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1. Introduction 

In this paper we are concerned with the n~erical solution of the 
quasilinear heat conduction equation 

(1.1) 

for the cases p = 1, 2, 3. As a rule it is assumed everywhere that 

K,(u) = XJL~“, 

where cso >I, K~ > 9. Although equation (1.1) arises in several fields 
of mathematical physics, for the sake of definiteness we shall call the 
function u = u(t, xl, . . . , xp) a temperature function. 

It is shown in [l]. [21 that when p = 1 equation (1.X) has solutions 
whose derivatives are discontinuous at the points where u(t, n) is equal 
to zero. and the flow K(u)&/& is continuous, i.e. there exists a 
temperature front u = 0 (Fig. 1) which is propagated with a finite velo- 
city (see [3]). In this case there is no classical solution of the 
equation. The existence of a generalised solution of the Cauchy problem 
and of ,Wle boundary value problems is proved in 141. In [51, [S] the 
convergence of one explicit difference scheme for an equation of the 
form 

ffld aLF (16) 

x = ax2 
(1.2) 
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in the class of generalised solutions is proved (these results can pro- 
bably be extended to the case of implicit schemes also). In [VI a 
generalised solution of an equation of the form (1.2) is calculated by 
A. A. ~rodnits~’ s integral relations method. 

FIQ. 1. 

To calculate such generalised solutions (which we shall call tempera- 
ture waves, or simply solutions, below) we use homogeneous difference 
schemes for ‘through computation* which do not require that the points 
of weak discontinuity be picked out explicitly. The theory of schemes 
of this kind is elaborated in the papers [81, [91, [IO], the last of 
which also gives a bibliography. However all the proofs of convergence 
assume that K (u) >c > 0 and, despite the fact that these theorems are 
very general Y even admitting discontinuous functions Ko = K,(t, X, u)] 
they are inapplicable for the case when K:,(a) is equal to zero. 

Our purpose in this paper is to show that these schemes are also 
suitable for the calculation of temperature waves. They enable us to 
use a large time step in the computation, give a good idea of the velo- 
city of propagation of the front and when the net is sufficiently fine 
give the profile of the front itself. 

In the case of several space variables (p > I) we use the local one- 
dimensional method of variable directions described in CIII. tul. 
These papers also give a bibliogrmby of work done on this problem (of 
which the work [131 should be noted). Let us give a brief description 
of the method of [XII, h21 applied to equation (1.1). 

The time step tj f t <ti’l is divided into p layers of identical width 
(*fractional steps”) 

t i+W1)/P G t G ti+a/r’ , a==i,Z )..., p, 
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In the layer numbered a the one-dimensional equation 

1 au -- p at 
=2- K,(u)&) ax, i a 

(1.3) 

is solved. All coordinates x P differing from xo are taken to be para- 
meters. In this stage, as boundary conditions we use the values of the 
boundary functions at the points of intersection of straight lines 
parallel to the axis on, with the boundary of the region of integration, 
and as initial values we take values obtained in the calculation of the 
preceding layer. In fact, the same one-dimensional program (OP) is used 
to solve all the equations (1.3), and this program replaces (1.3) by an 
implicit homogeneous difference scheme (Section 2, Para. 2). 

In our opinion there is at the present time no more suitable method 
for the practical solution of many-dimensional quasilinear parabolic 
equations. This method can be applied to arbitrary regions (and not only 
to parallelepipeds) and the order of accuracy is preserved on non-uni- 
form nets 1121. It is suitable for quasilinear parabolic equations of 
general form even when there are discontinuities (of the first kind) in 
the coefficients. With such a wide range of applicability the method of 
variable directions possesses in addition a whole number of practical 
advantages: simplicity of program; less rigorous requirements on the 
size of the working store (in comparison with most other schemes); sta- 
bility of computation for very large time steps, enabling complex prob- 
lems which do not require great accuracy to be solved quickly. 

