order approximation. and 

P - c** = 0 (jp), puih _ + $ ( g)j+a’p = 
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= $ (p _ ,-) (g jr+.‘*+ p ( uih - $ (g)j+“‘) = 0 (ha) + 0 (f), 

(27) follows from (28) aud (25) and the estimate (23 follows from (26) 
and (27). 

Thus the local one-dimensional scheme (15) has first order approxima- 
tion in time and second order in space. In 9 2 we shall show that the 
order of accuracy of this scheme is the same as the order of approxima- 
t ion. 

6. fjmsi 1 inenr er;ruat ions 

The local one-dimensional 
of the quasilinear equations 

method is also applicable to the solution 

In this article we shall consider the case where the “heat conductivity 
coefficient” k, does not depend on u: 

ka = ka (2, 0, 

since the basis of our method for such an equation can be laid down in 
the ssme way as for the linear equation (1). The proof of the con- 
vergence of our method for equation (29) requires a fairly cumbersome 
system of integral (energy) inequalities and will be given separately. 

Thus, 1 et us consider the following problem in the cylinder ?& = c x 
Lo < t < rl 

c k 0 g = $L.u + f (r, t, u) (k, = k, (5, t)), ($3 t) E QT, (30) 
LX=1 

Ulr = p @, t), 

u (2, 0) = 240 (5). 

(31) 

(32) 

The coefficients of the equation satisfy the conditions 

1) ka (r, t) > cl > 0, c (2, tj > cg > Oi11(:~, 

are continuous functions of the argument 

(33) 

U. (34) 
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We shall also assume that the solution IL = u(%, t) of the problem 
(3O)-(34) and the coefficients k,(x, t), c(x, t), rg((x, t, u), f<z, t,u) 

as functions of (x, t), satisfy the conditions A formulated in point 1. 

We write the homogeneous local one-dimensional scheme in this case 
by analogy with (15): 

It is required to find a net function y, defined on !2, and satisfy- 
ing on R the difference equations 

py~=AaY+qa, 

&iv = (aa @, OY;a)xa + ba (5, t’s i, Y:a , Cpa = Cpa (zs t'* i), I (35) 

and the boundary conditions on S: 

Y = PlY (+a + (i - PI) P (6, 0, t = %1 E Tas c = (j+a/* 

Y = pry’-‘Q’ + (1 - Br) p 6 0, ===r ETa# z=tj+a/p 9 

Y (% 0) = uo.(3 

(36) 

(37) 

(see Point 4, and compare (16) and (36)). 

We recall that yT- = (y - i) / r, y = yH4P, i = yf+(a-w. me 

difference equation (35) is linear with respect to the values of 
y = yj+a/p at each step. Therefore, to determine yjfa!P we can use the 
known formulae for the one-dimensional chain a0 with boundary condi- 
tions of the third kind (36) at its ends. 

This algorithm is convenient in that when finding the solution in the 
(j+a/p)-th row it is necessary to remember only the values of the re- 
quired function from the previous row. 

The coefficients of the scheme are calculated according to the same 
formulae as the coefficients of scheme (15) for the 1 inear equation (1). 

Together with (35), we can consider a scheme with coefficients which 
depend on the values of the required function in the new row, SO that 

A& = (aa (5, t’ ) y;a)xa + ba (3, t’v Y) Y,i* Cpa = Cpa (2, t’, Y)* (35’) 

In this case we need iterations to solve the resulting non-linear 
equations for y, and the computation must be done using the formulae. 
For certain problems the non-linear scheme (35’) is to be preferred, 
since in this case the step can be increased with respect to time T 
(with a given accuracy). 
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In order to find an expression for the approximation error of the 
scheme, we write the solution of the problem (35)-(37) in the form of a 
sum y = z + u where u is the solution of the problem (30)-(34). Writing 
Y = z + u in (35) we obtain 

Vi-, = %x + *i)a, (38) 

izhx = (a, (5, t*) s,>z, + kz (x, t*, Y) x,.. + G+“, (39) 

6.. = (o, (5, t*) ‘I;~)G -I- b, (G t’s Ui %a -f Cpa (2, t’, i) - P (2, t’) UC 8 (40) 

d 3% 
a=~(%f,U)+&- % (z, f’, u) 

The bar means that the derivatives are taken at mean (between j; and h) 
values of the argument u. 

