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1. The splitting method (fractional step method) is suggested in [l! 

for the numerical solution of the multi-dimensional heat conductivity 

equation with constant coefficients. In [zI the difference scheme for 

the heat conductivity equation with constant coefficients is written 

down for the case of two space variables and a rectangular region, and a 

proof of the convergence (in the mean) of this scheme with speed “(T*) 

with the additional condition T/h* = const. is given. In this note we 

shall show that the modified fractional step method can also be used in 

the case of an arbitrary region and a non-uniform difference net. Ye 

Prove the convergence in the mean with speed o(h*) + O(T) of the local 

one-dimensional schemes we examine; in contrast to [II, we shall not 

connect these schemes with the splitting of the multi-dimensional differ- 

ence equation and this makes them suitable for an arbitrary region and 

quasi-linear parabolic equations. In contrast to [31, at each stage we 

use six-point homogeneous schemes which enables us, in particular, to 

take the scheme of [21 into account. As usual we give the argument for 

a family of homogeneous schemes characterised by the given pattern 

functionals of [31-[51. We use the methods developed in [3!, [d and 

[sl . Convergence is proved for arbitrary non-uniform nets. 

2. Let C be an arbitrary two-dimensional region bounded by the con- 

tour r. 6=G+IJ, x= (XI, z?) a point with the coordinates xl and x2. 

In the cylinder ijT =zX [O<r<T] we look for the solution of the 

problem 

t.2, t) E QT = Gx (0 < t < T), (1) 
CC=1 
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u II‘ = Ul (2, 0, t E IO, Tj; u(x, 0) =uo(x), XEG, (2) 

k, (a, tj > cl > (cl = const), a= 1, 2. (3) 

We shall assume: (1) the d oblem 
r 

(l)-(3) has a unique solution 
- 

u = U(X, t), continuous in .‘?Tt (2) the following conditions are satis- 
fied. l 

Contli t ions A. In the region 3 r the functions ~~u~~~, a*k,iax; satisfy 

the Lipschitz conditions for x,, and ‘pd, a a@&,, Pu,@x~, au!&, k,, 

ak,fax,-- the Lipschitz conditions for t (a = I, 2). 

Below we use only one property of the region (: exI:licitly: the inter- 

section with the region ? of the straight line 8,, drawn through any 

point x E G parallel to the coordinate axis ()xo consists of a finite 

number of intervals (see [31 ). For simplicity we give our argument 

assuming that any strarght line %‘;p, intersects the contour I- twice. 

3. Consider the arbitrary non-uniform rectangular net ?${x~E??), 

where zi= (a$), of’“) is the node of the net with coordinates xp) and 

fir) . 
T ’ rc-x = 0, fl. It2. . . . , a = 1, 2. The steps of the net hp) = rIf” - 

x1 
firlf and hfd = +I _ ,$k-l) are functions of the coordinates zp) and 

@) respectively. Let oh={xi E G} be the internal net region, 

T=(qE I’) the boundary net region. Through the point a+Eq, we draw 

the straigbt line s,, parallel to the coordinate axis ox,; the set of 

all nodes of the net oh lying on g,, is called the chain 4,. Let 

Ed = xjr)E 7 and rn=x~) ET be boundary points of the chain q,, where 

xa increases on going fron XI to xr, and ya 
I 

I is the set of the nodes 

x1 of all chains J$, in a given direction, ya r is the set of nodes xr. 
, 

We put TO=:ro,n+yo,n, ~r’=~~fT~,n, o~~)=o~+~~,~. The segnent 

0 < t < T is *divided into A’ equal parts of length T by the points to = 0, 

t, . . . . . tj= jz ,..., t,=Kr=T, %= TJK (uniform net with step T) and we 

introduce the intermediate (fractional) steps tj+,, , =.tj + r/2 = (i + f) 2, 

j = 0, 1, . . . . K - 1. The net 0, with respect to time contains both 

integral and fractional steps, i. e. 0, = (tj.E [O< t < T]}, where tj. = j*z, 

,i’=O, +, I,..., f,i+$ ,..., K-+, K’. The point (Xi* tj*)EQT is a node 

of the space-time net R and SZ =((x+ ljl) E QT) is the set of internal 

nodes of the net 5; it is clear that a=& x &, !A = oh x o,, where 
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% = (tj, E (0 < f < T)). 