Instead of giving the exact profile of the wave, calculation using 
any difference scheme gives its own difference profile (the finer the 
net the more exact the profile). In order to study the structure of this 
profile for a very large net and to estimate the effective width of the 
front we construct the difference travelling wave in Section 5 for the 
case p = 1; this is the analogue of the known solution of the form 
u = f(ct - x) called the travelling wave (the constant c is the velo- 
city of the wave). The difference travelling wave was constructed in 
[14] for difference schemes of through computation in viscous gas 
dynamics. 

It must be stressed that nowhere have we attempted to choose the most 
favourable computing conditions for our problem. On the contrary, in 
certain cases we have purposely chosen unfavourable conditions to make 
the divergence more noticeable. In some instances the space nets are 
large, and in others quite fine. The time step is always taken to be 
large. 
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The authors wish to express their deep gratitude to A.A. Dumova for 
writing the program and making the calculations. 

2. One-dimensional problems 

I. On the uelocity of propagation of the temperature front 

Let us consider the equation 

where K (0) = Q, (0) = 0; K (u) > 0, cp (u) > 0 when u > 0; 

lim [K (u)@ (u)l = 0. 
U-Wl 

The propagation of the hot front in this 
case takes place with finite velocity. 
Let us denote the position of the front 
at time t by e(t) (Fig. 1). 

Differentiating the identity q(u(t, 
c(t))) = 0 and using the condition for 
continuity of flow at the front 

IK (u) &/&&.=~(~, z 0, 

we can derive the following expression 
for the velocity of the front: 

FIG. 2. 
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Below, in Example 1, the initial profile for t0 = 0.1 is 

u = VI0 (1-234, 1 0 < X < 0.5, 
0, 0.5 \(x<l. 

Obviously e(ta) = 0.5 and, from formula (2.~9, dt//dt = 5. 

In Example 2 the initial profile for t,, = o. I is 

Here too c( to) = 0.5 but from formula (2.2) we have dFj/dt = 0. The cor- 
responding solution in the first case (Fig. 2) is a wave propagated with 
constant velocity, but in the second case (Fig. 3), despite the rapid 
increase in temperature, the front is not propagated. 

2. The c~rn~u~jn~ scheme 

The one-dimensional program OP was written to solve equation (2.1) 
as this is more general than equation (1.1) for p = I, with boundary 
conditions of the first kind 

It is assumed that q(u) = ur, but in all the examples given #below 
r = 1. 

We replace equation (2.1) by a homogeneous difference scheme (see 
[to]) with lead 

where 

(2.4) 

the quantity with the invested circumflex is calculated in the j-th 
step, and the quantities without it in the (j + I)-th step. The net is 
assumed to be uniform: xi - ih, U < i < N; tj == Jo. With this 

scheme there is stability for any step T. 

We can solve the system of equations (2.3) for i = 1, 2, . . ., N - 1 
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in every (j + l)-th step by the following iterative method. Let s be 
the number of the iteration; writing 

we can rewrite equation (2.3) in the form of a linear equation in vi, 
omitting the indices (s) over all the other quantities for the sake of 
brevity: 

Here Ai are given by formula (2.4) 

Each iteration requires the solution of system (2.5) for i = 1, 2, . . ., 

A’ - 1. This is done by the method of successive substitution (see 1153) 

Bi = Cp’ (Vi), 
Fi = up (&) - up (vi) + ViBi. 

with the formulae: 

A. 
a, = 0; 

%+I = n,+l -/- Ai ;;” cq + Bi ’ i=l,2,...,N-1; 

B1 = z.0; pi+1 = 

AiPi 4. Fi 
A,+l+Ai(l-a$+B~ ’ i-1,2,...,N-I; 

(stl) ($+I) (-++l) 
v<v -= ?‘N; Vi = aitl?~itl + ~i+l + i = N--l, N-2, . . ., I. 

The values of me and uN are given by the boundary conditions: 

For the zero iteration we take the values from the previous step: 

(0) 
yi zzz E is The condition for the iterations to end is 

(srl) ($1 

max Z’i - Z’i < E. 
l<i.~dN-l 

In all our calculations we have put E = 1O-3 (see Section 3, Table 3). 

For each example we calculate the actual number of iterations uj snd 
the “Courant ratio” 
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x = max [K (7k) T/h’], 

which characterises the size of the time step. 