In 9 2 when we discuss the convergence of the solution of problem 
(35)-(37) to a fixed (unique) solution u = u(x, t) (1~1 CM,,) of problem 
(30) -(34) we shal-1 assume that do and b, (x, t, y) are bounded, since 
the functions rq and f can be continued in the region [uI > Z0 and there- 
fore in this region la, Ck, / au, af /au are bounded. 

For the non-linear scheme (35’) we obtain the equation (38) where 

&x = (a, (2, t’) x;or),+ + b,z (5, f? , y) z;~ + 42. (41) 

Let us now formulate the conditions for the error z = y - u: 

PZr, =X02 + &, 1% 0E Q, (42) 

z= p.12 (+I=)+ VI,,= for 2 = x.1 E To, t = ‘j+a/p, 

2=p,Z. f-l=) + v 
1 

(43) 
r.= for X = ZrE T=s t = tj+=/pr 

2 (5, 0) = 0, (44) 

where vlIcx, vr,a are the approximation errors of the boundary conditions. 

The approximation error ‘i’ of the homogeneous local one-dimensional 
scheme (35) is found as the sum of the local errors 

Y = &la. 
By analogy with point 4, we can establish the truth of Lemma 1: 

Y = 0 (P) + 0 (z), 

(45) 

(x, 1) E Q, (46) 
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where 

*LX = 9: + +z, q: = 0 (h2) + 0 (z), (47) 
0=1 

Be recall that 

v1.a = 0 (h3, vr,, = 0 (G). (48) 

To estimate the accuracy of (15) -(17) and (30)-(34) it is necessary to 
Prove the stability of the solution of problems (18)-(29) and (42)-(44) 
with respect to the right-hand sides q~o and v1 ,o, vr o, using (47). 

T/e shall prove the corresponding stability theorem in 5 2. 

7. The third boundary problem for a parallelepiped 

Let E = (0 < %o < I,, a = 1, 2, . . . , be a 

p2.i (5, t) for za = I,, (49) 
PI I 

The coefficients crla(x, t), uza(x, t) satisfy the conditions 

$a (G 0 > ctl > 0, %a (5, 0 > cl3 > 07 (50) 

where c6 is some constant. 

The simplest difference analogue of these conditions are the boundary 
conditions 

t+LJ 
aa Y+ = %crY + ha (5, t) for za=O, t=t. 

3+dp ’ 

- aayxo= a2,y + pza k, t) 
(51) 

Par xcl =I,, t = tj+o/p * 
i 

These boundary conditions have first order approximation. Let u=u(n, t) 
be the solution of equation (1) (or (29)) with boundary conditions (49) 
and the initial condition 

and let y = y(z, t) 
boundary conditions 

u (5, 0) = uo (5)s (3) 

l(x, t) E i) be the solution of (15) (or (35)) with 
(51) and initial condition 

y (2, 0) = uo (r), ZEO/&’ (52) 
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Then we obtain equation 
ary conditions 

(18) for the difference z = y - u with the bound- 

. 
ulaz - Via for za = 0, t = ‘j++), 

l 

%az + Vaa for za = la, t = tj+alp, I 
where 

l 

Via = 
i 
aa (+%uxa _ k, f$ a 

> 
xa_o = O tha), 

-hag) 
a XaEla 

= 0 (ha). 

Let us rewrite conditions (53) in the form 

2= PlZ 
(+la) + v 

ia for ta = 0, O<za< IgD P # 4 t = fj+a/p, 

2= PrZ 
(-&A + Vsa for xa = la1 0 < Xp< 181 P # a, t = 'j+a/p, 

where 

(53) 

(53’) 

(+&I 
p+L, a&N, 

Pr = -3:. 
havia 

la 
%$a= d) 

havL 
vm =-- ) 

la Aaa 
a a.0 - - aa Ixa=-o~ %Na = aa I za=Naha=la, AI0 = aeoJ + alaha, 

A 2a = aa.N, + asaha- 

Thus the error of the solution of the difference boundary problem (15)) 
(51), (52) also satisfies equation (18). the zero initial condition 
Z(& 0) = 0 and the boundary conditions (53) analogous in form to the 
conditions (19). We can therefore examine at the same time the con- 
vergence of our difference method for the first boundary condition in 
the case of an arbitrary region and for the third boundary problem for 
a paral 1 el epiped. 

