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A number of economical difference schemes which are applicable to 
regions of a special form (parallelepipeds or regions formed from them, 
cf. [91) have been put forward for the numerical solution of the linear 
heat conduction equation in several space variables ([II- 191). Equations 
with variable coefficients were studied in [~I-[121 and the other works 
are concerned with constant coefficients. In [lOI we proposed a local 
one-dimensional method of variable directions for the linear equation 
(l-l,,) (cf. Section 1) and for the simplest quasi-linear equation (l.ll), 
and this method was suitable for an arbitrary region in space G, on the 
boundary r of which boundary conditions of the first kind were given. 
We constructed a family of local one-dimensional schemes which were 
homogeneous with respect to space and cyclically homogeneous with re- 
spect to time. It was shown that all these schemes were absolutely 
stable with respect to the initial and the boundary data, andvalso with 
respect to the right-hand side of the equation (Theorem I, [lo]) and 
that they converged uniformly at a rate O(h’) + O(T), i.e. had the same 
order of accuracy as multi-dimensional implicit schemes (cf. 1171). 

In this paper we consider local one-dimensional schemes on arbitrary 
non-uniform nets for linear and quasi-linear parabolic equations with 
the “heat conduction coefficient” k, = k,(n, t, u) dependent on the 
“temperature” u = a(x, t). The maximum principle, with the help of which 
the uniform regularity of the problem for the error z = y - u with re- 
spect to the approximation error was established in [IO], does not hold 
in the case ka = k,(x, t, u) and in the case of non-uniform nets when 
k, = k,(x, t) it enables us only to prove first order accuracy with re- 

spect to h (for problems II, and II,, cf. Section 1). For a number of 
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schemes IIk, k = l’, Z’, 3 (cf. Section l), the maximum principle has 
not been established. We shall therefore pay considerable attention (cf. 
Section 2) to the derivation of a priori estimates (estimates in the 
mean and uniform estimates) for very complex equations which are satis- 
fied by the error z = y - u where u is the solution of the differential 
equation and y is the solution of the corresponding difference problem. 
Since the coefficients of the space parts of the difference schemes 
satisfy only the boundedness condition, in order to derive a priori esti- 
mates we use the n-th rank energy inequality method developed in [141, 
[151, [IT]. With this method we take into account the complex structure 
of the approximation error 

Two methods have been suggested, in [IO] and [121, for summing the 
Principal Part of the approximation error, io. However, since the method 
of [loI should be used when the maximum principle holds and the method 
of 1121 when p = 2 for a special form of the schemes, in Section 2 we 
suggest a third method which is very general-and can be applied in all 
cases. The method for summing the local approximation errors with respect 
to space is based on methods from [131-[181. Together with the space net 
ah’), similar to the net in [IO], we consider the net oi2), the boundary 
points of which are points of the boundary r of the region G and so the 
boundary conditions in them are given without extrapolation. It is shown 
in Section 3 that the order of accuracy on both nets is the same (0th’)). 

Of the results of Section 3 we note only one: if the scheme II, (cf. 
Section I) converges uniformly on a uniform net at a rate 0(h2) + 0(-r) 
then on an arbitrary non-uniform net it converges in the mean at the 
rate 0 (II ha II + II x IM and converges uniformly at the rate 

where 11 h2 11 is the 
P 

mean square value of hs = xht, on the net ah, 
=I=1 

P 

max Zj, H, = min H, H = n ti, is the volume 
OT "h a=1 

of net meshes and 5 > 1 is an arbitrary number. 

The a priori estimates we obtain enable us to prove without difficulty 
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the convergence of all the local one-dimensional schemes of Section 1 
in the case when the coefficients of the differential equation have dis- 
continuities of the first kind on a finite number of hyperplsnes parallel 
to the coordinate hyperplanes (cf. [lTl. Choosing special sequences of 
nets o,,(k), by analogy with [f41, we can arrange that in this case our 
schemes will have second order accuracy with respect to h. 

By concentrating the net eh near the boundary we can also attain 
second order accuracy for the third boundary problem in the case of the 
Darallelepiped considered in [lo], Section 1, Para. 7. 

The methods of Section 2 enable us, in particular, to show that homo- 
geneous difference schemes for elliptic equations as well as the split- 
ting method of [71-[91 for linear parabolic equations, retain their 
maximum order of accuracy on arbitrary non-uniform nets. A brief account 
of the corresponding results is given in Section 4. 

1. L.ocal one-dimensional schemes of variable 
direction on a non-uniform net 

1. THE DIFFERENTIAL EQUATIONS 

We shall consider the p-dimensional parabolic equations 

P 

c (5, t) g = 2 &Ku + f, 
a==1 

(1) 

where x = (x1, . . ., xa, . . . . 
space RP with the coordinates 

xp) is a point of p-dimensional Euclidean 
nl, . . ., x,, . . . . xp, c(x, t) = c(xl ,..., 

x , t). The differential operator L,u and the function f are defined by 
oie of the formulae: 

Let G be an arbitrary p-dimensional finite region with boundary I-, 

z=G-j-I’, &=Ex [O<t<Tl, &=GX (O<t<T]. In the 
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cylinder & we are required to find the solution u = u(x, t) of the 
problem 

where c+,(n) and ul(x, t) are given functions. 

Depending on the form of L, of f we obtain problems I,,, I,, I,, I,. 
In [IO] we studied only the problems I,, and I,. The coefficients 
k,(x, t, u), c(x) t) satisfy the conditions 

k, b, t, 4 > cl> 0, c (2, t) > ~2 > 0, a = 1, . . ., P, 

where cl and c2 are constants. Ey analogy with El61 we shall assume that 

ak,iau, ar,iau, afiau, aflag,, . . ., aflag,, (2) 

where f = f(x, t, u, (I~, . . . . qp) are uniformly continuous in the whole 

region of variation of the arguments (x, t) E QT, u, q,, . . ., 17 . It is 
also assumed that eirch of the problems Ik, k = 0, 1, 2, 3, has aPunique 

solution u = U(IC, t) continuous in ?&,. and possessing all the derivatives 
which are required in the course of the argument. We use the same assump- 
tions with respect to the region G as we used in [lo]; the intersection 
of the region I; by any straight line 5%; drawn through a Point z ‘Z G 
parallel to the coordinate axis Ora consists of a finite number of inter- 
vals. It is not difficult to see that we can conduct our argument for 
the case when the straight line de, intersects r in two points only 
without loss of generality. Extension to the general case involves 
nothing more than further difficulty for the printer. 

2. THE NETS 

In [lOI we studied schemes for the problems I, and I, on a uniform 
net. Here we shall consider two types of space nets, each of which is 
non-uniform. 

(ia) 
Consider the set of nodes zi = (Q?), . . ., x, , . . ., z6ip))& of a 

rectangular net covering G, where i, = 0, f 1, f 2, . . . , and let us con- 

struct two nets 06’) and iI’) on the region 5;. 
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1. The net ;A’) 
Ml 

is defined as in [lo]. The nodes xi and xi6 = (x1 , 

..**&‘, ..‘, a~$)’ ) are adjacent if 5 1 i, - i& 1 = 1. The internal 
a=4 

net region i&r) = (xi 65 (3 consists of the nodes, afl of whose adjacent 

nodes belong to G The node xi is a boundary node if at least one of its 

adjacent nodes does not belong to G. Through the point xi G ,x1) we 

draw the straight line k%, parallel to the Coordinate axis OxEx and call 
the set of nodes of the net @i’) lying on gp;iT , including the boundary 
nodes .(-a> and x (+a) the chain ffcl fthe Coordinate XC increases on 
passing from A-a1 to n 
ary nodes r(-OO and yi, 

(+a)). Let u’; denote the set of left-hand bound- 
the set of right-hand boundary nodes .(+a) of 

all chains of a given directions y, = y;l; + yi, y = yr + . . . + yp is the 

bo~dar~ of the region wf’, &i;f = co{:) _i- r - 

2. The net ofi”) = fn . E d. Every node xi E I: is au internal node. 
The boundary y of the n& ei2) Consists only of points of the boundary 
r of the region G so that y C f (Cf. [I$). 

For regions G formed from parallelepipeds with their boundaries 
parallel to the coordinate planes (cf. t91) the nets OX’) and 051~) co- 
incide, 

Both nets oil ) and wi2 ) are non-un~f~~~ and the step of the net 
h(ia) = &z) _ g@o-1) for each direction a is a function of the coordi- OL Q tr 
nate ro (number i,), The net (A$,~) is non-uniform even when the net .:‘I) 
is uniform, but the region G is arbitrary, since near the boundary I- the 
uniformity of the net is, generally speaking, destroyed. 

The net can also be taken to be non-unifo~ with respect to the Vrtri- 
able t E IO, !Pf. Let t, = 0, tl, . , ., t ., 

ti 
. . ., tk = ‘f’be an arbitrary 

division of the segment 0 < t <T into parts. Following [lOI we Can 
divide each of the segments 1 t ,f t .+ 1 into p (the number of dimensions) 
equal parts and introduce the ~nte~~d~ate (fractional) times 

tj+a(p L= tj 4- arj+dPt cx=1,2 ,..., p-l, 

where ~~~~ = ti+r - t . is the step of the basic net. The net ot = (tj, fJ? 
(0, ?‘]I contains bothjintegral (t = tj, j* = j) and fractional times 
(j* zz j + a/p): j* = 0, l/p, . . . I (p - 1)/p, 1, . . l a j, j + Lb .**, 

j + (P - 1)/P, j + 1, . . . . I{. The set of nodes (xi, tj*), where 

2i 62 wf’, tjr E w,, forms the space-time net 61fk) = wf’ X w?, k = i, 2. 