3. Example I. 4 waue propagated with constant uelocity 

We use the analytic solution of the equation 

which is a travelling wave: 

u= 
i 

[acx,l (ct + z1 - zp, .for z < 321 + ct, 

0, for q+ct<x. 

(2.6) 

(2.7 

The parameters of the calculation are o = 2, K,, = 0.5, c = 5, nl = 0. 
From the solution (2.7) we selected initial values for t, = 0.100 and 
the boundary conditions 

U (I, 0) = 20 1/T, I.! ([, z,v) -- 0. 

The net is quite fine: h = 0.02, N = 50. The calculation was carried 
as far as t = 0.200 with the step T = 2 x 1O-4 (y, = 5.0). The analytic 
solution and the results of the computation are shown in Fig. 2. Except 
for certain nodes near the front the deviation between the calculated 
solution and the exact solution nowhere exceeds 0.002. The number of 
iterations v S3. 

4. Example 2. 4 non-propagated front 

we use the analytic solution of equation (2.6) for - ‘x < t < c: 

(2.S) 

The parameters of the calculation are u = 2, K,, = 0.5, x1 = 0.5, 
c = 0.1125. The step of the net is h = 0.02, the number of nodes .Y = 50. 
From the solution (2.8) we took initial values for t,, = 0.100 and the 

boundary conditions 
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-- 
u (t, 0) = 1/~0.9--&, 

The calculation was carried to t = 0.110 
The analytic solution and the results of 
Fig. 3. 

The absolute error for t = 0.110 does 
iterations v Q 3. 

u (t, 5x) = 0. 

with step T = 1O-4 (x = 6.2). 
the calculation are shown in 

not exceed 0.03. The number of 

It should be noted that the initial and boundary condition in Examples 
1 and 2 are very similar, and the conditions of the calculation are 
identical. 

5. Example 3. A waue propagated with w-Sable velocity 

We use a similarity solution of equation (2.6) put in the form of 
the series 

where 

s = z/E, g = D (t + cJm, 

and the constants are 

no + 1 02 = xoc@ 
m=-, 

2 rno (1 + al + aa + a - -)” ’ 

nb-m 

al = 2mG(u+I) ’ 

The parameters of the calculation are u = 2, n = 0, c = IO, cl = 0, 

KO = (1 + a1 + a#. The step of the net h = 0.05, the number of nodes 
,V = 60. The initial profile was calculated from the above terms of the 

solution (2.9) for to = 0.010. The boundary conditions are 

a, = 
_ a 

1 
x 2+0.5~l((2~+1)(3~f1)--4~+~)] 

3 (25 + 1) . 

u (t, 0) = 10, u (t, 4) = 0. 

The calculation was done up to t = 0.090: (a) with step T = 2 x 1o-4 
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(X = 6.7) snd (b) with step T = 1O-3 (x = 33.6). The difference between 
the results of the two calculations does not exceed 0.02 anywhere apart 
from a few nodes near the front. 

TABLE 1. 

Therefore in Fig. 4 we have put all the points obtained’in variant (a) 
and only some of the crosses corresponding to the results of variant (b). 
The continuous curve was calculated from the terms in (2.9). 

The number of iterations v is given in Table I. 

FIG. 4. 



954 A.A. Sanarskii and I.M. Sobol 

Clearly, by increasing the step five times we double the number of 
iterations. Thus computation with a large step is more profitable pro- 
vided that it gives sufficient accuracy. 

6. Exampfe 4. nDecuy of u dircontinuity~ and calculation for 
steady ~fow 

With the pre-set boundary conditions 

u (t, 0) = I.&(), u (t, 1) = 0 

equation (2.6) has the stationary solution 

Let us choose the parameters for the calculation: (3 = 2, K~ = 3, 
U@ = 10, i = 1. The step of the net h = 0.02, the number of nodes N = 50. 
The initial profile for t = o is the same as in ii?]: 

u (0, z) = 
t 

10, 0 <z <OS, 

0 0.5<x<i. 

The boundary conditions are 

u (f, 0) = 10, u (t, i)= 0. 