Te shall use the notation given in [31. Let y= y(s, tj*) = yj* be a net 

function given on 9. We shall write y kt~,) _ - y(z (**a) ,, , ,,, dtmi! = 

L= (&ltw 
1 

) .p), .41-l/2)= $ @.fI) + q--l)), yg= (y-y t-la))ih,, yxe=(Y(+laJ- YM,,, 

Y&=(Y 
c&x) -y),h,, h,=hf;l’lf, h,*=hp+‘), +(1z,+h,+)j2, yr,= {yj+a!2-yj+(=-1)/2)/~. 

‘0% need the following sums and norms: 

(y, v)’ =x yiqp tip’, 

Oh “'h 

(Y, VI;, = 2 yiV&za) hj$!$‘) (f for a = 1, - for a = 2), 

oj;t=) 

II Y II = V(Y* Y)‘* lIYI!r = V(Y, Yh IIYUZ, = 7/U, Yala, 

II Y /isa = 11% /la,’ where (Qa = Y, 

qz=O for xEr,,b. 

4. The operator Lau is replaced by the homogerIeous uniform net 

scheme 

AaY = (“,Y; 
a 
1;s 

Lavlng second order approximation on a uniform net (see t4? and (51) so 

that A.,u - L,u = 0 (hi). 

The class of pattern functionals ao is described in [41: in particu- 

lar, for ao = katmx) we obtain the scheme used in (21. Ye put the prob- 
lem (l)-(3) in correspondence with the local one-dimensional scheme: 

y;= = A= y@f for (Z, tj_ta:*) ELI, a= 1, 2; i = 0, 1, 2,. . . , K - 1; (Q 

Y (2, tj+a,2) = si (X, tj+a,*l for 2 E 7,; y (2, 0) = uo (zf for 2 E oh; (5) 

(a, 6% 1) ,, Cl > 0, (G q E OF”’ x [O < 6 TI, (6) 

where Y@) = SY + (1 - 5) & 0 B 3 d 1, Y = Y (x, ++,,s), ?; = Y (2, rj+(,_+,,), 

yi = (Y - hi% 
Cl 

J&Y = (a, (2, t*1 Y;,‘&’ t’ E [tj, tj+*] and for definiteness we 

shall take t’ = tj+,~,_ 
I 

It is clear from (4)-(5) that at each moment tj++ 

we solve the first boundary problem for all chains 4, in the given 

direction x0(. 
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5. f&et us nom go on to study the convergence and accuracy of the 

scheme (4)-(6). Let u be the solution of problem (l)-(3), y the solution 

of problem (4)-(6). For z = y - u we obtain the conditions 

“& = Aad”) + -q&, lpa = Aad@ - y ) (7) 
(I 

2 I? tj+& = 0, x E +fa; 2(2,0)=0, mEoh, (3) 

*a ($, tj+a/*)>C1 > O- (9) 

,?uppose conditions A are satisfied. By analogy with (7) we find 

We put ;jir in the form 

6. ‘Titlt the estimate of the solution of the problem (7)-(g) we use 

the method of integral inequalities and a special method of summing 

ibe local’ errors I* z,I usin,: the relation $ + yi = 0. Let us rvrite down 

the basic integral identity lvith o = fc. !.et us multiply (7) by (z+zjfi& 

and sum with respect to Oh. Using Green’s formula 

(2 + i, A&p)) * = f II If< bra + 2;) 1122, = I,7 (13) 

we obtain the following identities: 

Putting ljlll : 0 in (15) we s6.e that the ~~chcne (4)-(6) is stable *it!! 