The boundary S of the net Q( k’ is defined in the same way as in [lo], 



Local one dimensional difference schemes 577 

n = R t s. 

As in [lOI an-d [141 we shall use the following notation for net func- 
tions given on R. 

Y = Y (57 t, = Y (r*, tj+b/*) = Yj+a’p, h, =1 )&?y, ha+ = hf=+“, 

Rz = 0.5 @a + ha+), 
z(+vJ = ,$m,) = (,(i,) 

1 1 ?"" 
z~_";l', .#,*m) z(i,+l) 

a # at1 
L&J)), 

'...' p 
m = 0.5, i, 2, 

5(ktW = 0.5 (.& + zo&l)); 
a 

Y- = (y _ y(-la;/h 

y(fmd = Y (.&md , l), 

xa YX = (Y 
(+lu) _ 

a Y)Pa+, 

h 
y *,,” @(+‘a) - y)/ha = + ysa, 

a 

YZa = (y - y’-‘“‘)/ha = gy- 
0 *=’ 

yo 
% 

+y;= + y;,) =(y’+l=)-y(-l=))/2h=, 

y?_ = (yj+l - yj)/z, yi= = (yj+=lP _ yM=-1)9)/f, T zzz Zj+l. 

We shall introduce other notation in the course of the arguurnent. 

If the step of the net oT satisfies the condition 

TI = 0 (T) Or z = ; (1 + 0 (z)) (; = Ti), 

then oT = f.$* is called a quasi-uniform net. If 

z < m’;, 

(3) 

(4) 

where m* > 0 is an arbitrary constant, then oT = ti; (and, correspond- 
ingly, R (k) = @‘), k = 1, 2) is called a normal net. 

3. HOMOGENEOUS SCHEMES ON NON-UNIFORM NETS ah 

Before going on to construct local one-dimensional schemes for the 
problems Ik, k = 0, 1, 2, 3 let us first introduce a family of homo- 
geneous difference schemes corresponding to the operator L,, assuming 
the net uh to be non-uniform. 

Let us consider an operator of the form 

L,u =-& 
ix 

(k.(s) $) i I(+ 2 = b-3, a**, qJ. 

We take the corresponding homogeneous difference scheme in the form 

&Y = (a, (4 Y&J;, + cp (4. (5) 
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This scheme is defined if we can show a method for calculating the co- 
efficients aor and a, in terms of the functions k,(n) and f(r) which is 
suitable for an arbitrary non-uniform net. 

We shall start from the method shown in [141 for p = 1, bearing in 
mind that K, and f can have discontinuities of the first kind on hyper- 
Planes parallel to the coordinate hyperplanes and passing through the 
nodes of the net. 

Let us introduce the mean value f”(x) of the function f(x) at the 
point x c ah putting 

TCr) i =zp ii f (a*%,l * * .) xp, (Ip) hp. . . ~~~/~, H = fi fi,, (6) 
a~,...,8p=l r-1 

where x,,I = X= - 0, x,,S = xa + 0, j&(l) = h Q a!, h'2) zz h a =,., and each 

of the uI, . . . . uo, . . , , up takes one of the values 1 or 2. In Particu- 
lar, when p = X and p = 2 

m = &w (Xl - 0) + h+f (Xl + WV 

jr@17 x2) = -J&-u 6% - O,!X2 - 0) 02 -t f (x1 - 0, $2 + 0) w2, + 

+ f (Xl + 0, 52 - 0) h+h, + f (Xl + 09 22 + 0) h+h2+1. 

If x is a point of continuity of the function f, then f(x) = f(z). On a 
uniform net (ho = kc+) we have 

By analogy with [Id], let us consider the functions 

Let F h(s 53 = 
whichPis d&ed’inPthe 

F [u(s)1 be a linear non-negative functional 
pkallelepiped {-0.5<~~\<0,5, a = l,*.*,P) 

and satisfies the conditions 

~~)(~) = J% (4 = 4, 

0, 
'=O. (8) 
s#O 

F, fil = 1, Fp [*fil q:.“w] = f , 

a = 1, 2, . . ., p. 
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Let us consider the function 

1-a 

f (4 = $ 2 f bl + &% . . . . Zp + S&F)) *‘qp’ (Si) . . .l&~)?llpp) (Sp) 
%....PJp 

(10) 
and define q(x) with the help of the formula 

q (5) = &, If ($1 = F, tf (~1, . . ., sp)l. 

In the case of the simplest functional 

F If WI = ? (4 (42) 

we obtain q(x) = T(z). On a uniform net, from conditions (9) it follows 
from (10) and (11) that 

For the coefficient a,(x) we shall use the formula 

c, (r) = A 02’ (5 + &)I, 

where AI& is the one-dimensional functional of 1141 and 

(14) 

where 
1-P 

& = n %k, H,,, ='jj&'. 

&#a ksfa 

Thus when calculating ao we first carry out an averaging in accordance 
with (15) with respect to the variables x1, . . . . xol_ , ndl, . . . . 2: 
and then operate with the pattern functional A[p(s,) . The mean valie 1 
(15) could be calculated by analogy with 9 using the linear functional 
F p_l of dimension p - 1. In the case of two variables (p = 2) we have 

Kl” (5 + s&J = 1 Y&- vb,+ S&l? % -0) h,+ kl (%A- S&l, zs+ 0) hz+). 

It is not difficult to see that the approximation error 9 - pcan be 
put in the form 
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The dots here and everywhere below denote terms. of the second order with 
respect to ti,, . . . . ?I. 

P 

In fact, expanding f’(s), defined by fonnula (lo), in the neighbour- 
hood of the point xta) = (x1 (J , . . ., x : 

’ 1 P.Q 

f (21 + s,hp, . . ., zp + S&F’) p a = f Me)) + g T& (2(@) s*hh”.’ + . . . . 

fitting this eWQSSiOn in (10) and (11) we obtain 

Noting that 

H = H,xti,, H, = Irfr,, ffhp'xH;1= 0 (1) and 

P+= PM 

and summing over o 
P 

= 1, 2, p = 1, 2, . . . , p, p 

BY analogy with t141 we find 

where the wavy line denotes averaging according 

Note. In the case of the simplest functional 

7 a. we arrive at (16). 

to formula (6). 

(12) P(X) - fiz, = 0. 

4. LOCAL ONE-DIYENSIONAL SCHEYES ON NON-UNIFORM NETS 

The basic idea of the method for writing down local one-dimensional 
schemes for the equation (1) consists in using homogeneous difference 
schemes corresponding to the one-dimensional parabolic equation 

at each moment of time tj. E oT. 
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Let &y denote the one-dimensional difference scheme corresponding 
to the operator kou. Then we can write the homogeneous scheme llo for 
(18) in the form 

ky = &Y - PYI + ‘p, = 0, nay = A,yj+w (19) 
OL 

We shall assume that p does not depend on a, i.e. for all a = 1,2,. . . ,p 
the coefficient p is calculated according to the same formula: 

P = P (r, tj+r) = Fp [c* (8, tj+Jl, (20) 

where c* (s, t) is defined by the formula (10) and F li(s>l = F [IJ(s,. 
. . . . s )I is the linear non-decreasing functional ikroduced ii 
Para. 5. 

The coefficients which enter into Aa as well as 9a will be calculated 
with the help of the one-dimensional functionals A[p(s)I and the linear 
functional F, [u(s,l ( - 0.5 <s \(o. 5) used in [14I (F, hl = 1, F, I31 =O, 
q[p(s)l = $4, F,ho(s)l = 0, u = 1, 2). These functionals operate on 
the corresponding functions before they are averaged with respect to the 
variable z,-+ p 7 a, p = 1, . . . , p according to (15). We shall write these 

mean values Fa (z + s&,, t, u), L (z + &, t, u), 7= (r + s&CC, t, u), 
omitting the upper index (a); then 

a, (5, t, U) = A r& (z + &h,, t, u)l, 

b-, (z, t, u) = F, lk b + s&a, t, 4 q! (41, 

b$(s, t, 4 = F, 6x (5 + s&a, t, 4 rl~)(~a)l, 
I 

(21) 

‘p, b, t, 4 = [cp,ha + qpa+llfia, 

where q&(x, t, u) are expressed according to the same formulae as 

t&r, t, u). 