Using the comparison theorem of [31 we can estimate the time t* when 
the front reaches the point n = 1. To do this we have to construct two 
analytic SOlUtiOUS of equation (2.6) for u = 2 and K@ = 3 such that 

a1 (0, z> < u (0, 2) < U¶ (0, $ 

and 

u10, 0) < u (t, 01 g *t (t, 01, 

and to find the corresponding times t,* and t2*. 

As u1 we can take a solution of the form (2.9) for n = 0, having 
found the arbitrary constants c and cr from the conditions u, (0, 0) = 
IO, e,(o) = 0.5 (Pig. 5). We obtain t,* = 2 x 10-3. As u2 we choose a 
solution of the type (2.7), where the parameters c and x1 are found 
from the conditions ~(0, !$) = 10 and t* = max. We obtain 

_______~. 
U - 20 JISOO t - x + 0.75 (Fig. 5) and t2* = 0.4 x 10-3. Thus we 
hive- the estimate 
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0.4 x IO-3 < f < 2.1 x: 10-3. 

The calculation (a) was carried out 
with the step T = IO-~ (x = 7.5) up to 
t = 5 x 10-3; the time t* turned out 
to be somewhat smaller than 1.5 x lo-3 
(the results were printed out after 50 
steps). At time t = 5 x 1O-3 the pro- 
file was still not steady. The number 
of iterations was: 

FIG. 5. 

;-i-I!0 j 15 / 20 / 25 1 30 / 35 j 40 } 45 1 50 

The results are shown in Pig. 6. 

u 
FIG. 6. 



956 A.A. Samarskii and 1.M. bobol 

It is proved in Section 5, Para. 5 that in this example the steady 
profile does not depend on the time step. It is thus better to take a 
large step. The calculation (b) was carried out with the step -r=2 x10-4 

(x = 150) up to t = 2.5 x 10 -2. The profile was already steady for 
t = 10-2. * For all t, starting from 5x 10-3, the number of iterations 
v = I. 

3. Tbe two-dimensional 

I. Computing scheme 

The program was written to solve equation 
boundary conditions 

problem 

(1.1) for p = 2 with the 

The net is assumed to be uniform: Xi = ih,, 0 <iI <,\‘I; yk = Ah,, 
0 Sk<.N,; tj = jT. 

At the initial time 

given. Transit ion from 

to = 0 the matrix of initial values (Vfk) is 

the matrix (QihJ in the step tl to the matrix 

for simplicity we shall use x, y instead of x1, x2 as our independent 

variables. 

(Z$‘, is carried out in 

1) the matrix (l.$.“). 
gram OP is used for this 

two stages: 

is calculated. The same one-dimensional pro- 
(Section 2, Para. 2) with Y = .V, 

Ai = th;‘K1 [(I.5 (~i_~ + vi)], 

a0 = p1 ((j + +, t7 fw, 

Z'<V, = F1 ((j -+ f) T, Iifl,). 

* Subsequent changes in the values of Vi do not exceed one unit in the 
sixth significant figure. 
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This program calculates the row vfi”’ in turn for all k = I, 2, . . . , 

N, - 7; for each row vik. 

2) we insert ,V = .V, in the OP program: 

Ak = oh," K, LO.5 (z),+~ + 741, 

Vo = fb ((i + 1) z, ih,), 

7’N, = L ((i + 1) z, ihI), 

and using this program for each column @I, 
Vik we calculate the column 

Vi;’ in turn for all i = 1, 2, . . . , N, - 1. 

Thus the OP is used as a sub-routine which transforms the rows (u&) 

into the rows (&“‘), and then the columns (v$“) into the columns (vi:‘). 

Altogether in each step the OP operates (V, - 1) + (N, - I) times. * 

To give an idea of the step-length ‘“e calculate the quantities 

x1 = max [K, (u) z/h;1 and xz = max [K, (u) z/h,21. 

In order to observe the course of the computation easily at each step 
the quantity 

N-1 Nz-1 

6’ = 

is calculated; in some measure this characterises the deviation from 
the exact solution. 