2. On the uniform convergence and accuracy of 
the local one-dimensional scheme 

In this section we shall prove the uniform convergence of the local 
one-dimensional method for the linear equation (1) and the quasilinear 
equation (29) for an arbitrary region, and we shall give a uniform esti- 
mate for the order of accuracy. 

1. lhrifors stability 

Let us show that the difference Problem (15)-(M) has been correctly 
described, i.e. its solution depends continuously on the right-hand side 
of (15). the initial and the boundary values. Let us cogsider the follow- 
ing problem: to find a function t, defined on the net P and satisfying 
R the equations 
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pzi;; = 44 + 9 @, t) for z E ah, t = tj+a/p, 

Aaz = (aa (5, t) z;r)x, + bmz,, $- b+; a - dl,z - (I,&: 

the boundary conditions on the boundary .C; of the net region 

2 = PI2 (+lJ + Vl for z = “1 ET,, t = tj+,/p, 

\ 

* 2= p(-lJ + Vf for X= Xr ET,, t = tj+a/p 

and the initial condition 

2 (z, 0) = 20 (z). 

913 

(54) 

(55) 

(56) 

The coefficients aa, bla, bza, d,,, d,,, PI, r), satisfy the condi- 
tions 

aa > Cl > 0, P > (72 > 09 Id,, I < ~2. ILI\<c,v s=1,2, (57) 

WPl <V<1, 0 B pr < B’ < 1, (58) 

where cl, cq, c3, cIl p’ are positive constants which do not depend on 
the steps 1~~ (a = 1, 2, . . . , p) and T of the difference net. Two cases 
arise: 

1) a boundary problem of the first kind for an arbitrary region: 
p = ~/(l + K) (we omit the suffixes 1, r, a for the time being) where 
O<K<cCg, CS > 0 is a constant which does not depend on the net: then 

1 - p = 1 / (1 + X) > 1 / (1 + C&) = B. > 0, 

1 - PI > s., 1 - Pr > P.; 
(59) 

2) a boundary problem of the third kind for a parallelepiped: 

p=?- 
a+ah 

(omitting all suffixes). 

For a paral 1 el epiped in the first boundary problem (z = v, , z = vr) 

p1=0, pr=o, &=I. 

All the schemes h,z considered in 0 1 are special cases of the scheme 
(54). Therefore the results obtained below will be valid for the problems 
(18)-(20), (38)-(40) and (38), (53)s (40). 

l%eoren 1. Let z = z(x, t) be the solution of the problem (54)-(58). 
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Then for sufficiently small T < TV and any h, 

2 (G t) 110 < Jf, (II 4G 0) Ilo + p (& 4 b.8) + M, ( i 
f’=+/n 

where 

(60) 

II 2 (2, t) Ilo = max 12 (z, t) 1, 
eh 

M,, EI, are positive constants which depend only on cl, c2, cr, c4, P,, T. 

The theorem is proved by the method described in 9 1 of [181, based 
on the use of the principle of the maximum for the parabolic difference 
equations. We introduce a new function v by writing 

&alp = (1 + @f)Pj+a~j+alP, 

where fi is an arbitrary positive constant which we select later. For the 
net function v we obtain the equation 

pvra = fI;v - dav j-q, A:v = (a,u;o)xa + &avx, + bav- 
x0 

- &a;;, (62) 

the boundary conditions 

v = Blv(+la) + Gl 
fJ = p,y(-la) + Y, 

for x = XL E Ta, t = tj+a/pv 
(63) 

for 2 = zy E TaB t = ti+o/P, 

and the initial condition 

v (z, 0) = 2 (z, 0). 

where we have used the notation 

(64) 

P = w Aa = daae, da = &a -t i@ it e = (1 + Rr)-l, 
$ = *&+a (lp = gj+a’p = cp (2, tj+a,p)’ G = v.@+a. I (65) 

Multiplying (62) and (63) by 2v and using the same arguments as in 
[181 we obtain the first rank equation 

i; P);, -(aa (@),)x, + Ra (V) + 2&va = 2~ (blavxa + ballzJ - 

- (2&.;lv + 24, 



Solution of a patabotic equation 915 

By analogy with t181 we arrive at the inequal its 

P (u”)T, - (a, (v”);,),~ + 2d.2~3 6 $, where de > 0, 

or 

pV” - z(a,(v2)& + 2lf,zv2\<p;2 + $ z, 

('37) 

WV 

which is satisfied for sufficiently small values of -r and sufficiently 
large II: 

r<r0, 
9 M 

r&c c 1 1 ---I 7i?>M*= 
(c3 + c ) c + 0.5 c; 

X7 ’ 
l cl . 