Let us first consider the problem I,. In this case 

A,Y = (a, (2, t) Y;,);~ + K! (~7 t, y) Y;;~ + b, (5, t, k> Y;~, 

CPa = CPU (3, t, ‘i,, 
(22,) 

where y = yj-i-a/P, i = y&l-@-1)/P_ In [IO] we showed how the coefficients 
entering in (22r) could be chosen at any moment of time t E [tj, tj+ll. 
We obtained schemes which were equivalent with respect to their order of 
accuracy. To simplify the printing we shall put t = tj+l in (221) below. 
It turns out that, in general, the smoothness requirements with respect 
to t for ‘the coefficients of the differential equation are weakened. 
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The schemes Wa for the different equations lk, k = 1, 2, 3 differ 
only in the expressions for Ad and qa. We shall therefore write down 
these expressions for the equations 1, and 1,. For the quasi-linear 
equation (12) we shall use the homogeneous scheme 

&y=(ua (5, t, (Y*)(~“)Y~~);~ + bi (2, t, i, Y;= + b, (5, t, i> I/-. 9 

2= cm 
cpa = cpc (G t, A, 

where (y’)“) = BY’ + (’ - p) $9 O <b < I, I/* = 0.5 (Y + Y(-lK)), t = tj+_1. 

haies schemes (221), (22*) the following schemes are of theoretical 
and Practical interest: 

Aay = (a, (z, t) Y;._);~ + b:-, (5, t, k, i;; _l + G-1 (~9 t, i> i; _lv (2&t 1 
IL (1 

nay = (a, (z, t, k.) I/;,‘;, + b:-, (z, t, i> t; _1 + bz-1 (z, t, ii> ix 9 (22~) 
a &a-i 

where b$+ = b$ (z, tj, yj); yxa, = yip for a = 

spond to different methods of partitioning the 

1. These schemes corre- 

operator L = 5 L, : 
a=1 

Lu = ; Lhl.4, Lit.4 = --& 
a=1 Lx ( k, (z, t, u) z 1 + ra-I (~7 t, u> g& 

a-1 
for a>l, 

I;-& (kl (29 t7 U) $) + rp (z, t, U) $ for a = 1. 
P 

The coefficients aa and p satisfy the conditions 

and ra (bi too) can have any sign. Therefore in solving equations (221), 

(22*) for example, with respect to y by the method of successive sub- 
stitution [211 it is, generally speaking, required that the step ha@ 
shall be sufficiently small, where h, depends on max( lbil/aa) (cf. [IS!). 
The difference schemes (22ra), (222e) do not Possess this defect. 

We shall not give the scheme for (la) since it follows from (22r) in 
the case ra = ra(x, t), f = f(z, t) - 4~. We have given equation (la) in 
Para. 1 in order to establish the connection with the work [IO]. 

Let us now formulate the boundary conditions. On the net pi’), by 
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analogy with [lo], the boundary conditions are set UP by means of an 
extrapolation ~1.~ on y, with the help of linear interpolation, which 
gives for y = ylta/P 

y =; p;y(+L7) + (1 - Pi) Ul by? tj+d, XET,i 

y = p+,y(+‘a) + (1 - 8:) u1 (zI+a)v tj+l), xE T’,Y (24) 

where z\-OO is the point of the boundary I- nearest to .z(-~) E y; and 
.(+a) E r is the nearest point to x(~) E y’, (the points XI-~), XL*) 

Ld x(*~) lie on the straight line 2, ), fi$ = &/ (1 -I- &), xi&+ is 

the distance between n(lma) and x(-~), K’$~ is the distance between x (+a) 
r 

and x(*) and 0 ,<pi < 1. We shall only consider nets 0;‘) for which 

pi,<p* < 1 where p* is a constant.* In other respects ail) is an arbi- 
trary non-uniform net. On the net oh (2) the boundary conditions have the 
form 

yj+alp = U1 (2(fa), tj+l) fort 5 = &a) Eq+, a=i,...,p, (25) 

which formally corresponds to the case pi = 0. Therefore we shall always 
write the boundary conditions in the form (24) below and, on Passing to 
the net oi2 ), we shall put pi = 0. 

It is clear from (24) and (25) that the boundary values aI - u\l- for 
all a = 1, 2, . . . . p are taken at time t = t .+1. This does not restrict 
the generality of our argument, since if we c 
t e [t ., t 

ake LLIT at any time 
1 we obtain schemes which are equivalent with respect to 

their o:derjAi accuracy. 

Thus, we set the following difference problem Ik in correspondence to 
the problem Ik (k = 1, 2): 

&Y - PYT, + cpa = 0, a = 1, 2, . . .( p, b, Q E Q, 

y = b$y’T1a’ + (1 - fi$) uy for xEr$, 

I 

(11) 

Y (% 0) = uo (9 for, zE&, 

where h is defined by formulae (221) and (22g). Depending on the form 
of & we obtain the problems (schemes) II, and II, corresponding to 
problems I, and I,. If Aa, 9a are defined by formulae (22I’) or (222’) 
we obtain the scheme II, e or II, t. 

l We shall always assume below that this conditions is satisfied. 
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We set the problem I, in correspondence 

a 

6 
-t 

1, a=p 
a. P = 0, a*p’ 

with the scheme II, for which 

We shall consider the schemes II,t, IIZ# 
uniform nets ai’) 

and II, only on arbitrary non- 
and on normal nets 0;. 

The local one-dimensional scheme II is obviously homogeneous (for 
each a) with respect to space and cyclically homogeneous with respect to 
time (with period p). 

Note. The decomposition of f into the sum f= i f, is done for con- 
Ci=i 

venience in the computing. We could put, for example fa = 0, a = 1, 2, 
. . . . p - 1, fp = f and, correspondingly, 9a = 0, a = 1, . . . , p - 1, 

= Q 9. 

5. THE APPROXIMATION ERROR 

Let u = u(n, t) be the solution of problem I and y = y(x, t) the solu- 
tion of the difference problem II. Let us examine their difference, which 
characterises the accuracy of the ,scheme II, putting z~+~IP = ~j+~fP - uj+l 
for a = 1, 2, . . . . p, z’ = yl - u’. F’or the net function z = z(x, t) we 
obtain the following conditions: 

where a, = a,(x, t .+ ) for the 
the scheme II, andI is an 

( 2, 2, , Z” and so on) and is 
xa ER 

scheme II,, a, = a, (x, tj+l, (y*)“‘) for 
expression containing the earliest terms 
a special case of the expression 

We shall not write out the expressions for the coefficients. We note 
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only that in the case of the scheme II, we must Put g&, = 0, C&I = 0, 
m = 1, 2, a = 1, 2, . . . , p. Due to the assumptions made in Para. 
1, 3and4 

%),C,>O, P>C,>O, I&nI<Csr I@I<cc,,l &mI<cco, m=i, 2, 

where cl, . . . . c5 are positive constants which do not depend on the net. 

Let us show that &I = 66 (G tj+1, -Y' ), b$ = b$(s, ti+lr ;) depend on 

y and so cannot be differentiated with respect to x or to t. For the 
local approximation error of the scheme II2 and, therefore, of the 
scheme II,, we obtain 

Yv, = Yp’ - P (59 tj+l) U~x&.l + Cpa, 6 a.1 = i 6: 
a= 1, 

a+ 1, 
(27) 

Y(l) = (~2, (5, tj+l, (U’)“‘) U”) a A 
% xoT 

+ bz (5 t 9 j+lr U) l-$i + 

f bi (5, tj+l, U) U’z: 7 Cpa = Cpa (5, tj+l, 3, 

where u = ujtl for a > 1, u = UJ for a = 1, (u*)(P) = (a++1 for a > 1, 

(u*)@) = b (u’)j+l + (1 - g) (u’)’ for a = 1. 

It is clear from this that ‘!‘,&‘I represents the error of approximation 
of the scheme Aay. It follows from Para. 3 and 4 and from [141 that 

Yh” = &.$+I + (#);= + 6,,J 0 (7) -t * - * , Ph” = 0 v#. 

Noting also that 

$2) = 0 (P) oT (I' 

ph”’ = 0 (It:), 

we see that 

y, = iLx + 4a, I)= = &A = (Ku - 6,,l c g + jqtl, 

(28) 

It is clear from this that the principal part f, of the approximation 
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error satisfies the condition 

i 6, = 0. (291 
a=1 

We assume here that we have satisfied conditions A, under which on a 
uniform net in the class of continuous coefficients Ao, qaar, p have the 
maximum order of approximation 

Yj? = La@ + 0 (I&~), P = c + 0 0% cpa=fa+O(h~)* 

If the node x E ah lies on the merplane of discontinuity of k,, c 
and f perpendicular to One, and conditions A are satisfied to the left 
and right of this hyperplane, then formulae (28) for ‘fo still hold. 

P 

The aRproximation error Y = r: Ya of the local one-dimensional 

scheme ll = (no) has the form 
EXE1 

In proving the convergence of a local one-dimensional scheme on a 
sequence of non-uniform nets we must overcome two difficulties: (1) the 
absence of an approximation at any time t = tj+a p, 
lowering of the order of local approximation wit h 

?‘o = O(l), (2) the 
respect to space due 

to the non-uniformity of the nets ofr 

For the error z of problem II, we also obtain problem III, where 
(za(z) is the expression defined by formula (33) of Section 2. The 
approximation error ‘i’o of the scheme II, can be represented by formulae 
(4) and (5) of Section 2 and we obtain 

;i), = f~- aa,l- cg + a,,,7 xv 8, @, 2 t l ( au M-1 
’ “azp )I 

, iG=‘O, 
a=1 

Formula (28) for y, is also a special case of (2.5) for 

Calculation shows that (2.4) and (2.5) are also true for the Droblems 
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III ‘, III* 
& 

a corresponding to the schemes II I’, II, 1. The expressions for 

0;’ ) and Qi2 ‘) are given in Section 2, Pars. 1. 