2. Choice of the analytic solution 

We can look for the solution of equation (1.1) in the form of a plane 
travelling wave u = f(w), where 

a 3 

and A,, . . . . A, are constants. Substituting this solution into equation 

* Ye could take the boundary conditions in the first state at any other 

time t’ lying between tj and tj+l. 
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(1. I) we obtain an ordinary differential equation whose integral has 
the form 

where C and C, are constants of integration. 

The family of solutions corresponding to C = 0 has a very simple form: 

(3.1) 

3. Example 5. An anisotropic plane waue 

Let us consider the two-dimensional equation (I. I) with parameters 

u, = 4, x1 = 4; crz = 2, x2 = 0.25, 

FIG. 7. FIG. 8. 

and for the calculation let us use the solution (3. I) with given con- 
stants C, = 0, h, = 1, h, = 2. The corresponding solution is 

+ 
+ 

\ 

t 

+I 

the net is crude: h, = h, = I; the number of nodes ,Yr, I’, = 30 x 20 = 

600. We take initial values from the solution (3.2), i.e. u(@,r,y) : 0, 
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and boundary conditions on the straight lines x = 0, x = 30, y = 0 and 
y = 20. The calculations were carried out up to t = 50; (a) with step 

-r = 0.2 (x1 = 37.2, xZ = 0.34); (b) with step T = 1.0 (xl = 186, 
xz = 1.7); (C) with step T = 2.0 (K1 = 372, x1 = 3.4). Some of the re- 
sults for t = 30 are shown in Figs. 7 and 8, where the crosses denote 

TABLE 2. TABLE 3. 

the results of variant (c), the dots those of variant (a); the continu- 
ous curves show the analytic solution. 

The deviation from the exact solution is given in Table 2. 

The reduction in the deviation for t = 50 is explained by the fact 
that the wave already embraces almost the whole 

TABLE 4. rectangle, and the process of equalizing tempe- 
rature stabilization is calculated better than 

Score1 a) 1 b) / cl 
the process of propagation. 

:1p,“, / 1; 1 I;: 

To exclude the possibility of “underiteration” 
we calculated part of variant (a) with three 

different values of E (see Section 2, Para. 2). 
The corresponding values of gj are given in 

Table 3.* The maximum number of iterations v,,, are given in Table 4.** 

The comment made at the end of Para. 5, Section 2, remains valid. 

l When E = 10 only one iteration is computed in each step. 

l * For all t for which there are columns the values of v are equal to 1 
for those rows (columns) which the wave has not yet reached, and to 
V lllx for most of the other rows (columns). 
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4. Comments 

Eecause, in the computation for p = 2, we used boundary values taken 
for t = tj+x, the profiles v(tj+l, x, yk) agree with the boundary condi- 
tions for x = 0 less well than the profiles v(tjtl, Xi, y) agree with 
the boundary conditions for y = 0. 

At first sight it appears that all the values of v(ti+r, X, y) on 
the line x + 2y = con&. must be included between the corresponding 
values of u(tj+g, X, y) and u( tj* n, y). However, in the second step of 
the computing process w.r. t. y, certain values, mainly in the neighbour- 
hood of the front, can become smaller than the values of La(tj+g, X, y). 
In principle, this phenomenon can lead to the appearance of non-mono- 
tonic behaviour in the computation. In our example, even when the step 
is large, the non~onotonic effects are very small, and in the variant 
(a) they do not exceed two to three thousandths. 

Finally we note that in the anisotropic problem changing the order 
in which the directions are computed - first w. r. t. y and then w. r. t. 
x in general affects the accuracy of the result. 

4. The three-dimensional problem 

I. The computing scheme 

The program rlras written for the solution of equation (1.1) with p ‘3 

in the cube O<x<r,, O<y<ll,, O\(,z\<ls (we shall write x, y, z 
instead of xi, x2, x3) on the surface of which the values of the unknown 
function are given. 

i? m = mhs, 0 < n < N,; t’ = jT. 

