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1. The splitting method (fractional step method) is suggested in (1!

for the numerical solution of the multi-dimensional heat conductivity
equation with constant coefficients. In [2] the difference scheme for
the heat conductivity equation with constant coefficients is written
down for the case of two space variables and a rectangular region, and a
proof of the convergence (in the mean) of this scheme with speed O(Tz)
with the additional condition T/h2 = const. is given. In this note we
shall show that the modified fractional step method can also be used in
the case of an arbitrary region and a non-uniform difference net. We
prove the convergence in the mean with speed 0(h2) + 0(¢1) of the local
one-dimensional schemes we examine; in contrast to [1), we shall not
connect these schemes with the splitting of the multi-dimensional differ-
ence equation and this makes them suitable for an arbitrary region and
quasi-linear parabolic equations. In contrast to [3], at each stage we
use six-point homogeneous schemes which enables us, in particular, to
take the scheme of [2] into account. As usual we give the argument for
a family of homogeneous schemes characterised by the given pattern
functionals of [3]-[5]. We use the methods developed in [3]. [SJ and
[6]. Convergence is proved for arbitrary non-uniform nets.

2. Let G be an arbitrary two-dimensional region bounded by the con-
tour [, G=G+T, z=(2, z:) a point with the coordinates r, and x,.
In the cylinder Qp=GX [0<t<T] we look for the solution of the
problem

2 5,

ou d du
=2l Lu=g (k@0 5o) (5 0€Q =6O<I<T), (1)

a=]1
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ujp=u(r,t), t<[0, T ufz, 0) =up(x), z&G, (2)
ko(z, )y 2 >0 (ep==const), a=1,2, (3)

We shall assume: (1) the p{oblem (1)~(3) has a unique solution
u = u(x, t), continuous in “T‘ (2) the following conditions are satis-
fied.

Conditions A. In the region 5} the functions &%u/dsr3, azﬁJaxi satisfy

the Lipschitz conditions for X
Ok,/0z,~ the Lipschitz conditions for t (x = 1, I).

and =z, a dufdz,, uBxl, Suidt, k,,

a

Below we use only one property of the region & explicitly: the inter-
section with the region G of the straight line &, drawn through any
point x & & parallel to the coordinate axis Uz consists of a finite
number of intervals (see [3] . For simplicity we give our argument
assuming that any straight line .‘84 intersects the contour [ twice.

3. Consider the arbitrary non-uniform rectangular net o,{r;G),
where z;=(z{"), 2{4}) is the node of the net with coordinates z{* and
::g", iy =0, %1, *2, ..., « =1, 2. The steps of the net h‘f":x?')w
x?‘_” and kg*)ng”—x;i*‘” are functions of the coordinates x‘f" and
g:g’) respectively. Let mh:{xiEG} he the internal net region,
T={z; &I} the boundary net region. Through the point r;Ew, we draw

the straight line &,, parallel to the coordinate axis Ox ; the set of

all nodes of the net Wy lying on &,, is called the chain q,. Let
z, =z®cy and zp=z{"' €y be houndary points of the chain I, where

x, increases on going from x; to x

[0 4

-+ and Yo, 1 is the set of the nodes

x; of all chains I, in a given direction, is the set of nodes x .

Ya,r
We put 1, =17, 5+ Ta, o oY =0, +Tg p OF *) = w417, 5 The segment

0 <t < T is divided into K equal parts of length T by the points t; =0,
T, .oy t}-=1't,.. o lg=Ktr=T, *=T/K (uniform net with step T) and we

introduce the intermediate (fractional) steps Ly, =-tj+'r/2=(j+—21~)t,

j =0, 1, ..., K- 1. The net w_ with respect to time contains both
integra] and fractional steps, i.e. (tj.e[o T}, where t.-] T,
oL, 1 .
=0, & 2 N NN I R 2 . K The point (xt, ,:)EQT is a node

of the space-time net 5 and Q= {(z;, 5,)eQT} is the set of internal

nodes of the net @; it is clear that §=$h><~(§.., Q = w, X v, where
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o = {tEO<IST]
®e suall use the notation given in [3]. Let y=1y(z, tj.)ayj° be a net

function given on Q. We shall write y(*m“)=y(x(im""), N, 2Em =

i jy— 1 i - -lg)y, (+1g)
= (xil.xm;’ :r:gi’)), zg‘: 1/2) 5 (xih) + x(lh 1))’ y;az (y—y « )Py yxf‘"(y al W)hgtr

v =M gy b =hl

»
Xy ar’a a

(ig+1) ; ; —
hoyr==hy® " By=(hgthq4)/2, y’—a: (y7+“/2—y’+(“ D).
¢ need the following sums and norms:

@, o =Dy AP R, (y, o) = D vl A,
©p

@
(y, v], = E yivihg“) ﬁ:;itl) (+ fora=1, —for a=2),
ofi

ll=VE o lvk=VE v vk, =V P,
I9lis, = My lly,» where ("“)?ca =y,

1, =0 for zE T, o

4. The operator f-au is replaced by the homogeneous uniform net
schame

Aay == (aay;a)gy

having second order approximation on a uniform net (see {4] and [5]) S50
that Ayu— L u=0 (k).