In fact, in Section 2 we consider problems IIIk, k = I, 2, 3, I’, 2’ 
which are more general than the problems which are obtained for the 
error z = y - u of the scheme Ilk. This enables us to use the a priori 

estimates of Section 2 to estimate the accuracy not only of the initial 
schemes, defined above, but also of a wider class of schemes. 

2. A priori estimates 

1. STATEMENT OF THE PROBLEM 

When studying the question of the error of the schemes IIk, k = 1, 2, 

3, 1’. 2’ we obtained linear equations in Section 1 for the net function 
z in all cases, distinguished only by the earlier terms (;)a(~). It is 
therefore natural to formulate the general problem and to study the 
special cases corresponding to specific schem_es. We shall consider the 
following problem for z = z(x, t), given on 52: 

PZT a --A$ + daz = Qa (4 + ‘ya, & = (%&);a, a= I, . . ., p, (1) 

z = fg (z-) + Y:), SE y:; z(z.0) = 0, e&, (2) 

where (&(z) is one of the expressions: 

Qh" (z) = b:zGa + b”zGa + da,;, 

Q@) (4 = Q(l) (4 + Q; (4 OL a 9 Q: (4 = (&,, + (hz); + 

+ (dhga + (g,z’);a, 

(31) 

(3,) 

Qh"' (z) = Q: (z) f d,,; + 8a,p 5 (b;Gaalp + b;eaa'p), \ 
a=1 1 

Q: (4 = (d$j; + (g&& 1 
0:” (z) = bLli;a_1 i- L1 ;;a_1 -I- da-$ for a > 1, 

Qp” (z)= (b+ p zGp + b;“;;, ) j + &ad 

Q?‘)(z) = Qh”) (z) + Q:: (z). 

(3,) 

(314 

(38’) 
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The net function Yo is given bv the expressions 

Y a = +a + $a, $6. = 0, +a = 0 cl), (4) 
a=-1 

We shall assume that the following conditions are satisfied: 

where cl, ..+, c6 are positive constants which do not depend on the net, 
M* is an arbitrary positive constant and me > 0 is a constant which de- 
pends on cr, . . . j cs and M*. Let us explain conditions (7) and (7’). 
When deriving the energy identities which we have used to obtain the 
necessary a priori estimates we first make the transformation (cf. [141) 

z = Vxw, 

where w is a net function defined by the conditions 

W- 
t a 

= jjij; for j+alp = (1 + gjz) uj+(a-o/P, w (2, 0) = 1, (8’) 

and k is an arbitrary positive constant which is chosen so that condi- 
tions (7) and (7’) are satisfied, where #* and TV are given constants_ 
depending only on cl, . . . , c5. Xf g& 7 0 we put I! = M,, x 2”, where MO 
is an arbitrary positive constant and the whole number n is the rank of 
the energy identity. 

We note at once that on an arbitrary non-uniform net oT w has the 
estimate 

1 < wi+alp < eP@ii-ij+lf 
(91 

since w+~~ < tF’N$(a-~~iP, wi\< tFP%+. To simplify our argument 

we shall assume that the transformation (8) has already been carried out 
and retain the former notation z for the unknown function (i.e. we re- 
place u by I). 

We shall call the problem defined by conditions (l), (2), (3k), 
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(4)-(7). where k = I, 2, 3, l’, 2’ problem IIIk or III: if 

We shall direct our main attention to deriving a priori ,_. 
problems III, and III,. 
everywhere that 

For problem III2 on the net !J(” we shall assume 

f 
"a = 0. 

estimates for 

&a = 0, a=l,2, . . . . p., (10) 

We note that scheme III, coincides with the scheme considered in [lOI 
on the uniform net Q(’ ). For this scheme the maximum Principle holds and 
we have the a priori estimate of the form 

= max i 6 (5, 4 1, W) 
+ - 

xEr,==r,+r, 

The estimate of II 2 Ilo i II t erms of )I Y /I0 is too crude for an estimate 
of the order of accuracy on a non-uniform net. Below we find estimates 
of II z Ijo in terms of the analogue of the one-dimensional norm !I Y II 
used in [l41 and these enable us to show that the scheme has the sde 
order of accuracy as in the case of a uniform net. The method of integral 
or energy inequalities explained below is a natural development of the 
method which we have used before (cf. [141- [1?1) for one-dimensional 
problems. Estimates *in the mean* are comparatively simple to obtain for 
all the problems IIIk, k = 1, 2, 3. 1’, 2’. However, since it is in 
practice very desirable to have uniform estimates of accuracy of 
numerical algorithms, we have given considerable attention to uniform 
estimates, first for problem III, corresponding to scheme II, for the 
quasi-linear equation (1.11). In cl41 we used estimates in the mean 
successfully to obtain uniform estimates. In the multi-dimensional case, 
unfortunately, this method is inapplicable. Therefore the uniform esti- 
mates of the solution of problem III2 are more crude than the correspond- 
ing estimates obtained in [141 for the one-dimensional problem (p = 1) 
(Cf. Cl71 ). 

Besides problems IIIk we shall study the standard problems IVk which 
differ from IIIk only in the expression for 
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shown below that the estimate of the solution of problem IIIk 
the estiarate of the solution of the standard problem Ivk (cf. 

2. ENERGY INEQUALITIES ON THE CHAIN & 

In deriving enerlgy inequalities we shall use the following systematic 
device. We consider an arbitrary chain & of the fixed direction xa on 
which, for t = tjW p 

f 
we write down the n-th rank energy identity. Using 

majoraut estimates 141 we obtain energy inequalities which we then 
weight-sum 

Ho =jjyfi* (131 
k#a 

over all the chains J?$~ for fixed a. As a result we obtain inequalities 
on the net oh 

Thus, let us consider the arbitrary chain @=, with the boundary Points 

z’“’ E 7; and z(+~) e y:. Let qa denote the set of internal nodes of 

this chain z+i = g, -j- z(+‘), r.& = ya f z(-‘), Go = zj, $ z(+~)-~-z(-~). 

Let v and z be certain net functions given on ‘Jh’ We introduce scalar 
Products and norms: 

(u, x,:, = x =&X1 (0, x)9, = 2 r&7, (u, z>‘y, = 2 v&X+, 
=%z =%X XGrCa 

(V, &, = r: rx&, [u, a)yb = x 2*zh,,, (14) 
*Eq; zEi$ 

11 vJl~o.l = (v, v>;;, II z;* L,, 1 = (I, zza J:k. 

Let us consider the difference operator A%r = (a+~&~. The first 

difference formula of Green will obviously have the foxm 

(X&7 ‘x)t, = - (a,, xz,&+. + uaZ;az I,,(+aj - ~~l’)Z,a~lx,~~-a~: (15) 

If x = 0 when x = x(*~), the substitution becomes zero. Suppose that t 
satisfies the h~geneous boundary condition 
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Using the fact that z(+la’ = z + hd+z,;, z(-la’ = z - h,z-,., we obtain 
from (16) 

As usual we shall use H(ilder’ s inequality as well as Qreen’ s difference 
formula and the elementary inequalities 

(18) 
k=l k=l k=l 

labi\< $a~ + _.!_p (c,,>O-an arbitrary constant)- WV 

Positive constants which depend on cl, . . . . c and on the diameter of 
the region C; and do not depend on the net wll be denoted by h! and ex- P 
pressions for them will not, as a rule, be given. 

It is not difficult to see that the following lema holds. 

Lemma 1. If z satisfies the condition 

(p* is a constant which does not depend on the net) then 

n 

where e = z2”, M,, Mi, M,, M;. are positive constants which delmud on 

c1’ p’ and the length 1, of the chaiu L(=, and Iio\ is either of the 

quantities IviI. 

It follows from condition (20) that 1 z I < fi’ 1 z(+‘a)I + 8’ I vi I (z E 7;). 

The inequality I =(+‘a) I < I z (a~(-~), t) I + h:+c;‘/tl/t gives ( ~(+‘a) 1 < f3’ (1 - 

fl’)-’ I v, I + h:+c;“’ (1 - fl’)-’ fl’ aud 1 z (d-‘I, t) 1 Q (B’)a (I\- go)-’ I v; 1 + 

h?+fYcc” x (1 - P’)-‘I”, where I = ((lo, zia],,. From this and from the 

inequality 11 z/,,,,,, < I z (d-@, t) I + &$“I” we have (21). On the net 

,j,*) p;=Osud 
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By analogy with [I ;I let us write down at once the n-th rank energy 
identity on the chain .4=: 

When deriving identity (24) we wrote the boundary ~nditions (2) in 
the form of conditions of the third kind: 

%, = zlx,h,+ - vJh,+ for x = x(-‘); -4, = zfxzha - ~ilh, for’s= &+a) 

and used an expression for 

and a similar 

zrx,h,) -l = 0, 

if zIyo = 0. 

n n-l 

=%7 = 2?zanzx, - F. 2”-k-1h,+ &a)9 it’“-‘k+l (is) 

expression for z”- +. It must be borne in mind that 

if K~ = 0. CM the net wp’ [d,, z],, = (da, :,;. and R;; = 0, 

f If z = vcr when sE7a”, then [&, zJUS = (A, $+,, and 

formula (27) for R$ is true. 