At the initial time t0 = 0 we have the initial table of (vfk,). The 

transition from (r&J to (~~~~) is done in three stages: 

1) first the sub-routine OP transforms the l’rows” 0 <i <iv, of the 

table (vi& into the flrowsll (z$$), using the boundary values 

24 (O*‘ia, 0, yk, 2,) and u (tj+‘/s, 1,, ytr, 2,); in this stage A’ = R, and 

Ai = TIh~2K1 [O-5 (ai- + Vi)]; 
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2) the ~columns~ O< k <N, of the table (v$$) are transformed by 

the OP sub-routine into the ~columnsM (~$2) with the help of the bound- 

ary values u (tj+*$ Zir 0, z,) and u (t’+“‘, Xi, I,, 2,); in this stage N=N, 

and 

Ak = zIz;~K~ iO.5 (q-I + u,Jl; 

3) the Ilheightslt 0 <m <N3 of the table (z&~) are transformed into 

the VheightsH (z&h) using the values of u (tj+l, zi, yk, 0) and u (tj+l, 

xi, Ykv 1,) on the assumption that the number of nodes in the OP is 

N = N, and 

A, = ~h;~ K, IO.5 (z+ + u,)l. 

In all, in each step, the sub-routine OP operates (N, - 1) (N, - 1) + 

(N 1 - I) (N, - 1) + (N, - l)(N, - I) times. 

2. Example 6. An isotropic plane waue in space 

Let us consider the three-dimensional equation (1.1) with parameters 

(II = u2 = 0, = 2, x1 = x, = x3 = 0.06 

and for the calculation we use the solution (3.1) with given constants: 
c, = 0, A, = A, = A, = 1. The corresponding solution is 

u = 

i 

(10/3) vt - 5 - y -2 for t>z+y+e, 

0 for t<<x+?J+z. 
(4.1) 

The net is coarse: h, = h, = h, = 1; the number of nodes N, xiv’, x/V, = 103. 

From the solution (4.1) we take our illitial Values, i.e. ~(0, x, y, z)- 0, 
and the boundary conditions on the Planes x = 0, x = 10, y = 0, y = 10, 
z = 0 and z = IO. 

The calculation was carried out from t, = 0 to t = 9.0: * (a) with 
step -r = 0.2 (x = 1.2) and (b) with step T = 1.0 (x = 6.0). 

* By this time the wave has not reached the plane x + y + z = 10. and 
so we can use zero boundary conditions on the boundaries x = 10. 
y = 10 and L = 10. 
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We judge the results to be good: at a distance of two computing 
intervals from the front the computed values are already near the exact 
ones. As an example, in Table 5 we give the values of viz1 (i.e. the 
values of the function at nodes lying on the straight line y = 2, z = 1) 
at time t = 9. 

TABLE 5. 

u 

Ui21 

j 7.4536 i 6.6667 / 5.7735 ) 4.7140 i 3.3333 / 0 / 0 

a) 1 7.4x 1 6.6673 ) 5.7740 1 4.7154 i 3.3587 / 0.735 / 0.001 

b) i 7.4547 j 6.6710 j 5.7832 j 4.7352 j 3.3901 / I.119 / 0.002 

To show how well the velocity of propagation of the wave is given, 
in Table 6 we show the values of the function v at all the internal 
nodes lying in the plane x + y + z = 5 for t = 8 and in the plane 
x: t y + z = 6 for t = 9 {variant (a)). 

TABLE 6. 

t=8 i 5.7744 j t=9 

I 5.7743 I 1 5.1744 / 5.;742 / 

I 5.7742 / 5.7741 / j 5.7743 ; 5.7742 1 5.7742 j 

/ 5.7741 1 5.7739 / 5.774@ j j -- 5.7740 1 5.7740 1 5.7740 / 5.7740 j 

The numbers are placed in the tables as the corresponding nodes are seen 
from the point (0; 0; 0). The value of the exact solution u on these 
planes is equal to 5.7735. (It might be mentioned here that the itera- 
tions were computed to an accuracy of E = 0.001.) 
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The maxims number of iterations v,,, is equal to 3 or 4 in variant 
(a) and to 4 to 6 in variant (b)). 

