ON THE CONVERGENCE OF THE FRACTIONAL STEP METHOD FOR HEAT CONDUCTIVITY EQUATIONS*

A. A. SAMARSKII (Moscow)

(Received 9 June 1962)

- 1. The splitting method (fractional step method) is suggested in [1] for the numerical solution of the multi-dimensional heat conductivity equation with constant coefficients. In [2] the difference scheme for the heat conductivity equation with constant coefficients is written down for the case of two space variables and a rectangular region, and a proof of the convergence (in the mean) of this scheme with speed $O(au^2)$ with the additional condition $\tau/h^2 = \text{const.}$ is given. In this note we shall show that the modified fractional step method can also be used in the case of an arbitrary region and a non-uniform difference net. We prove the convergence in the mean with speed $O(h^2) + O(\tau)$ of the local one-dimensional schemes we examine; in contrast to [1], we shall not connect these schemes with the splitting of the multi-dimensional difference equation and this makes them suitable for an arbitrary region and quasi-linear parabolic equations. In contrast to [3], at each stage we use six-point homogeneous schemes which enables us, in particular, to take the scheme of [2] into account. As usual we give the argument for a family of homogeneous schemes characterised by the given pattern functionals of [3]-[5]. We use the methods developed in [3], [5] and [6]. Convergence is proved for arbitrary non-uniform nets.
- 2. Let G be an arbitrary two-dimensional region bounded by the contour Γ , $\overline{G}=G+\Gamma$, $x=(x_1,\ x_2)$ a point with the coordinates x_1 and x_2 . In the cylinder $\overline{Q}_T=\overline{G}\times [0\leqslant t\leqslant T]$ we look for the solution of the problem

$$\frac{\partial u}{\partial t} = \sum_{\alpha=1}^{2} L_{\alpha}u, \qquad L_{\alpha}u = \frac{\partial}{\partial x_{\alpha}} \left(k_{\alpha}(x, t) \frac{\partial u}{\partial x_{\alpha}} \right), \qquad (x, t) \in Q_{T} = Gx \, (0 < t \leqslant T), \, (1)$$

^{*} Zh. vych. mat. 2, No. 6, 1117-1121, 1962.

$$u_{|\Gamma} = u_1(x, t), \quad t \in [0, T]; \qquad u(x, 0) = u_0(x), \quad x \in \overline{G},$$
 (2)

$$k_{\alpha}(x, t) \geqslant c_1 > 0$$
 $(c_1 = \text{const}), \ \alpha = 1, 2.$ (3)

We shall assume: (1) the problem (1)-(3) has a unique solution u = u(x, t), continuous in $\overline{Q}_{T_1^{\frac{1}{2}}}$ (2) the following conditions are satisfied.

Conditions A. In the region \overline{Q}_T the functions $\partial^3 u/\partial x_\alpha^3$, $\partial^2 k_\alpha/\partial x_\alpha^2$ satisfy the Lipschitz conditions for x_α , and x_α , a $\partial u/\partial x_\alpha$, $\partial^2 u/\partial x_\alpha^2$, $\partial u/\partial t$, k_α , $\partial k_\alpha/\partial x_\alpha$ —the Lipschitz conditions for t ($\alpha = 1, 2$).

Below we use only one property of the region G explicitly: the intersection with the region \overline{G} of the straight line \mathcal{L}_{α} , drawn through any point $x \in G$ parallel to the coordinate axis Ox_{α} consists of a finite number of intervals (see [3]). For simplicity we give our argument assuming that any straight line \mathcal{L}_{α} intersects the contour Γ twice.