Let US now suppose that vi’= 0, i.e. let us consider the problem III’. 
Putting n = 1 in (24) we obtain an identity of the first rank and, accord- 
ing *o l.17) we can write this in the form 
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Let us consider problem III,, 
for g& = o, k = 

of which problem III, is a special case, 
1. 2. We introduce the function qcr, putting 

(Q);= = qa, qya) = 0 for 5 = A+), (32) 

and put 

Lemma 2. If z satisfies the homogeneous boundary conditions (16), 
then 

For 

2 ($)a, 2)’ = - 2 b zxalua + 2%z I_(+@ < 

G 2 II % II,,, 1 II 2;; n2,, I+ 2 I ‘1, b(+=), t) I I 2 Q+-‘9 t) 1. 

Then using lemna 1 we obtain (34). 

Lemma 3. We have the estimate 

(35); 

Lemma 3 can be proved by analogy with [141, using kenma 1, Green’s 
difference formula and inequality (19). 

Lemma 4. On the net ofi*) we have the estimate 
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The inequality (36) follows from the estimate of the form 

2 (k~,~)~a, & = - 2(gS ~;a)4a~2C‘ll~ll*a,lUZ;OUpa,l. 
Using Lenvxas 2-4 we obtain an inequality of the first rank on the 

chain 4=: 

(37) 

where c+ is an arbitrary positive constant depending on the choice of m. 
It is not difficult, by analogy with [14], [l5], [17] to obtain an n-th 
rank energy inequality on the chain 4.: 

where M, = M x 2”. Conditions (7) and (7’) are satisfied. 

The last terms in (37) and (38) are estimated below. 

3. ENERGY INEQUALITIES ON THE NET o,, 

Let us consider the sums (14) with respect to g=. Multiplying then 
with ffo and summing over all chains of the given direction a we obtain 
sums over oh: 

(u, z) = XvzH, (v, z), = 2 vzH(=), 
‘h -h 

(v, 2): = 2 vZH(+=), ( v, z]= = 2 VZIP, 

Oh 
@h” 

[v, 2): = 2 vzII(+=), H’“’ = H h (1 a, H(+@ = II&,+, 

q 

These sums are associated with the norms 11 vu = (v, ~)“a, 11 vlbo = (0, v): 

or 11 v //+ = (v, v]?, for example 
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11 vga l/2, = (Q v;,l2- (39) 

In addition, we shall need the norms 

* IPa0 *~ = maxlv(2, t)I, II 2J (G tj+l)II = (>S ~.v(I'tj8)pqk (40) 

&=I 

Now let us multiply (37) and (38) by Ho and sum over all the chains 
of the direction a. As a result we obtain energy inequalities of the 
first and n-th rank on the net 

We have used the notation 

11 *,, a(ia,o is the maximum value of It*, jb,,1 over the whole net ah9 or, 

more exactly, over all the chains of the given direction a, 

n 4, Ilr,?O = II ll% llhlb 

X=0 

Let us recall that (42) and (41) were obtained for 

+ (44 

n = 1,2, . . . . (451 

sufficiently small 
T <TV and for arbitrary rz. Summation of (41) and (42) over a = 1, 2, 
.*., p gives 

(p, zyj+l + ‘c (I, + PI) + zc’ 5 (1, zqj+=‘p < (1 + MT) (p, 9)’ + 
0=1 

(46) 
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+rM II qqji -i- 2 5 (L zj+p’p) r, 
a=1 

(p, If+1 + T (I* + P,) + 2%* i (1, ljj+=‘p < (1 + Mr) (p, z,j + (47) 

+ -r (Mx2”U qq.Jn + 2” 5 (i=, (z’“)““‘P) r, 
a==1 

I n = 12’ = i I?‘, p, = pp = 5 pf’, m = n for 1111, m = 2n for 1112, 
(I=1 a=1 

IISIL,, = $ NJ, 4=,0' uw4,.0 =nII~P.b,Jo, W) 
a=1 a==1 

/!‘#a a(, and 8% lb,.1 are defined by formulae (43) and (33). 

Let us now estimate the last terms in (46) and (47). 

4. BASIC LEMMA 

Lemmn 5. Suppose that the arbitrary net function z = 2(x, t), given 

on ?lk (k = 1, 2) satisfies conditions (16), and b, satisfies the condi- 
tion 

i lja = 0. (49) 
a=1 

Then 

2” i (Go, (z”“)““‘P) Q ; (1, + Pm) + M y (1, $j+=lp + 
==1 a=1 

(50) 

(51) 
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If oT is a normal net (z < m*$, then 

where 

II 4b.o = -2 II $a /l*,.o~ nknaa.o = llli&42,Jo~ 
a-S1 

I ~ = I?‘, I* = Ii, z = fjil, ; = z;. (53) 

Let us just derive inequality (50). Putting *jkip in the form 

where v = z 
% 

, and using the formula 

{cf. [l-d) and condition (49) after changing the order of summation over 
a and m we obtain 

” 
where the summation sign on the right contains z = &tip, z = zjt(m-l)/P. 
Then arguing as in [I43 first for the chain Q= and using Lema I we 
find 

n-1 

2”~ 2 (VZSZan-4+1Z_im, $a)fCo (In+Pn)+M (1, Z)j+(m-l)‘p + (M2”JG 11 ;ba Pp)““. 

k=o 

This and the previous formula give (50). 

If $a has the form 

then in (53) we must put 

(54) 
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5. A PRIORI ESTIMATES IN THE MEAN 

Let us now return to the first rank energy inequality (46). Substitut- 
ing here the estimate (51) we obtain 

(p, Z$+l + “1, < (1 + Mr) (p, 2’)’ + MT 11 Yj” I$, ’ = ‘j+l, 

II Yl? = I*~+ +n”l llNl4= 5 us,l14a, IIN= 5 Il;/hll, 
a=1 a=1 

where I! y, 11, is given by formula (43). 
Cx 

Since 2(x, 0) = 0, Lemma 4, of t143 gives 

p-1 j&l 

This proves the following theorem. 

Theorem 1. The solution of problems III; and IV:, k = 1, 

sequence of non-uniform nets L?(l) and 52(‘) for sufficiently 
satisfies the inequality 

11 2 (5, tj+l) IJ + Vzj+lII 2; (59 $+I) II < Mll y (57 tj+i) II3 

(56) 

(57) 

(58) 

2 on any 

small 7 < To 

where 11 ‘f 11 is defined by formulae (57) aud (43) and for problem IPK 

IISall4, = II s: 114, + II Pa ba + II Pa II*, y;: + II Pa ll& y-, 

(59) 

(60) 

Corollary. If yo = 0 then for sufficiently small 11 7011 < vu the solu- 
tion of problem III; has the estimate 

i+l 
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where 11 G 11 is given by formula (57). 

We recall that we have agreed to consider only those problems IIIk 
for which g& = 0 on R( ’ ) . 

According to (5), the function yo for problem IIIk (k = 1, 2) has the 
form 

It is then clear that the norm (43) is not suitable for the estimate 
(62) on a non-uniform net 
Therefore we first reduce 

since it will contain the step ratio ‘io/fip. 
problem IIIb to problem IVk for which 

and then use the norm (60). 

It was shown in Section 1 that 

Let us introduce the notation 

ll~“ll~” 5 llll”aPllO~ IIILOllo=maxIIp~O~ (65) 
01. p=1 9 

hama 6. bt z be the solution of problem III? and u the solution of 
the same problem with the right hand side 

then for sufficiently small -r < T,, we have the estimate 

!z(zs G+S--(** tj+JR\<MHT;OIIo([~IIa +jl~ll”), (67) 

where 

We recall that in our terminology (cf. Para. 1) u is the solution of 
problem IV*. Consider the difference w = z - v. Wr this difference we 
obtain the conditions 
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P% a 
- Aaw + daw = Qt'.(w) + qa, 

It is clear from this that 

&-/=o 
a==1 

and, therefore, we can use Lemma 5. Using the fact that 

I (69) 

(70) 

we obtain l~S~P$M(An”, II~~*<Mjlt[*. Then using the estimate (61) 

for w and the fact that 2jv)~\%[<[~na+~riu*, we arrive at inequal- 
ity (67). 

From Theorem 1 and Lemma 6 we have Theorem 2. 

‘Theorem 2. Let z = z(x, t) be the solution of problem III;. Then for 
sufficiently small 7 < v0 on an arbitrary sequence of nets Q( ’ ) and 
Q(*) we have the estimate 

jr(x9 tj+l)IIfMUy(X, tj+l)II+MU~II(Urng+IItiIIa>, (71) 

where 11 ‘f(r, t) 11 is the expression defined by formulae (57) and (60) 
with 

P-1 &l 

We note that since III, is a special case of the Problem III2 Theorems 
1 and 2 also refer to problem III,. 

The maximum principle is valid for problem III, and so its solution 
depends continuously on the boundary data (cf. [lo]). In order to obtain 
an estimate for the solution of problem III, for vi 7 0 it is sufficient 
to estimate the solution of the corresponding problem III, with the same 
data and then use the following lemma. 