3. Comparison with the calculntion using un explicit scheme 

We calculated the same problem using *Euler’ s scheme*: 

where 

All the quantities on the right hand side are calculated in the j-th 
step. The net and the boundary conditions are the same as in Para. 2. 
To obtain roughly the same accuracy as in the method of variable direc- 
tions we had to reduce the step length 20 times (T = 0.01 and -r = 0.05). 
The computing time with the explicit scheme was almost four times 
longer. * 

5. The difference travelling wave 

1. Definition 

Let us construct the solution of equation (2)3) satisfying the con- 
dition 

. 
v: = v;:/j, (5.4) 

where ,3 21 is an integer. Obviously, such a solution preserves its 

* We know that as x increases the explicit scheme loses its stability. 
The need to carry out the calculation with a small step can be 
avoided, but at much greater cost (more than four times), when the 
heat conduction equation is part of a system of differential equations. 
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profile from step to step (w. r. t. j), shifting to the 
ing intervals. Thus the velocity of motion of all the 
file is constant and equal to c = ph/-r. 

Inserting (5.1) in (2.3) we obtain the equation 

right by p comput- 

points of the pro- 

which contains all the quantities in one step. This equation has a 
“first integral”: 

P 

k=l 

All solutions of equation (5.2) are called difference travel1 ing waves. 

interpola- These solutions can be very useful in the study of various 
tion methods (i.e. various methods of calculating A,). 

We shall put q(v) = v below. 

(5.2) 

2. A difference trauelling wuue propagated along u null 
background 

The solution of equation (5.2) which is a wave moving over a null 
background (Fig. 9) can be found as follows. Let CO = Xio+l be the Posi- 

tion of the difference front. We shall take 

and Vi0 f 0. Let us find this value with 

the help of formula (2.2) on the assump- 
tion that the equation 

A-(u) a/L 311 _--_:_ - 
l4 Cf.z z 

is valid at the fictitious point x, 
lo 

+ y: 

FIG. 9. 

This gives us the condition for finding vi : 
0 

Ai,+, = 0.5 3 (5.3) 
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We shall find all the values of Vi for i < i, from the equation 

965 

(5.4) 

where, clearly, C, = - 0.5 13”i . 
0 

When K(u) = K~I_I~ it follows from (5.3) that 

Ui, = 2 (hC/2xJ'~", 

where c = ph/T is the velocity. It is not difficult to verify that this 

value differs from the corresponding value on the analytic travelling 
wave (see (2.7)) by the factor 0.5 (2o)llo. In particular, when u = 1 
(Boussinesque’s equation) and also when o = 2, the profile of the wave 
we have constructed, (5.3)-(5.4), is very near that of the wave (2.7). 

3. The difference front in the case of a through computation 
scheme 

In the through computation of a wave propagated over a null back- 
ground we have to deal with a solution which, strictly speaking, satis- 
fies the condition at infinity 

z’i - 0, when i -+cc. 

instead of the solution (5.3)-(5.4). The appearance of the front is 

associated with the appearance of the “machine zero” or, in other words, 
is determined by the allowable accuracy of the computations. This means 
that in order to study the through computation scheme (Para. 2, Section 
2) we must consider the solutions of the equation 

P 

Aitl (Ci+l - 7-i) + x Ui+k = 0. (5.5) 
k=l 

It is easy to prove that all the positive solutions of equation 
(5.5) are monotonic, tend to zero as i - a, and tend to m as i - - 0~. 

Let us introduce the new variables 

where x0 = Ko-rh-*. In the new variables we obtain instead of (5.5) the 
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equation 

IO.5 (Wi+l + Wi)l” (Wi+l - Wi) + &Ii+* = 0. 
k=l 

(5.6) 

Therefore, the profiles of the required solutions depend mainly on the 
non-linearity (a) and on the velocity (p) and not on the net or K~. 

Let q denote the smallest admissible number in the computation (in 
other words, any number less than TJ is considered to be zero). If 

wi+l = q then it follows from (5.6) that 

Wi = (2”#(“+1) 
-$$ 7 + o(rl>. 

Therefore, if we denote the number of the last non-zero number Wi by i, 

we can say that the only values which are possible in the computation 
are* 

a-l 11 < wi, < (2~$1’1@+1) - - 
a-t1 7. 