3. Consider the arbitrary non-uniform rectangular net $\overline{\omega}_h$ $\{x_i \in \overline{G}\}$, where $x_i = (x_1^{(i_1)}, x_1^{(i_1)})$ is the node of the net with coordinates $x_1^{(i_1)}$ and $x_2^{(i_1)}$, $i_{\alpha} = 0$, ± 1 , ± 2 , ..., $\alpha = 1$, 2. The steps of the net $h_1^{(i_1)} = x_1^{(i_1)}$ $x_1^{(i_1-1)}$ and $h_2^{(i_2)} = x_2^{(i_2)} - x_2^{(i_2-1)}$ are functions of the coordinates $x_1^{(i_1)}$ and $x_2^{(i_2)}$ respectively. Let $\omega_h = \{x_i \in G\}$ be the internal net region, $\gamma = \{x_i \in \Gamma\}$ the boundary net region. Through the point $x_i \in \omega_h$ we draw the straight line \mathscr{L}_a , parallel to the coordinate axis Ox_{α} ; the set of all nodes of the net ω_h lying on $\mathscr{L}_{\pmb{\alpha}}$, is called the chain $\mathcal{U}_{\pmb{\alpha}}$. Let $x_{\Pi} = x_{\Pi}^{(\alpha)} \in \gamma$ and $x_{\Pi} = x_{\Pi}^{(\alpha)} \in \gamma$ be boundary points of the chain \mathcal{U}_{α} , where x_{α} increases on going from x_l to x_r , and $\gamma_{\alpha,l}$ is the set of the nodes x_l of all chains \mathcal{U}_{α} in a given direction, $\gamma_{\alpha,r}$ is the set of nodes x_r . We put $\gamma_{\alpha} = \gamma_{\alpha, n} + \gamma_{\alpha, n}$, $\omega_h^{(+\alpha)} = \omega_h + \gamma_{\alpha, n}$, $\omega_h^{(-\alpha)} = \omega_h + \gamma_{\alpha, n}$. The segment $0 \leqslant t \leqslant T$ is divided into K equal parts of length τ by the points $t_0 = 0$, $au,\ldots,\ t_i=j au,\ldots,\ t_K=K au=T,\ au=T/K$ (uniform net with step au) and we introduce the intermediate (fractional) steps $t_{j+1/2} = t_j + \tau/2 = (j+\frac{1}{2})\tau$, $j=0,\ 1,\ \ldots,\ K-1.$ The net $\omega_{_{\rm T}}$ with respect to time contains both integral and fractional steps, i.e. $\overline{\omega}_{\tau} = \{t_{j^*} \in [0 \leqslant t \leqslant T]\}$, where $t_{j^*} = j^*\tau$, $j^*=0,\,rac{1}{2}$, $1,\ldots,j,\,j+rac{1}{2},\ldots,\,K-rac{1}{2}$, K. The point $(x_i,\,t_{j^*})\in\overline{Q}_T$ is a node of the space-time net Ω and $\Omega = \{(x_i, t_{j^*}) \in Q_T\}$ is the set of internal nodes of the net $\overline{\Omega}$; it is clear that $\overline{\Omega} = \overline{\omega}_h \times \overline{\omega}_{\tau}$, $\Omega = \omega_h \times \omega_{\tau}$, where

$$\omega_{\tau} = \{t_{i^*} \in (0 < t \leqslant T]\}.$$

We shall use the notation given in [3]. Let $y=y(x,\,t_{j^*})=y^{j^*}$ be a net function given on $\overline{\Omega}$. We shall write $y^{(\pm m_{\alpha})}=y(x^{(\pm m_{\alpha})},\,t),\,\,x^{(\pm m_{i})}=$ $=(x_1^{(i_1\pm m_i)},\,\,x_2^{(i_2)}),\,\,x_1^{(i_1-1/2)}=\frac{1}{2}\,\,(x_1^{(i_1)}+x_1^{(i_1-1)}),\,\,y_{\overline{x}_{\alpha}}=(y-y^{(-1_{\alpha})})/h_{\alpha},\,\,y_{x_{\alpha}}=(y^{(+1_{\alpha})}-y)/h_{\alpha+1},\,\,y_{\overline{x}_{\alpha}}=(y^{(+1_{\alpha})}-y)/h_{\alpha},\,h_{\alpha}=h_{\alpha}^{(i_{\alpha})},\,\,h_{\alpha+1}=h_{\alpha}^{(i_{\alpha}+1)},\,\,\bar{h}_{\alpha}=(h_{\alpha}+h_{\alpha+1})/2,\,\,y_{\overline{t}_{\alpha}}=(y^{j+\alpha/2}-y^{j+(\alpha-1)/2})/\tau.$ We need the following sums and norms:

$$\begin{split} (y,\ v)^* &= \sum_{\omega_h} y_i v_i \hbar_1^{(i_1)} \ \hbar_2^{(i_2)}, \qquad (y,\ v) = \sum_{\omega_h} y_i v_i h_1^{(i_1)} \ h_2^{(i_2)}, \\ (y,\ v]_\alpha &= \sum_{\omega_h^{(+\alpha)}} y_i v_i h_\alpha^{(i_\alpha)} \ \hbar_{\alpha\pm 1}^{(i_\alpha\pm 1)} \quad (+ \text{ for } \alpha = 1, \ - \text{ for } \alpha = 2), \\ \|y\| &= V \overline{(y,\ y)^*}, \qquad \|y\|_2 = V \overline{(y,\ y)}, \qquad \|y\|_{2_\alpha} = V \overline{(1,\ y^2]_\alpha}, \\ \|y\|_{3_\alpha} &= \|\eta_\alpha\|_{2_\alpha}, \ \text{ where } (\eta_\alpha)_{\hat{x}_\alpha} = y, \\ \eta_\alpha &= 0 \ \text{ for } x \in \Upsilon_{\alpha,\ \Pi}. \end{split}$$

4. The operator $L_{\chi}u$ is replaced by the homogeneous uniform net scheme

$$\Lambda_{\alpha}y=(a_{\alpha}y_{\overline{x}_{\alpha}})_{\widehat{x}},$$

having second order approximation on a uniform net (see [4] and [5]) so that $\Lambda_{\alpha}u - L_{\alpha}u = O(h_{\alpha}^{2})$.

The class of pattern functionals a_{α} is described in [4]; in particular, for $a_{\alpha} = k_{\alpha}^{(-\frac{1}{2})}$ we obtain the scheme used in [2]. We put the problem (1)-(3) in correspondence with the local one-dimensional scheme:

$$y_{\tilde{t}_{\alpha}} = \Lambda_{\alpha} y^{(\sigma)} \text{ for } (x, t_{j+\alpha/2}) \in \Omega, \alpha = 1, 2; j = 0, 1, 2, ..., K-1;$$
 (4)

$$y\left(x,\ t_{j+\alpha/2}\right)=u_1\left(x,\ t_{j+\alpha/2}\right)\ \text{for}\ x\in\gamma_x;\qquad y\left(x,\ 0\right)=u_0\left(x\right)\ \text{for}\ x\in\overline{\omega}_h;\qquad (5)$$

$$(a_{\alpha}(x, t) \geqslant c_1 > 0, (x, t) \in \omega_h^{(+\alpha)} \times [0 \leqslant t \leqslant T], \tag{6}$$

where $y^{(\sigma)}=\mathfrak{s}y+(1-\mathfrak{s})\,\hat{y},\quad 0\leqslant\mathfrak{s}\leqslant 1,\quad y=y\,(x,\,t_{j+\alpha/2}),\quad \hat{y}=y\,(x,\,t_{j+(\alpha-1)/2}),$ $y_{\overline{t}_{\alpha}}=(y-\hat{y})/\tau,\quad \Lambda_{\alpha}y=(a_{\alpha}\,(x,\,t^*)\,y_{\overline{x}_{\alpha}})\,\hat{x}_{\alpha},\quad t^*\in[t_j,\,t_{j+1}]$ and for definiteness we shall take $t^*=t_{j+1/2}$. It is clear from (4)-(5) that at each moment $t_{j+\alpha/2}$ we solve the first boundary problem for all chains \mathcal{U}_{α} in the given direction x_{G} .