respect to the initial data (for ;Iny !jql and 7): 
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7. Lemma 1. If tYn can be put in the forn 

then for the solution of problem (7)-(q) for o = !L and any $, and -r we 

have the estimate 

where 

We put (17) in (15) and make the following transformations: 

where co is an arbitrary positive constant which we shall put equal to 

l/tj later. As a result we obtain the inequality 

Using the inequality % I (V, z)‘J ~0.5//~~~+0.52~ +0.5r21~~~]~~, and also the 
initial condition z(x, 0) = 0 we find 

L.et us now use the following simple lemma, the proof of which we omit: 

I‘ emmu 2. If p( t,) and a(tj) are non-negative functions (t,, = j?, 

J = I, 2, . . .) then the inequality 
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P (‘j+l) a COT 2 P ftf) + o ttj+i), i=i,z,..., (co > 0) 
j’s1 

gives 

3 

P ttj+i) d c ttj+l) + Wco’j C TS (tjP)* 
(20) 

j’=J 

It follows from the inequality (lg), from l,emma 3, that 

jti 

This proves lemma 1. 

8. Theorem 1. If conditions A are satisfied, then the difference 

scheme (5)-(7) converges in the mean with speed 0((Ih2(/~)+O(t) for 

o = 0.5 and as /I,, T tend independently to zero on any non-uniform space 

ret: 

II Y txt tj+x/*) - u fz, tj+a,-J II 6 *%f (II*” 113 + t)* a=2,2, j=O, i, . . . . K-i,(21) 

where AI is a positive constant 

net. 

For the estimate (31) for o 

a=l, 2, 

which does not depend on the choice of 

= 3 (on a whole step) follows from (18) 

since, from (10) and (12) we have Q j’ = 0 (11 h2 [j?J _t 0 (t”). To estimate 

jz(r, ‘j+,,I)II on a fractional step we use (18) wit;1 o = 2 and the identity 

(14) far a = 1. Thus on fractional steps the scheme (5)-(7) has the Same 

order of accuracy as on integral steps. 

The convergence of the scheme (5)-(7) can be proved with considerably 

weaker requirements than conditions 4. 

Theorem 2. If the following conditions are satisfied then the scheme 

(4)-(6) converges in tbe mean for (5 = 0.5 and for any h, and T so that 

The conditions are (1) C%,/&r,, a2u/&, * :;atisfy in ?r the Hiilcier condit’ions 

of order y. 0 < y d 1, (3) au/ax,, &L/&~, au/&, k,, ilk,/&, satisfy in ?ii 
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the Hijlder conditions of order y > 0 with resnect t.o t. 

TO prove Theorem 2 we have to use the fact that ~~(P,I~3,=O(I~h~$a)+ 

O(T~), j~pa$a=O((/k~+y&J and make use of Lemma 1. 
. 

9. ‘Be have given all the preceding reasoning for the simPleat erlua- 

tion of heat conductivity, (I). However, Theorems 1 and 2 remain true for 

equations of the general form 

The corresllonding expressions for I\oy are given in [31 and we shall not 

give them here. It is nroved there that the local one’-dimensional method 

is uniformly convergent for u = 1. If r,*O, qnfO, then the estimate 

is true for 7 < 7 0 where T@ depends on c, and max! rof , max! 7o!. 

IO. The method of summation of local errors q~, used here, which leads 

to the u priori estimate (18). cannot be extended to the case p > 2. In 

this ease instead of (21) we have only been able to obtain the estimate 

If we suppose that z/hi < [2(i -o)maxu,]-1, then using the method of 

[3! we can prove the uniform convergence of the scheme (5)-(7) for 

9 f o Q 1 and for any p > 1 with speed 0($)+0(x), where h2 = ii+@, $, 

(ia ) is the maximum value of the step ha 
(flak 

on the net o,, For the case 

u = 1 this estimate holds for any h, and T (Theorem 2 of [3!). 

It must be stressed that we are using here boundary conditions with- 

out approximation (in contrast to 131). This formulation of the differ- 

ence boundary conditions always leads to different schemes on non-uni- 

form nets. We have proved that in this case also second order accuracy 

is attained with respn=t to space. 

Translated by R. Feinstein 
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