Lemma 7. Let z 
problem III, with 

small II 7 Ilo < To 
mate 

be the solution of problem III,*and u the solution of 
the ssme coefficients and ‘fo, vo. Then for sufficiently 

on any sequence of nets Q(l) and Q(*) we have the esti- 
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Fbrw=t- u is the solution of problem III; with homogeneous bound- 

ary conditions and the right-hand side y= = e!(u). Applying Theorem 1 
to w we obtain (72). 

6. UNIFORM ESTIMATES FOR THE SOLUTION OF PROBLEM III, 

lheoresl 3. The solution of 
nets Q(l) and Q(*) for 11 -r 11, 

problem IV; on an arbitrary sequence of 
< T,, has the uniform estimate 

B zb, tkl)l,~MEy(z,tr+l)pln”~~ ’ for H.=minH\<H,(d), (73) 

where 6 > 1 is an arbitrary number 

(74) 

ll’sn,= i niao,. and II~,n,a,, is given by formula (33). 
(Ial 

If o1 is a normai :I?:, then 

ll;b,li~~,o = llll”u,ll,~,,ll,. (7G’) 

Let us put (50) in (47) and use Lemmc 4, of [141: 

(p, “,)‘+l< jg (M2”1 Y!Ir” [)2”Tjt < T (M2”1\ ‘I”+’ IP)““. (7:)) 
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It then follows thnt ~z(s, t~+J)o<M~2nj\P (5, tj+l)l*H. d’n. Using 

(8) and (10) and choosing n = n(H,) as in 1141 we obtain (73). To prove 
the second part of the theorem we must put (52) in (47) and repeat the 
previous argument. 

Core I lary. If -vo = 0 then (73) takes the form 

If Ya = 0 and the net ov is normal (r< m*i), then 

H. 6 H, (a), bib < To. (76’) 

Lennrrr 8. Let z be the solution of problem III1 and v the solution of 
the corresponding problem IV, with the right-hand side (66). Then on 
Q(l) md Q(2) for ~,q)(6), II T II, < -r. we have the uniform estimate 

To prove (77) it is sufficient to estimate the solution of problem (69) 
where Qo = @1), using (79). 

Let us now pass ICO problem III;. For this problem we have the inequal- 
ity (75). However, on transforming to the old function zoid accor#ng to 
(8) we miist multiply zosr which figures in all our reasoning b.v eMdn’j-fl, 
and this gives 

(78) 

for sufficiently small 11 z[ o < z. (n) = q,/2”, which in this case depends 
on n. This dependence occurs in connection with the fact that it is not 

simply I!! but z/(1 + ii?) which enters into d, (cf. (141). 

Making the requirement that x/(1 + M’i) > M*2”O, and choosing 

32 = liE?*Z”, we obtain %, > (1 + g$?r) ikf’, 1. e. g@ > M*i(f - 

M’ 23). It follows that z< z,&?, z,< 1/M”., It is clear from (78) 
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that @znH.-l”n takes Its least value if we choose 2” - ‘)/ln(i/ti.). 
‘IMe leads to the uniform estimate 

W-0 

which is true for sufficiently small H.BH, with the additional condi- 

tion vm) ‘t < 3, where ri is a positive constant which does not 
deDend on n, i.e. on H,. In [171, Section 2 we obtained the estimate 
(79) for a multi-dimensional scheme, but did not show that there Is the 

relation vln (l/HJr,< Y:. between t and H,. In cl41 we found the 
estimate (73) for the one-dimensional problem III, (p = 1). Unfortunately 
the method of [l41 is not suitable for the multi-dimensional case. We 
note that for the special problem IIIg for & = 0, bi = 0 on the net 
Q(*) this additional condition is removed. 

7. A PftIoRI ESTIYATES FOR OTRER PROBLEMS 

‘Theorem 4. The solution of the problems III;, k = I’, 2’. 3 on any 
sequence of nets Q(l) 
emall II T II, < me. 

and Qt2) has the estimate (59) for sufficiently 

The proof is done in a similar ww to that of Theorem 1. We have to 
use the estimate 

for problem III,, where c,, is an arbitrary number, and for III,, and 
III,, we need the estimate 

( b;$ xg l + b;_,iGa_;z) < M n zj+=‘* 0 ’ + e~l,("-~)- 

Lemma 5 does not depend on the form of Q, and so is true in this case 
also. 

From (59) we have the estimate (61) and using this estimate we can 
Prove Lemma 6 for the given problems. 

Problems III, and III,, reduce to 
III,. 

problem III, and III,, to problem 

kmaur 9. Let z be the solution of problem III, and II the solution of 
the corresponding problem III, (i.e. that which has the same coefficients 
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and the same right-hand sides). 
mate 

Sonorskii 

Then for II T II o < ‘cg we have the esti- 

030) 

For the function TV = z - v is the solution of 
right-hand side 

which satisfies condition (70) and this enables 
(61). 

us to use the estimate 

Lemma 10. Let z be the solution of III,* and v the solution of the 
corresponding problem IIIg* for g& = 0. If the net or is quasi-uniform 

(I~~l<nz*z), then for lzllO\<~,, we have the estimate 

problem III; with the 

For the difference w = z - v we obtain problem III,t with right-hand 
side 

which satisfies the condition 

qT = (qj+l - q+ /z. (O 

The last term on the right-hand side of inequality (46) for the func- 
t ion w wi 11 have the form 

2 &, J+=@) v = - 2’“i ($,, fLJ+1- J+=‘q ? - 27 (qp (?lD)j+l). (63) 

Reasoning as in Fara. 4 we find 
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(li=l a=1 

Let us transform the last term on the right-hand side of (83): 

As a result, instead of (46) we obtain 

@nmning this inequality over all j’ = 0, 1, 2, . . . , j and then using 

Lemma 4a t141 we obtain 

(P+tUa)‘+l + zZP~ < MR(tj+l) $- M’ 1 (ZQpW)hlfs (85) 

where R is the expression in curly brackets in (84). Estimating 

M’ 1 (rq,w)‘+’ I < 0.5 (p,~#+’ + MI? d qj+lII 1, we arrive at (81). 

If we know an estimate for IjuIj -+ I/tl]l~..lj, then Lemma 10 enables us 

to find an estimate for Ijrl[+ I/inz-.li . 

hum if. Let z be the solution of problem III, with the right-hand 
side Yo = 0. Then for sufficiently small 11 v 11 c < T,) on the arbitrary 

net Q( ‘) we have the inequality 

- 0 h-V, Vvt+i II *za fz* tj+a/p) II g,,o G y II Vr v II 0,‘ *,y 9 (W 

where 

h.,r = min &, “a+)* 
x~YQ.I.=I.2....,P 

From Theorem 1 of [loI we have Il~(~,~~+~)Q~(iM~vl]~~. LRt us write a 

first order inequality for the chain 4, assuming that the boundary con- 

ditions are not homogeneous (I = P$r(r’a) + v$, z&) : 

where 
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Aa = 2ra=z~ax I _(+a) - 2raa(+'=)zxar 1 _(-a) 

In this we put z from the boundary conditions I= h,+n&+v,, 

z = ha%& + vz. Then 

4 = - 2r 
i 

ah+l’) h,+rinxi + a,h,& 
1 ( 

+ 2r %$&vi - ‘$‘a) %,vi 
1 

- 

Since 2ra,~~v~<3ra~z~~h, + a,,(vzh;‘$4.2, we obtain 

v/l@,, $l”<U +WD; I& ,,=+M ‘t/~[lv~Ih~‘-t Iv;1 h,+l+vs. (67) 

If, for example, V; = 0 (hi,), vz- O(h:), then it follows from (37) that 

v-? iI zla I&,,, < iti il h Ig, y + Mr . 

Noting that 

we can see that the following theorem is true. 

Theorem 5. Let z be the solution of problem III, t for To = 0 with the 

3. On the convergence and accuracy on non-uniform nets 

1. INTRODUCTION 

In order to clarify the question of the convergence and accuracy of 
the schemes IIk (k = 1, 2, 3, l’, 2’) examined in Section 1 let us use 
the a priori estimates for the solution z Of problem IIIk which i8 the 
error of the solution y of the problem IIk (z = y - u), obtained in 
Section 2. hese estimates take the structure of the approximation error 
into account, and for all the schemes it has the form 
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On the uniform net tiL1) we must put pap = 0, I@‘,, = 8,&za, &a = 

0 (8:) + 0 (z) where Si(L = 0 (ti,) + 0 (z) in the case of the net a;‘) 

at nodes adjacent to the boundary ya. Nevertheless, as we shall show be- 
low, this does not reduce the order of accuracy of the schemes. 

Let us formulate the conditions laid down on the solution u = U(T, t) 
of the problem Ik and on the coefficients of the differential equation 
(Section 1, lk, k = 1, 2). 

We shall take it for granted everywhere below that the following con- 
dition is fulfilled: 

in 4 c(x, t) satisfies the Lipschitz condition 
so that 

1 CT\ \< cs, CL = const.> 0. 

with respect to t, 

(4 

All the a priori estimates in Section 2 were obtained for this condition, 
i.e. for IpfI\(cr. 

Condition A. The solution u = u(x, t) of the problems Ik (k = 1,2,3) 
and the functions c(x, t), k,(z, t, u), f(r, t, u, ql, . . ., qp) possess 
all the derivatives which are sufficient for formulae (l)-(3) for Ya to 
hold at any point of the net Q(l) or Q(*). 