5. Let us now go on to study the convergence and accuracy of the scheme (4)-(6). Let u be the solution of problem (1)-(3), y the solution of problem (4)-(6). For z = y - u we obtain the conditions

$$z_{\overline{t}_{\alpha}} = \Lambda_{\alpha} z^{(\sigma)} + \psi_{\alpha}, \quad \psi_{\alpha} = \Lambda_{\alpha} u^{(\sigma)} - u_{\overline{t}_{\alpha}},$$
 (7)

$$z(x, t_{j+\alpha/2}) = 0, \quad x \in \Upsilon_{\alpha}; \qquad z(x, 0) = 0, \quad x \in \overline{\omega}_{h},$$
 (8)

$$a_{\alpha}(x, t_{j+\alpha/2}) \geqslant c_1 > 0. \tag{9}$$

Suppose conditions A are satisfied. By analogy with (7) we find

$$\Lambda_{\alpha} u - L_{\alpha} u = (\mu_{\alpha})_{\hat{x}_{\alpha}} + \psi_{\alpha, \alpha}, \qquad \|\mu_{\alpha}\|_{2_{\alpha}} = O(\|h_{\alpha}^{2}\|_{2_{\alpha}}), \qquad \|\psi_{\alpha, \alpha}\| = O(\|h_{\alpha}^{2}\|_{2_{\alpha}}), \quad (10)$$

where $\|h_{\alpha}^2\|_{2_{lpha}}=\sqrt{(1,h_{\alpha}^4)_{lpha}}$ is the mean square value of h_{lpha}^2 .

We put ψ_{α} in the form

$$\psi_{\alpha} = \psi_{\alpha}^{0} + \psi_{\alpha}^{\bullet}, \quad \psi_{\alpha}^{0} = \left(L_{\alpha}u - \frac{1}{2}\frac{\partial u}{\partial t}\right)^{j+1}, \quad \sum_{\alpha=1}^{2}\psi_{\alpha}^{0} = 0, \quad (11)$$

$$\psi_{\alpha}^{*} = (\mu_{\alpha})_{\hat{x}_{\alpha}} + \varphi_{\alpha}, \qquad \|\varphi_{\alpha}\|_{2} = O(\|h_{\alpha}\|_{2}^{2}) + O(\tau). \tag{12}$$

6. With the estimate of the solution of the problem (7)-(9) we use the method of integral inequalities and a special method of summing the local errors ψ_{α} using the relation $\psi_1^0 + \psi_2^0 = 0$. Let us write down the basic integral identity with $\sigma = \frac{1}{12}$. Let us multiply (7) by $(z+z)\hbar_1\hbar_2$ and sum with respect to ω_h . Using Green's formula

$$(z + \tilde{z}, \Lambda_{\alpha} z^{(1/z)})^* = \frac{1}{2} \| V \overline{a_{\alpha}} (z_{\bar{x}_{\alpha}} + \tilde{z}_{\bar{x}_{\alpha}}) \|_{2_{\alpha}}^2 = I_{\alpha},$$
 (13)

we obtain the following identities:

$$(\|z\|^2)_{\overline{I}_{\alpha}} + I_{\alpha} = (\psi_{\alpha}, z + \tilde{z})^*,$$
 (14)

$$(\|z\|^2)_{\bar{l}} + I_1 + I_2 = \sum_{\alpha=1}^2 (\psi_{\alpha}, z + \tilde{z})^*, \tag{15}$$

where

$$(\|z\|^2)_{\overline{t}} = (\|z^{j+1}\|^2 - \|z^j\|^2)/\tau.$$

Putting $\phi_{\alpha} = 0$ in (15) we see that the scheme (4)-(6) is stable with respect to the initial data (for any b_{α} and τ):

$$||z(x, t_{j*})|| \le ||z(x, 0)|| \quad (t_{j*} = j^*\tau, j^* = \frac{1}{2}, 1, \frac{3}{2}, \dots, K - \frac{1}{2}, K).$$
 (16)