The class of pattern functionals a, is described in [4]: in particu-~
1,
lar, for ay = ka("“ we obtain the scheme used in [2]. We put the prob-
lem (1)-(3) in correspondence with the local one-dimensional scheme:

yt; =A, ¥ for (z, Liap)ER0=1,27=0,1,2,... K—1; {4)
Y@, tiap) =w(®, £ ap) for zE€T,;  y(2, 0)=u(z) for 2 € @y (5)
(@, (&, H >0 >0, (z, ) Eof™ x[0 <1< T, (6)

where y(U) = 3Y + (1' - 5) Y, 0\<~5< 1! Y= y(l‘, tj-l—a/z)v 3}: y(xr‘)-}-(a—-l)/g)r
p— — — * «

y?aw(y wt, Ay=(a, (=, )y;a)ﬁa, t E[tj, t:‘+1] and for definiteness we

shall take ¢* :z]._H,{ It is clear from (4)~(5) that at each moment t:‘+a/2

we solve the first boundary problem for all chains I, in the given

direction xye
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5. Let us now go on to study the convergence and accuracy of the
scheme (4)-(6). Let u be the solution of problem (1)-(3), v the solution

-

of problem (4)-(6). For z = y — u we obtain the conditions

2; = A2 by, by = AT — e, ()

a a
z (:t, tj_}.a,/g) = 01 re Tar z (zs 0) = Oy reE —ﬁ;h’ (8)
2y (x’ tj+q/2) > €1 > 0. (9)

Suppose conditions A are satisfied. By analogy with (7) we find
Acxu - Lau = (p’a) &a + q)g_ o H p’a Hga = o (B hi Hga)! u WQ' QH == 0 (“ hi n 2&1)’ (10)

where "hi&a==l/khh2f; is the mean square value of hé.

. .
We put W, in the form

. 2

Vo= + ¥, V= (Lau — %%%)’“ . D W=0, (1)
a==1

Ve=a)y + % 1%bh=00B+00. (12)

6. Tith the estimate of the solution of the problem (7)-(9) we use
thie method of integral inequalities and a special metliod of summing
the local errors ¢, using the relation w? + wg = 0. Let us write down
the basic integral identity with o = ¥, Let us multiply (7) by (z4-z2) ke
and sum with respect to 0. Using Green’s formula

@+2 8,20 =T Vg oo + 2B =1, (13)

we obtain the following identities:

(= Bz)—,a Ty =Y, 2+ ), {14)
2P+ It Ta= D) (b, 220, (15)
a=-}
where
(e Py = WP — 1 Ry
Putting My T 0 in (15) we sce that the scheme (4)-(6) is stable with

respect to the initial data (for any h and T):

0o 5 S s 1 3 - 1 ¢ .
33:(’3:,35,‘);5(\\\»532(;:, Uy (tj,,:_:jt,[ e E—’l’?""’ﬂm?’]\}' (10)
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7. Lemma J. If y, can be put in the form

2
To= YoMy F 9 2 V=0, (17)
=]
then for the solution of problem (7)~(9) for ¢ = !: and any ha and T we
have tlie estimate
1 ]
bz @ i JISTIW @, 5 )1+ 7 Vel ¥E i+ Vit e ) vQf, (18)
i'=1
where
J- 1
Y=w=—w P& HI=(1 X TIve L)
ij=1
2
QF = v 42 (=, 1) P + D) (1 1a & 1), + 1 @0 (7 13006 (18)

=1

We put (17) in (15) and make the following transformations:

2
DL 2+ + @, PP — ) =0 (s, 1), 3z, ) —

[ &5

- (‘p;‘ (3«', t5+1): Z(Z‘, tj)).ra
a2+ 1= (e 55 + 2 Jal S 2, +—1~|| TN TCNPRS RS

A LA I e RS R RSy Pl

where s is an arpitrary positive constant which we shall put equal to
I/tj later. As a result we obtain the inequality

gl z (I, t}.{_l) Hﬁ < (i + O.SCoT )ﬂz (x’ i )Hﬂ + 0'57Q5+1 + T (“‘po (2’:, :54.1}! z (x) tj-}-t )); »