. 2. 

c, = c: 
c,+Cs+0.5c0. 

Here c,, is an arbitrary positive constant which is selected to make the 
COnStant ttf2 in (60) a minimum. 

Using the fact that 2 1 G I\< p,v” + 3/a,, we obtain from (14) 

v2 - p,P;l (v”)x, < Q3:, 

r2 + a,@;’ (r”);, < y:0’5, 
I 

(6% 

where p * = 1 - p* > 0. 

We put u in the form of the sum u = u(l) f v(‘), where V( ‘) is the 
solution of the problem (Cl)-(64) for F = 0 and v(*) is the solution of 
the same problem with homogeneous boundary and initial conditions 

(“1 = 0, vr = 0, v(2) (X, 0) = 0). Ihe function w = (v’ ‘))* takes its 
maximum value on the boundary of the region R. Thus, suppose w has R 
maximum at some point P inside R. Then at this point WQ > 0, 

(a.~& < 0, whi_ch contradicts the inequality Pq - (u~u.J~J, + 

2d.w < 0. If P = P(r, 0) then 1) w [I0 < 12 (5, 0) B . ‘If !’ = P( x1 Y t jtc,;r) 

then at this point wx \<O and the first of the inequalities (69) gives 

w < (IYlI& /pt. Writ&g then ? = P(Xr, tj+clp) and using the fact that 

w;, > 0, we obtain from the second inequality of (69) w<[l~&i pt . 
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It follows that the inequality 

We have inequality (68) for the function i = (u(*))*. Due to the 
homogeneity of the boundary conditions the function w must take its 
maximum value at some internal point of the region ah. Since at this 
point (aawE ) 

a ‘a 
GO, it must follow from inequality (68) that 

where 

W = W(x, tj+&, 
L 
W = vtz9 4f(o-1)/p), 

i=O,i,..., 

a=l,2,...,p. 

Summing these inequalities for all values of t ’ \< tj+a,p = t and 
using the initial condition i(x, 0) = 0 we find 

It follows from (18) end (20) that 

Returning to the function z(x, t), in accordance with (61) and (65) 
we obtain, from (72). the estimate (60). 

This proves the theorem. 

ffotes. 1. Theorem 1 is true for the first boundary Problem (2 = vl, 
z = v2). In this case 

5,=pr=o, p,=i. 

2. Theorem 1 is true for the third boundary Problem in the Parjllele- 
piped &O < xa < la, a = 1, 2, . . . , p): 

a(+LJz 
a =a = alo2 - VI0 ’ for za=O, t= 

(73) 
-Qa”Z~= = b*=Z + V,, fOr ZB = I,, 

if Ora, > cg > 0, usa > cg > 0. In this case we must formally Put 

FJ = cgha in (70)) replacing 3 by iha. Therefore. those v which enter in 
l 



917 &lut ion of a parabolic cquat ion 

conditions (73) will figure in (60). 

3. If bl, = b,, = d,, = 0, d,,>c, > 0 where cI is some positive 
constant which does not depend on h, and T, then the inequality (60) of 
Theorem 1 is valid for any t and /to (a = 1, 2, . . . , p). In this case 
there is no need to pass to the function v using (61), and we can, for 
example, put co equal to 0.5 c,. 

2. ‘Ilce accuracy of the local one-dimensional schenae 

Let us turn now to the problem (18)-(20) for the error 2 =.y - u, 
where u is the solution of the initial problem (l)-(4) and y the solu- 
tion of the difference problem (15)-(18). In order to estimate the func- 
tion 2, write 

where q is a net function defined by the conditions 

f-Jr, = s”, inside 52, 
(741 

q&,0) = 0, 

The function q is introduced so that the property 

iA 
a=1 

= 0. (75) 

I 

can be used. Equation (74) enables us to find q =_qj+a/p only inside the 
region Q. We find q on the boundary S of the net Q by writing 