7. Lemma 1. If ψ_{cc} can be put in the form

$$\psi_{\alpha} = \psi_{\alpha}^{0} + (\mu_{\alpha})_{\hat{\alpha}_{\alpha}} + \varphi_{\alpha}, \qquad \sum_{\alpha=1}^{2} \psi_{\alpha}^{0} = 0, \tag{17}$$

then for the solution of problem (7)-(9) for $\sigma=\frac{\pi}{2}$ and any h_{α} and τ we have the estimate

$$||z(x, t_{j+1})|| \leqslant \tau ||\psi^{0}(x, t_{j+1})|| + \tau \sqrt{e} ||\psi^{0}(x, t_{j})|| + \sqrt{1 + e} \sum_{j'=1}^{j+1} \tau Q^{j'},$$
 (18)

where

$$\psi^{0} = \psi_{2}^{0} = -\psi_{1}^{0}, \quad \|\overline{\psi^{0}(x, t_{j})}\| = \left(\frac{1}{t_{j}} \sum_{j'=1}^{j} \tau \|\psi^{0}(x, t_{j'})\|^{2}\right)^{1/2},$$

$$Q^{j'} = \tau^{2}t_{j}\|\psi_{t}^{0}(x, t_{j'})\|^{2} + \sum_{\alpha=1}^{2} (\|\mu_{\alpha}(x, t_{j'})\|_{2\alpha}^{2} + \|\varphi_{\alpha}(x, t_{j'})\|_{3\alpha}^{2}).$$
(18')

We put (17) in (15) and make the following transformations:

$$\begin{split} \sum_{\alpha=1}^{2} \; (\psi_{\alpha}^{0}, \; z + \bar{z})^{*} \; + \; (\psi^{0}, \; z^{j+1} - z^{j}) &= \tau \; (\psi^{0} \; (x, \; t_{j+1}), \; z \; (x, \; t_{j+1}))^{*}_{\overline{t}} \; - \\ &- \; (\psi^{*}_{\overline{t}} \; (x, \; t_{j+1}), \; z \; (x, \; t_{j}))^{*} \tau, \end{split}$$

$$\begin{split} |\left((\mu_{\alpha})_{\hat{x}_{\alpha}}, z + \check{z} \right)^{*}| &= |\left(\mu_{\alpha}, \ z_{\overline{x}_{\alpha}} + \check{z}_{\overline{x}_{\alpha}} \right)_{\alpha}| \leqslant \frac{1}{2} I_{\alpha} + \frac{1}{c_{1}} \| \mu_{\alpha} \|_{2_{\alpha}}^{2}, \quad |\left(\varphi_{\alpha}, \ z + \check{z} \right)^{*}| \leqslant \\ &\leqslant \frac{1}{2} I_{\alpha} + \frac{1}{c_{1}} \| \varphi_{\alpha} \|_{3_{\alpha}}^{2}, \quad \tau \mid (\psi_{t}^{0}, \ z^{j})^{*}| \leqslant \frac{\tau^{2}}{2c_{0}} \| \psi_{t}^{0} \|^{2} + \frac{c_{0}}{2} \| z^{j} \|^{2} \end{split}$$

where c_0 is an arbitrary positive constant which we shall put equal to $1/t_{\,i}$ later. As a result we obtain the inequality

$$\|z(x, t_{j+1})\|^2 \leq (1 + 0.5c_0\tau)\|z(x, t_j)\|^2 + 0.5\tau Q^{j+1} + \tau^2(\psi^0(x, t_{j+1}), z(x, t_{j+1}))_{7}^{*}.$$

Using the inequality $\tau \mid (\psi^0, z)^* \mid \leq 0.5 \parallel z \parallel^2 + 0.5\tau^2 + 0.5\tau^2 \parallel \psi^0 \parallel^2$, and also the initial condition z(x, 0) = 0 we find

$$||z(x, t_{j+1})||^{2} \leqslant c_{0}\tau \sum_{j'=1}^{j} ||z(x, t_{j'})||^{2} + \tau^{2} ||\psi^{0}(x, t_{j+1})||^{2} + \sum_{j'=1}^{j} \tau Q^{j'}.$$
 (19)