Condition B. The functions id/c(x, t) satisfy in 4 the Lipschitz- 
conditions with respect to the 
or P > a for a > [p/21, a, p = 

Con&t ion C. The expression 
any net Q(l) or !J(*) for all S 
a = 1, 2, . . . , p. 

Let us illustrate condition 
condition A to be satisfied it 
u, k,, f, Fas a3u/ax;, ac/axa, 

A using the example of problem IO. For 
is sufficient. for example. that h/at, 
aFa/aXa, a2 k&ha, * af/axa shall satisfy 

the Lipschitz conditions for xa, a = 1, 2, . . . , p and c(n, t), au/at the 
Lipschitz condition for t. 

variables xp where p <a for a < Lp/21 
1, 2, .*., p. 

2 

(;aIc(‘J t)) is uniformly bounded on 
afora<[p/21 orS>afora> [p/21, 

Since we have agreed to take all the coefficients p = p(n, tj+l), 
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‘a = aah tj+l)e 
bf = b,(x, 

it is not necessargafor the 
f(x, t) to satisfy the Lipschitz 
this was necessary when the principal part ta of the approximation error 
Ya was taken separately). 

The results of the work [IO] are obviously valid for problem II, if 
conditions A and C are satisfied. 

With the additional requirement that &/at shall satisfy the Lipschitz 
conditions with respect to xa conditions A are equivalent to the condi- 
tions under which every cne-dimensional scheme l’f, has the maximum order 
of. approximation O(hi) t O(T) on a uniform net. 

We shall conduct our next argument for the scheme II,, only briefly 
indicating the results for other schemes. 

2. ON THE CONVERGENCE OF THE SCHEME II, 

It follows from [IO] that schemes II, and II, have accuracy O(h*) + 
O(T) on the uniform net Q ( ‘) if conditions A aud C are satisfied. The 
method of [lOI did not allow us to examine the question of the con- 
vergence when weaker conditions were laid on u, c, k,, ra, f even in the 
case of the uniform net Q (‘I. This can now be done, using the a priori 
estimates of Section 2. 

We shall need conditions A(‘) and A(O): 

fife ). The functions k,, c, f, ak@, a@, ra, bPzti a*u/axi 

au/at, a = 1, 2, . . . . p are uniformly continuous in Qr 

A(O). The functions listed in A(‘) satisfy in oT the Htilder 
of order u1 > 0 with respect to xa, a = 1, . ..( p and au/at In 
satisfies the H6lder condition of order a2 > 0 with respect to 

It is not difficult to see that 

conditions 
addition 
t. 

qp, = P (V + P (x)9 if the conditions Ato) 

(p (e) + 0 when e --, O), 
are fulfilled 

qp, = 0 (7P) + 0 (r”‘) ) if the conditions A’“‘, 
are fultilled 

on arbitrary nets Q(l) and 52” ). 
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fieorem 6. If conditions A(O) are satisfied, then the scheme II, con- 
verges in the mean on an arbitrary sequence of nets ST(‘) and Qt2): 

IIY - 4 = PlwlfJ) + Pzwlo) for u4lo\< To, 

where pk(e) - 0 as < - 0, k = 1, 2. 

Proof. For the error z = y - u of the scheme II, we obta!r! xobleu 
III,, where Yy, is given by formulae (4) and (5). bet us put - ;n the 

form of the sum t = z t V, where t is the solution of this problem III1 
for Ya = 0, and v is the solution of the same problem with homogeneous 
boundary conditions (vf = 0); z E 0 on the net SC 2 ). Due to conditions 
A(‘) we have va * = 0th y and.Theorem 1 of cl01 gives a 
To estimate v we make use of Theorem 1. Remembering 

0 <I/;) -I- P (~1, we find iI 4 = p1 (II B II),+ ~~(11 v Ilo). 

k = 2, 3, 1’. 2’ there is an analogous theorem. 

In order to provepuniform convergence conditions 

112 II 0 = 0 i iI h !I i,,). 
that )jYj] = p (2) + 

For the Problems ll,h, 

A(o) 

due to the factor In” (l/H,) in the estimate (2.73). Due 
in the case of a non-uniform net ah we must introduce an 
striction on the magnitude of Hz: 

H.>exP (- c/IIHIIi), HI = minH, H = fi 
____ 

are insufficient, 
to this factor 
additional re- 

fi (r, (7) 
*ezwh a=1 

where E is a positive number as small as we Please, and c is an arbitrary 
Positive constant. It follows from condition (7) that 

It is not difficult to 
and is a weak restriction 

I*&<~ 
l II H II : ’ 

see that this requirement is not very onerous 
on the arbitrary selection of the nets ah. 

When formulating our theorems concerning uniform convergence below we 
shall take it for granted that condition (7) is satisfied. 

In proving uniform convergence we shall use Theorem 3. Estimate (73) 

contains the norms nqa[,,o = 1 [I~a~,,,Io, where .uq,l,,,, is the norm 

along the chain fl=, defined by formula (2.33). Let us introduce the con- 
cept of the mean square step along a given direction a. We take some 
chain q= of length 1,. It is obvious that 1, is a net function on ah 
which takes constant values along each of the chains 4,. Let r= be 
the chain of direction a having the greatest length c = jj la! o. We 
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define the mean square step in the direction a to be the quantity 

We recall that 

tJh= ~O,Ya = max (max h,,, max k), 
x El; 

+ 
XEYq 

P 

IIha,,, = 2. Uha no,ya- 
a-1 

mewen 7. If conditions Acff) are satiefied, scheme II,, for p (z,t) 

=c (z) converges uniformly on the non-uniform nets ST(‘) and Q( *): 

(9) 

where o; = min (0.5, u2) < 0.5. 3 > 1 is an arbitrsry number 

The proof is also based on the representation of t 
form of the sum ? = z + u; for ? we have the estimate 

=Y - u in the 

II30 = 0 t U$,Y) 
We use Theorem 3 to estimate V, and take into account‘the fact that 

k 4, 2. (10) 

3. ON THE ORDER OP ACCUBACT ON A NON-,UNIFOBY NET 

lheorea 8. If conditions A and B are satisfied, then on au arbitrary 
sequence of non-uniform nets Q(l) and Q(*) schae II, hae first order 
accuracy with respect to -r and second order accuracy with respect to h, 
so that when 11 T 11, < T,, we have the eatlutes 

~v-~~s~(8h’~r+ek~h’~o,,+I~~~~ (iI) 

}v - ~I,<M((hl:+lvUJln8$ for 0G%(4, W) 
. 

ek = a,, = 
i,k=i 

O,k=2 
on tha n&6)(k). 
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Proof. Let us put 2 = y - u in the form of the sum z = q + t + u 

where q is the function defined In [lo], Section 2, Para. 2 

(PY-& = $,L z is the solution of problem III, with the right-hand side 

% = 0 and’non-homogeneous boundary conditions z’ = ~~~‘T’a) + vf when 

z E Tr, where vf = g=vf 7 7 + pfq”‘a’, when fiz = 0 on Q(’ ) and u 

is the solution of problem III, with homogeneous boundary conditions and 

the right-hand side W, = *a +&q + Q:)(q). BY analogy with [lo] we 

find nqj,-,=O(~). Theorem 1 of [loI gives ~~~,=O(~r[,,+~ha[,,J 

on Qc ‘) and 1 ia0 = 0 (]~j 0) on Qc * ). TO estimate v we use Theorems 2 

and 3, remembering that 

Let us first Cahhte 11 'f 11 Wing formulae (57) and (80), putting 

P 

~a = i pb = 2 b&h:. 
0=1 B-l 

The calculation gives 

Combining the estimates for q, t and u we obtain (11). Let us now return 
to Theorem 3 and kmva 8. 

Noting that l Y 1 = 0 (u h I&) + 0 (z), we obtain (12). 

Theorem 9. If conditions A are satisfied, then the solution of prob- 
lem II, on Q(l) and Q(*) for 11 T 1) < e\-r,_, satisfies the inequalities 

il~-~I)\<M(lyl~II+~~Hh~Tlo,I+n~lP>, (13) 

a~--uIb~M(nh~Is+ntl~)ln~~. H. =G H, (6). (14) . 

These estimates follow at once from Theorems 2, 3 and Lemma 8. 

Estimate (13) is valid for the schemes II*, II,, II,,, II,,. A com- 
parison of TheorePs 8 and 9 shows that by weakening the restrictions on 
the solution and on the coefficients of the differential equation we ob- 
tain the cruder estimate (13) Instead of (11). 

Assuming that conditions A and B are satisfied and using Theorem 5 we 
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can obtain the following estimate of the rate 
mean) for the scheme II,t on the net Q!i) (or 

of convergence (in the 
is a quasi-uniform net): 

where 

h.,, = min h 0’ 
xefa,a=i. 2,.... p 

In the case of a system of A’ parabolic equations, by analogy with [141, 
Section 4, P8ragraph 5, we can write down an absolutely stable local 
one-dimensional scheme. To solve the resulting difference equations with 
respect to the vector y jta/P the fl-times application of one-dimensional 
successive substitution is required. This scheme converges in the mean 
at a rate 0(/a*) + 0 (vi) (cf. Theorem 9). 