In fact, if Wi is less than n the last number of a non-zero Wi will 
be less than i, ar!d if w. is greater than the right-hand side we have 

wi t1 0 a 
q and the last nk!ber is greater than i,. 

In Table 7 we give the values of Wi corresponding to the case a = 2, 

q = 2.5 x lo-” for p = 1 and p = 2; i, = 10. 

TABLE 7. 

4. Numerical example 

The problem considered in Example 1 

6 
I I 

I 8 9 10 

2.5.10-lo 0 
2.5.10-10 0 

(Section 2) was calculated with 

. For simplicity we give the argument for wi and not for Vi. 
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a very coarse net: N = 50, h = 0.25, from t ,, = 0.10 to t = 2.00 with 
step T = 6.05 (x = 80) and with step 7 = 0.10 (x = 160). These parameters 

satisfy the condition n/h = p for p = 1 and p = 2 so that, with a 
special choice of the boundary conditions, the solution could turn out 
to be a difference travelling wave. 

In our example, after a few steps the computed profile becomes very 
close to the difference travelling 
wave. Subsequently this profile is 
displaced with a velocity near c, 
being somewhat rearranged so that 

1 vf - &I - 0 as j increases. In 
Fig. 10 we give, on a large scale, 
the analytic solution (2.7) in the 
neighbourhood of the front at time 
t = 2.00 (the continuous curve) 
and the results obtained in the com- 
putation (the dots for T = 0.05, and 
the crosses for T = 0. 10); the 
broken curves are the profiles of 
the difference travelling waves 
calculated using the table at the 
end of Para. 3, from the formula ~1 = wiIvg. 

FIG. 10 

Since the front is IIblurredU for a very coarse net, the error in the 
neighbourhood of the front is quite considerable. As the distance from 
the front increases the error rapidly decreases. 

For the first of three variants the number of iterations at each 

step v = 9, and for the second v = 12 (cf. the end of Para. 5, Section 

2). 

5. A difference stationary solution 

The stationary solution of equation (2.3) given by the condition 

(5.7) 

can be considered as a special case of a difference travelling wave for 
p = 0, when the velocity of the profile is equal to zero. The difference 
stationary solutions satisfy the equation 

Ai+l (vi+1 - ui> = Cl, (5.8) 
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which is completely analogous to (5.2), where C, is an arbitrary con- 
stant. 

In Example 4 we found a stationary solution satisfying the boundary 
conditions u,, given, vN = 0. It is not difficult to verify that this 
solution does not depend on the time step -r (this is a property of 
homogeneous difference schemes). 

In fact, since, in this example, a = 2 we can rewrite equation (5.8) 

(using (2.4)) in the form 

(Vi+* + Vi)” (Vi+1 ? z’i) = - C3, 

3 

where C = - )f4Clh2 /x,7‘ is again an arbitrary constant. Let us make 
the substitution vi = Culi. TO find wi we have the equation 

(Wi+l + Wi)” (Wi -wi+l) = I* 

Knowing wN = 0 we CXI find all the wi, i = N - 1, N -_2, . . ., 0. We 
have then to choose the value Ef the arbitrary constant C = vo/wO and 
find the required values Vi = Cwi. It is clear that this solution de- 
pends only on N, i.e. on the size of the space net. 

In the calculation of example 4(b) we obtained values which coincide 
with the stationary solution calculated in this way to an accuracy of 

0.0000001. 

TABLE 8. 

__ p;- j 0.4 1 0.6 1 0.8 1 0.9 / 0.98 ’ 

u(q) 1 9.283 1 8.434 / 7.368 j 5.848 1 4.642 1 2.7V- 

N=50 / 9.289 / 8.447 ) 7.393 1 5.900 ( 4.733 / 2.981_ 

“i N=lO 9.308 1 8.495 1 7.486 1 6.091 1 5.052 ( - 

N=5 9.332 1 8.551 1 7.592 / 6.298 1 - / - / 
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In Table 8 we give the values of the analytic and difference station- 
ary solutions for this problem for N = 50, N = 10, N = 5. 

Translated by R. Feinstein 
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