( +la) 
at the nodes x1 

(-la) 
’ %r of the chain &, these being adjacent to the 

boundary nodes 1cl and z r. Using (76) we can find q at the boundary nodes 
xl and x : r 

q = q(+la) _ =:+a,) (q’-+b’ _ q(+l’))/ahf’a’ ior z = =, E r,, 

q = q+-la) + aLB1a) (q(-*a) _ rt(-t”) )faa for 2 = z1 E -fa. 
(77) 

Lemma 2. If condition (75) is satisfied, then the function q defined 
on Q by conditions (74) and (76) has the form 

(78) 
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for any j, i.e. fl = 0 on whole steps and q = 

We note first of all that for fixed j the 
change when a changes, i.e. on all the steps 

O(s) on fractional steps. 

coefficient p does not 
j + a/p, a = 1, 2, . . . , p 

(j fixed) p has the same value. It follows from equation (74) that 

$+4/P = qf+(4-1)/P + qyp* 

Writing j = 0, summing with respect to a and using conditions (75) and 
q(x, 0) = 0, we find q’ = 0. Continuing the argument we arrive at (78). 

Let us formulate now the conditions for the function u = z - q. To 
do this we write z = u + q in (18) and (19) and use conditions (74). 
Then we have 

PV i;, =Azv+;7;4 on sz, (7% 

v = pp'+'Q'+;~ for li=2,E+fa, t=tj+4,p, 

v = /3JJ(-"l) + G. for 2 =zr E 7,~ t = 'j+4/p, I 
(80) 

v (5, 0) = 0, (81) 

where 

~,=4J~+AZ% 

vcl = Yl + (PI q(+14)-q), v, = Yr + (@fl~'--q). 

The values(o+: 7 for x = n1 and n = X~ are found from formulae (77). At 

the node xl a adjacent to xl on the chain 4, we have 

J+lu) 

XT4 
=('I'+p"'_&-4=+(l+~ .qx4 

> 

and hence 

( -Ia) 
We obtain a similar expression for Aaq at the node xr . It fOllOwS 
from this and from (78) that Aaq = O(T) if conditions A are satisfied. 

From Lemmas 1 and 2 we have 

$4 =OV) + ow, Gl = 0 (P) + 0 (t), Gr= 0 (P) + 0 (z). (83) 

To estimate the function u we use Theorem 1, taking into account the 
fact that it follows from conditions A and the properties of the Pattern 
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functionals of the scheme’ that the coefficients 

are bounded and so Theorem 1 is applicable. Using estimates (SO), (83) 
end Lemma 2, we conclude that the following theorem is true. 

Theorem 2. The lo+ one-dimensional difference scheme (15)-( 1’7) con- 
verges uniformly in Q at a rate O(h’) + O(r) as h and T tend independ- 
ently to zero; more exactly, if conditions A (point I, !$ 1) are satisfied, 
then for sufficiently small -r < -r,, 

UY (x7 0 - u(x,t)~\<M(ha+q, na=$-ih’. W) 
a=1 

for all t = tjk , j = 0, I, . . . . k - I, a = I, 2, . . . . P where a is 
the solution of IR e problem (l)-(4), y the solution of the difference 
problem (15)-(18). and A? is a positive constant which does not depend 

on the choice of the difference net. 

Thus from Lemma 2 

It 

We 

rl 

follows from Theorem 

= 0 (7) or IIvlb<JJ~. 

1 and (83) that 

conclude that 

II 2 (x7 1) b = UY (x, 1) - u (x, t) lb < Il q (5, 0 lb + 11~ (xv t) lb =G M (ha + + 

The next theorem can be proved similarly. 

‘Theorem 3. If conditions A are satisfied, then the local one-dimen- 
sional difference scheme (35)-(37) uniformly converges at the rate 
o(:i*) + O(T) so that for sufficiently small T < ?a estimate (84) holds, 
where u is the solution of the problem (30)-(34) and y the solution of 
the corresponding prohl em (35) - (37). 

Notes. 1. The solution of the difference boundary problem for a 
parallelepiped with boundary conditions of the third kind (51) converges 
uniformly at the rate o(h) + 0(-r) both in the case of equation (1) and 
in the case of equation (29). 
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The order of accuracy with respect to h can in this case be increased 
by selecting a finer net near the boundary. If, for example, the first 
step near the boundary is of order 0(h2), then the magnitude of the 
error arising from the approximation to the boundary conditions will be 
0(h2). As a result, we obtain a non-uniform net on which the order of 
approximation for the scheme is, generally speaking, lowered. In this 
connexion a new examination of the integral order oi accuracy of the 
difference scheme is called for. ‘M do this special d priori estimates 
are needed, and these will be obtained in the second part of this article. 
The question of the convergence of homogeneous difference schemes for 
arbitrary non-uniform nets will be considered separately. 