Let us now use the following simple lemma, the proof of which we omit:

Lemma 2. If $\rho(t_j)$ and $\sigma(t_j)$ are non-negative functions $(t_j = j\tau, j = 1, 2, ...)$ then the inequality

$$\rho(t_{j+1}) \leqslant c_0 \tau \sum_{j'=1}^{j} \rho(t_{j'}) + \sigma(t_{j+1}), \quad j=1, 2, \ldots, \quad (c_0 > 0)$$

gives

$$\rho(t_{j+1}) \leqslant \sigma(t_{j+1}) + c_0 e^{c_0 t_j} \sum_{j'=1}^{j} \tau_{\sigma}(t_{j'}). \tag{20}$$

It follows from the inequality (19), from Lemma 2, that

$$\|z(x, t_{j+1})\|^2 \leqslant \tau^2 \|\psi^0(x, t_{j+1})\|^2 + \tau^2 e \|\overline{\psi^0(x, t_j)}\|^2 + (1 + e) \sum_{j'=1}^{j+1} \tau Q^{j'},$$

$$\|\overline{\psi^0(x, t_j)}\|^2 = \frac{1}{t_j} \sum_{j'=1}^{j} \tau \|\psi^0(x, t_{j'})\|^2.$$

This proves I emma 1.

8. Theorem 1. If conditions A are satisfied, then the difference scheme (5)-(7) converges in the mean with speed $O(\|h^2\|_2)+O(\tau)$ for $\sigma=0.5$ and as h_{α} , τ tend independently to zero on any non-uniform space ret:

$$\|y(x, t_{j+\alpha/2}) - u(x, t_{j+\alpha/2})\| \le M(\|h^2\|_2 + \tau), \qquad \alpha = 1, 2, \quad j = 0, 1, \dots, K-1, (21)$$

$$\|h^2\|_2 = \|h_1^2\|_{2_1} + \|h_2^2\|_{2_2}, \quad \|h_\alpha^2\|_{2_\alpha} = \sqrt{(1, h_\alpha^1)_\alpha}, \qquad \alpha = 1, 2,$$

where M is a positive constant which does not depend on the choice of net.

For the estimate (21) for $\alpha=2$ (on a whole step) follows from (18) since, from (10) and (12) we have $Q^{j'}=O(\|h^2\|_2^2)+O(\tau^2)$. To estimate $\|z(x,t_{j+1/2})\|$ on a fractional step we use (18) with $\alpha=2$ and the identity (14) for $\alpha=1$. Thus on fractional steps the scheme (5)-(7) has the same order of accuracy as on integral steps.

The convergence of the scheme (5)-(7) can be proved with considerably weaker requirements than conditions A.

Theorem 2. If the following conditions are satisfied then the scheme (4)-(6) converges in the mean for $\sigma = 0.5$ and for any h_{α} and τ so that

$$||y(x, t_{j+\alpha/2}) - u(x, t_{j+\alpha/2})|| \leq M(||h^{Y}||_{2} + \tau^{Y}).$$
 (22)

The conditions are (1) $\partial k_{\alpha}/\partial x_{\alpha}$, $\partial^{2}u/\partial x_{\alpha}^{2}$ satisfy in \overline{Q}_{T} the Hölder conditions of order γ , $0 \le \gamma \le 1$, (2) $\partial u/\partial x_{\alpha}$, $\partial^{2}u/\partial x_{\alpha}^{2}$, $\partial u/\partial t$, k_{α} , $\partial k_{\alpha}/\partial x_{\alpha}$ satisfy in \overline{Q}_{T}

the Hölder conditions of order $\gamma \ge 0$ with respect to t.