Using the inequality r}(ﬂﬁ 2| <05z -+ 0.512 4 0.5¢2 | ¢°|?, and also the
initial condition z(x, 0) = 0 we find

i J
lz(z, ti PP <ot Nz, )P+ 21 (e, ¢, ) P+ D) ©Q7 (19)

¥=1 ==l
Let us now use the following simple lemma, the proof of which we omit:

Lemma 2. If p(tj} and U{tj) are non-negative functions (tj =T,
j =1, 2, ...) then the inequality
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i
Pty St P () +altyy), T7=12..., (>0
i’=1

gives

2
P (8540) <O (854 + e 3w (). (20)
=1

It follows from the inequality (19), from l.emma 2, that
i+
Jz(, ti ) B0z, ) B+ e[ W (= T + (1 +¢) D) 107,
i'=1
P& T = —

j
T (o, )P
1 §'=1

This proves lemma 1{.

8. Theorem 1. If conditions A are satisfied, then the difference
scheme (5)-(7) converges in the mean with speed O (|k*|)+ O (r) for
g = 0.5 and as ha- T tend independently to zero on any non-uniform spiace
ret:

Ny (@, &) — o (2 ) IS M B2+ 1), a=1,2 j=01,...,K—1,(21)
D2 s = Sy + 1Al IRl =V (4 Bl a=1,2,

where * is a positive constant which does not depend on the choice of
net.

For the estimate (21) for @ = 2 (on a whole step) follows from (18)
since, from (10) and (12) we have Q¥ = O (| [}) + O(1?). To estimate
HZ(x'thV)” on a fractional step we use (18) with o = 2 and the identity

(14) fer a = 1. Thus on fractional steps the scheme (5)-(7) has the same
order of accuracy as on integral sters.

The convergence of the scheme (5)-(7) can be proved with considerably
weaker requirements than conditions A,

Theorem 2. If the following conditions are satisfied then the scheme
(4)-(6) converges in the mean for ¢ = 0.5 and for any ha and T so that

u y (Ia tj+q/2) - u‘(xv tj+¢”2) i! \{;\- M (" hY "3 + TY)' (22)

The conditions are (1) akdaza,aﬁdazﬁ satisfy in 3T the Holder conditions

of order vy, 0 < y <1, (2) )8z, Fuldxl, dujdt, k,, dk,l0x, Satisfy in _),r
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the HOlder conditions of order y > 0 with respect to ¢,

To prove Theorem 2 we have to use the fact that [, -0(Hh*k )+
oY), | pm\l2 -~0(||h1+"1|2) and make use of lLemma 1.

9. "ve have given all the preceding reasoning for the simplest equa-
tion of heat conductivity, (1). lowever, Theorems 1 and 2 remain true for
equations of the general form

2
c(x,t}%%s 2 Lyou+fx t)—qlx, Du; Lu=§—(k (z, 1) 75— )—}-r {z, ’)ax

a==]
du : L PR L b/ Ju
o @ 0P = P L/t u); = g (k (@ ¢, u) o )—}—ru(x, tow) g .
@==] ®

The corresponding expressions for Aay are given in {3} and we sball not
give them here. It is nroved there that the local one-dimensional method
is uniformly convergent for o = 1. If raago. 4,0, then the estimate

l

is true for T < T where T depends on < and maxlra‘, maxtqa(.

10. The method of summation of local errors ¥ used here, which leads
to the « priori estimate (18), cannot be extended to the case p > 2. In
this ®ase instead of (21) we have only been able to obtain the estimate

fy-—u| <MV T+ b,

If we suppose that T/hiQ[Z(l—-c)maxaa]"l, then using the method of
[3] we can prove the uniform convergence of the scheme (5)-(7) for
0 <0 <1 and for any p > 1 with speed O(h?})+O(x), where h®=h%{R2, h,

: ; i
is the maximum value of thke step h&“) on the net mi+l For the case

=1 this estimate holds for any h, and T (Theorem 2 of {3}).

It must be stressed that we are using here boundary conditions with-
out aprroximation (in contrast to [3}). This formulation of the differ-
ence boundary conditions always leads to different schemes on non-uni-
form nets. We have proved that in this case also second order accuracy
is attained with respect to space.

Translated by R, Feinstein
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