2. If p = 2, the conditions A can be relaxed. In this case we do not 
make use of the existence of the mixed derivatives of the functions 
U, 4x. 

3. Appenclix 

I. Tu illustrate the use of the local one-dimensional method, let us 
write out the computing formulae for the two-dimensional heat conduct- 
ivity equation and for a rectangle (0 < xa < 1,. a = 1, 2, P = 2) : 

y (0, %, !) = IL11 ho, U (II, za, 1) = Pld k% 0, 

u ho, 0 = p21 @l, 0, ~(21, la, 2) = paa @I, 0, 
t 

w 

u (21, %, @)= uo @l, %a). 
I 

:1 
Consider the net xa ‘a) = i,lg, a=l, 2, t, = j-r where i, = 0, 1, 

. . . . N,, ha = Z,/A&, j = 0, 1, . . . , K, T = T/k. In this case one 

fractional step tjtw 
= tj t 0.5 T is introduced. Let y{tq/2 = yitai2 = 

y( i,h,, i,ll,, (j + 0.5 NT), a = 1, 2 denote the net f&&on. 

we write the local one-dimensional scheme 

1 +‘I*_ yj 
Y m A1y j +I’*+ ql, 

i +1 _;+v* 
=Aa31i+1-+*, 1 

‘t 

(W 
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AaY = @,Y; lxa= 
ah+la) (y’ *a) _ y) - aa ty _ y(-la)) 

a h: 
, 

“1 (Xl, 22’ :I - kl h - 0.5 h,, zsFs, i) = 0 (h2), a2 - k~-“*6a) = 0 (hy 

Let us give the simplest expressions for aa: 

aa = ,$-0.6,) 
a n i. e. u1 = kl (zl - 0.5 h,, xt, f), a, = k, (z,, z2 - 0.5 h,, 0 (2, = &ha), 

u, E 2kh_1a)k,/(kh_1a) + k ) a* aI= -F 
1 fk,(z,-O.Sh,,z,-00.5h,,f) + 

+ kl (x1 - 0.5 h,, xa + 0.5 hz, t)] etc. 

We shall give the computing formulae for problem (86) - (88). !Ve can re- 
write the difference equations (86) in the form 

It is clear from this that similar Problems are presented by yi+% and 

,r+! : 
l1’2 

.‘lL2 
problem (89) is solved for the segments 0 < X, < I, for different 

‘2 = 1, 2, . . . . N2 - 1, and problem (90) for segments 0 4 x1 Q 1, for 

different i, = 1, 2, . . ., N, - 1. Using the notation yfa) = q?;2 

(a = lB 2)P ‘a = (aa)i i B ‘1 (*ll) = (al)i *l i , a:*12) = 

we can write the formuiaz (89)-(90) in thi f:A 
(‘2) iI, i2fl 
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a y(-la) - 
a ‘2 (Y =‘“,I, 

(a) = i+ala 
((1) 

YI 
j+Cr/2 

%=-o ku ’ Y Ixa=za = k4a2 * u.= 1,2, 

(a) F _ hi (a-1) (0) 
-- 

r Y +hi(~a, y=yj. 

The boundary problems (91) can be solved using the recurrence 
formulae 

.(+la) 

Ea 
(+la) = 

ah+lJ + (i I- E,) aa + h”, /? ’ 
E,= 0 for z,= ha, 

q(+la) = 
p+ld 

a $g- Caa?a+87 Va=LLl for rz = ha 

a 

(91) 

(92) 

(93) 

(94) 

The formulae as given are suitable for programming. At time t = ti+,, 5 
the computations follow formulae (92)-(94) with a = 1, at time t = fi+I 
we put u = 2 in formulae (92)-(94). 

In the special case of an equation 
we have aa = 1 and formulae (92)-(94) 

2. For the sake of comparison, let 

with constant coefficients k, = 1 
are simplified. 

us give other economical schemes, 

discussed in r13, bd, (41, for the equation 

au %+a?, 
at= ax; ax; 

with constant coefficients. 

i+‘/, 
= 0.5 (A,yj+% + &yj+d. 