To prove Theorem 2 we have to use the fact that $\|\phi_{\alpha}\|_{3_{\alpha}} = O(\|h_{\alpha}^{\Upsilon}\|_{2_{\alpha}}) + O(\tau^{\Upsilon})$, $\|\mu_{\alpha}\|_{2_{\alpha}} = O(\|h_{\alpha}^{1+\Upsilon}\|_{2_{\alpha}})$ and make use of Lemma 1.

9. We have given all the preceding reasoning for the simplest equation of heat conductivity, (1). However, Theorems 1 and 2 remain true for equations of the general form

$$c(x, t) \frac{\partial u}{\partial t} = \sum_{\alpha=1}^{2} L_{\alpha}u + f(x, t) - q(x, t)u; \qquad L_{\alpha}u = \frac{\partial}{\partial x_{\alpha}} \left(k_{\alpha}(x, t) \frac{\partial u}{\partial x_{\alpha}}\right) + r_{\alpha}(x, t) \frac{\partial u}{\partial x_{\alpha}},$$

$$c(x, t) \frac{\partial u}{\partial t} = \sum_{\alpha=1}^{2} L_{\alpha} u + f(x, t, u); \qquad L_{\alpha} u = \frac{\partial}{\partial x_{\alpha}} \left(k_{\alpha}(x, t, u) \frac{\partial u}{\partial x_{\alpha}} \right) + r_{\alpha}(x, t, u) \frac{\partial u}{\partial x_{\alpha}}.$$

The corresponding expressions for $\Lambda_{\alpha} y$ are given in [3] and we shall not give them here. It is proved there that the local one-dimensional method is uniformly convergent for $\sigma=1$. If $r_{\alpha} \neq 0$, $q_{\alpha} \neq 0$, then the estimate is true for $\tau \leq \tau_0$ where τ_0 depends on c_1 and $\max |r_{\alpha}|$, $\max |r_{\alpha}|$.

10. The method of summation of local errors $\psi_{\rm CL}$ used here, which leads to the *a priori* estimate (18), cannot be extended to the case $p \ge 2$. In this case instead of (21) we have only been able to obtain the estimate

$$||y-u|| \leq M (V\bar{\tau}+h^2).$$

If we suppose that $\tau/h_{\alpha}^2 \leqslant [2(1-\sigma)\max a_{\alpha}]^{-1}$, then using the method of [3] we can prove the uniform convergence of the scheme (5)-(7) for $0 \leqslant \sigma \leqslant 1$ and for any $p \ge 1$ with speed $O(\bar{h}^2) + O(\tau)$, where $h^2 = \bar{h}_1^2 + \bar{h}_2^2$, \bar{h}_{α} is the maximum value of the step $h_{\alpha}^{(i_{\alpha})}$ on the net $\omega_h^{(+1_{\alpha})}$ For the case $\sigma = 1$ this estimate holds for any h_{α} and τ (Theorem 2 of [3]).

It must be stressed that we are using here boundary conditions without approximation (in contrast to [3]). This formulation of the difference boundary conditions always leads to different schemes on non-uniform nets. We have proved that in this case also second order accuracy is attained with respect to space.

Translated by R. Feinstein

REFERENCES

Yanenko, N.N., Dokl. Akad. Nauk SSSR, 125, No. 6, 1207-1210, 1959.

- 2. Yanenko, N.N., Zh. vych. mat., 2, No. 5, 933-937, 1962.
- 3. Samarskii, A.A., Zh. vych. mat., 2, No. 5, 787-811, 1962.
- 4. Tikhonov, A.N. and Samarskii, A.A., Zh. vych. mat., 1, No. 1, 5-63, 1961.
- 5. Samarskii, A.A., Zh. vych. mat., 2, No. 4, 603-634, 1962.
- 6. Samarskii, A.A., Zh. vych. mat., 1, No. 3, 441-460, 1961.
- 7. Tikhonov, A.N. and Samarskii, A.A., Zh. vych. mat., 2, No. 5, 812-832, 1962.