In [2l: 
yix _ yj 

= &yj+% + A&*, 
T 

yj” ; y 
i+% 

= A&’ - &yj. 

In [4]: “‘y- ?t = Al (~yi+“~ + (i - G) yj), 

Since each 
j + (a - 1)/2 
the points x1 
the values at 

. 
‘+I y’ _ y’t’/’ where O(o<l. (95) 

T 
= AS &+’ + (1 - Q) yf+‘A), 

equation contains the variables in two lavers j + a/2 and 
(a = 1, 2). we need the boundary conditions (for u f 1) at 
= 0, nr = E, for t =$andt=t. ,+% to determine y i+s and 

*2 = 0, “2 = 22 for t = tj+% and t = tj+[ to determine yj+‘. 
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In [II] : yj+“’ - ?li = 0.5 (Alyj+“* + Al+) + 0.5 h*yj + + Al&y*, 
7 

Y j+l -ti'+"* =O.J @i+'l,* 
7 

In this case, for t = t j and t = tj+I we use the boundary conditions 
over the whole boundary, and for t = t 

“1 

,+% the llqyndary cqn+ditions for 
= 0 and xl = 1, are determined, in terms of cl;,’ and viz1 from the 

formula 

v”” = d+l- 0.5 vA,yj”. . 

These values are used to find y j+% from the first equation. The first 
equation for yj+% is complicated because we have attempted to increase 
the order of accuracy with respect to T. 

All these schemes are absolutely stable and convergent in the mean. 

3. For the parabolic eauation of general form 

where 

we can also write down a number of absolutely stable and (mean) con- 
vergent economic schemes. 

We give a few of the schemes for the case p = 2, koP = const, k,, = k, 1: 

1) y1, = &il+ eA:aYS y< = A,2Y + (i-a) A;;;', O<Oii, 

where y = @l, i = yj+ll*, ;= yj, &zY = &aY;,& + ‘la; a ) 
Y;, = (y(+‘d__ 

- Y(--1,) ) / a,, &Y = 2 knYx,x,, A;;y = 2k,y_+ , yi = (++‘lp - yj+@-‘)lp) 1% 
c 

(a=i,2;p=2); 

2) Y< = h,,g+ $,;, yt; = Azzy + (1 - 4 A,$, O<O<i, Al2 = A;* + A;;; 

3) yi; = 0.5 L&y, yi = (y - ;) / ’ = 0.5 A, (y - ~) + AZy, A.Y= Ally -t A22y + A~PY. 

The scheme 

(for Fa = 0) is suggested in [‘I! . If p = 3 and k,+ = const, then we CM 
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use the following absolutely stable and mean convergent scheme: 

Y;, = A& Yi; = G+ &, 
=. 

y 
i; 

== h33Y + h33Y + &3V, 

where 

&by = kap (Y- xaxp + yx,& )s 
kaB = k8a for 1 .# jj, i = yi+‘fs, 5 = yjf’/s 

If p = 3 and /Q = cons& ro = 0 the scheme suggested in bl uses five 
fractional steps (where we use two). T!le schemes for an equation with 
variable coefficients are written similarly. 

4. For the hyperbolic equation 

we can use the local one-dimensional scheme 

Y = 0.5 [(A,y)j+“” $- (A,y)j-‘+“‘2], 3=1,2, 

where A,y = (n. + ) + b,y. , a x, % with boundary conditions (2) and an arbi- 

trary region C;. ‘Ihis sch;: is absolutely stable and (for a rectangular 
region C) has second order accuracy in T and h*. Other types of schemes 
for an equation with constant coefficients are discussed in [191. 

5. Fin.ally let us give an absolutely stable and mean convergent 
scheme for the quasilinear equation 

This scheme has the form 

yia = A,y-, a=i,2 ,,..., p--i, 

y_ = A,,yj+l + f (z, tj+l, Yj+(P--l)/P, $iTuP,. ..,yj,+(p -l)Ip, yip), 
‘P Xp--l 

a = p. 

Be shall give the proof of convergence and stability for the schemes 
in points 3, 4 and 5 elsewhere., 

In conclusion, the author expresses his gratitude to X.N. Tikhonov 
for his discussion of these results and to B.M. Budak for a number of 
comments concerning the editing of the article. 

Translated by R. Feinstein 
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