4. Appendix 

I. THE TBXRD BOUNDARY PROBLEM FOR A PARALLBLEPIPED 

Let iz= (O<X&l,, a=i ,..., p) be a pa~llelepiRed on the boundary 

of which conditions of the third kind 8re given 
( 

kp(-$ 
a 

- c;a + u;= 

au 
when xOL=O,-ka~=a~u+u~, tics z,,=l, . 

1 
The corresponding prob- 

0 
lems I; and 11; where considered in [lo], where we took the simplest 
difference boundarJr conditions of the first order of approximation for 
11;: 

Bh+‘+za ZX 5,y + u;= for. xa = 0, -u&y+ = 5;y f Uln + for x* = 1,. 

For the error z = y - u of the scheme II; on the non-uniform net* aa 
we obtain problem III; with the boundary conditions 

where v; =O (h,,), V: =U (h,). Ety an8log.v with section 2 of tlOf we find 

the a priori estimate 
--- 

l If the region G is 8 parallelepiped. we shall denote the net Q’ by 

z,, below. 
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which holds if ai>el>O. Here 11 Y(r, t)I) is the expression (2.40). The 
following estimate of the order of accuracy is true (for conditions A 
and B of Section 3) for the scheme II;: 

II Y - u II B M ( II v lb + II fi2 II + II h I!,,, y)> (3) 

i.e. generally speaking the scheme II; has first order accuracy with re- 
spect to h. Concentrating the net near the boundary, or, more exactly, 
choosing 11 h I&, y = 0 ( 11 Aal]), we can increase the accuracy on a non-uniform 

net to second order (IIy-~II=O(IItr~Il)+0(llrlb)). 

It is not difficult to obtain uniform estimates also, by analogy with 
Section 2, Para. 5 and Section 3, Para. 3. The results (2) and (3) are 
also true of the scheme II,. 

2. DISCONTINUOUS COEFFICIENTS 

The a priori estimates obtained in Section 2 enable us to examine in 
detail the question of the accuracy of the schemes IIk in the class of 
coefficients of the differential equation (1. lk) with discontinuities 
of the first kind on a finite number of hyperplanes x, = 5, = const. 
parallel to the coordinate hyperplanes. We can formulate all the results 
by analogy with the one-dimensional case [141. If the net tih is arbitrary, 
then the estimate for z = y - u will contain first powers of the steps 
h, at the points adjacent to a discontinuity (cf. cl31). Concentrating 
the net near the discontinuity xo = co, i.e. choosing ha = o( IIR2 11) at 
these points we obtain second order accuracy with respect to h on such a 
net. The nets @h(k) introduced in 1141 are more economical; they are 
selected so that the nodes of the net lie on the hyperplanes %o = go. In 
this case, as we showed in Section 1, the expression (2.5) for To is 
valid at all points of the net oh(k) and hence our schemes have the same 
order of accuracy as in the class of continuous coefficients. 

3. ELLIPTIC EQUATIONS 

The methods of [141-[171 and of this paper are also applicable to 
the study of the convergence and accuracy of homogeneous difference 
schemes for multi-dimensional equations of elliptic type. 
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Suppose that In the region c we are given the boundary problem 

Lu - q (2) u = --f (2). 

k,>s>O, 

The corresponding multi-dimensional 
non-uniform net a/,*) has the form 

P 

Q (4 > 0. 

homogeneous difference scheme on a 

*Y= xAay=d(z)y-q(z) for ZIG@, 141, = u1(z); h,y = (aa (4 Y,o~); . (5) 
a-1 a 

The coefficients ao, d and cp are calculated from the formulae of Section 
1, para. 3. 

For z=y- u we obtain the problem 

A priori estimates for z can be constructed, as in Section 2, using 
n-th rank energy inequalities. We majorise 2”(‘f, zun) for n > 1 thus: 

For n = 1 we have the estimate 

9 

Ii s II 6 M a$lP& + !N&,) NJ&a = lb&a. ma);a = qJ:v 1’=“’ = 0, z E r;* (5) 

On the arbitrary non-uniform net @A*) the difference scheme (5) has 
second order accuracy: 

[y--uO6Ml~‘l and U~-+&+f[hll;ln~& H, 6 Ho (a). (8) 

The net oA*) is obviously more convenient than the net ,/,I) since the 
procedure of extrapolation of the boundary conditions from r on y In 
this case is less convenient than for the local one-dimensional method. 

It is clear from what we have said that these schemes converge in the 
class of coefficients having discontinuities of the type described in 
Para 2. 



Local one diaensional difference scheacs 615 

In [151, [191, [201 a method of putting ‘f in n divergentW form and 
then applying the first rank energy identity was used. More refined 
estimates, based on the use of Green’ 8 function, were obtained in [181. 

4. EXPLICIT SCHEMES 

The advantage of local one-dimensional schemes over multi-dimensional 
schemes is easily appreciated even in the case of purely explicit 
schemes. Let us Illustrate this remark, taking equation (1.1,) with con- 
stant coefficients and putting, for simplicity, ra = ‘I = f = 0, ho = 
c = 1, taking the net o,, to be uniform and “square” (ho = h = const. ). 

Let us write down an explicit multi-dimensional scheme and the corre- 
sponding local one-dimensional scheme (cf. [Sl ) : 

y7= (y”’ - yip= Ayi, AY = i A.& 4% Y = Y;T.,a. (9) 
(I--i 

yi, =A& a=1,2 ,..., p; y = pdP, ; = y” (a-i)/P 

The stability conditions for them have the form 

(10) 

? i 
3 6 2-p for (3, ;<; for (10). 

Thus, the local 
with respect to 
required. 

one-dimensional method allows us to increase the step 
time p times without increasing the amount of calculation 

5. ON SPLITTING YETAODS 

In [31-[51, [71-M, hll the question of the accuracy of economical 
schemes, which the authors call splitting methods, reduces to the in- 
vestigation of a multi-dimensional difference equation connecting the 
values $ and #+1 on integral steps, and this greatly restricts both 
the class of equations and the class of regions C; for which these methods 
are applicable. While this method is suitable for the schemes of [‘II-[91 
in our opinion a more natural method for the schemes of [31- [51 is that 
described in [10l and [l21. The fact is that in the simplest cases con- 
sidered in [31-[51 the algorithms of [31 and [lOI are the same. In this 
connection it should be noted that the works [31-[51 gave the stimulus 
to the author for the work of [1Ol and [121. 

In [31, [111 the following six-point schemes were used: 
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In r121. forp=2, (IT= 0.5 it is shown that these schemes converge 
in the mean at the rate O( 11 h2 11) + 0( II T II 2) on an arbitrary sequence 
of non-uniform nets wi2 ), When p > 2 this estimate holds if the maximum 
principle is satisfied. 

Let us show that the splitting method of [‘II- C9f preserves the 
maximum order of accuracy O(h’) + 0(v2) on arbitrary non-uniform nets 
Q,. Without attempting to generalise this method for the general equa- 
tion (l.lO) and arbitrary p let us give the argument for the case c = 1, 

ra =o, fg =O, f=Oaudp = 2. When we can write the scheme of /ITI in 
the form 

ytl = 0.5 [AI (yj + yW + byjl + t dIA,Yj, yi; = 0.5AJ+l, (ii) 

where Aa@=& (~,ti+t,,) yzak 2 , aa is given by the formulae of Section I, 
0 

Pars. 3, and in this case k, is continuous and ?& = k, (in 171 
a, = kh_Dssa) and the net ah is uniform). 

The method is applicable to the parallelepiped ~=(Ogz,<Z1,} and 

csn be generalised (cf. [?I) to the case of regions formed from parallele- 
pipeds. The second equation is also written for x1 = 0, x1 = 2, and used 
to find the boundary values of yj* for x1 = 0, x1 = 1,. Eliminating 
yjfx from (11) we obtain 

Yi- = 0.5 A (?/fix + yj) - ; A&I, 

Using this to find t we have 

e? = 0.5 A (zj+l+ ai) - f @A&P I + ‘I’; ZI Y -_ 0, L (z, 0) =O, (13) 

where Y = 0.5A (&l + ai) -g AlAauI - ~7. On a uniform net P =O(hs)+U (+). 

On a non-unifo~ net Q,, 

9’ =;i;+O(r*)+0(9), $=-f A&7. (14) 

It is not difficult to see that p = O(T~) on any net PO. ‘ihe methods 
of [141 and El73 enable us to obtain the necessary a priori estimate for 
z without difficulty, with *the condition that -l(a,)T 1 <cl*, cl* = con& > 0. 

As usual, making a scalar multiplication of equation (12) by 2~~761, we 
obtain 
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2r (I zT. p + z + 0.56 (A&7, z7) = z * + 22 (Y, ZT) (15) 

!d 

z = zfi+1 = 2 (a?/*, (zgy],, 

a=1 

z+= i (lap, XII (zl )q a. I= Zi (see below), 

a=1 

which differs from the usual identities considered by us previously in 
the Presence of the term 0.5+(A1A1a~, z~). In [221, where an a priori 

estimate was obtained for the problem (13) on a uniform net this term 
is transformed by a double application of Green’s formula in the dire+ 
tions x1 and x2. (The substitution becomes zero since ‘j;, =O when 
x*=0,2@- -I, for p y a. ) The estimate of [221 is also valid in our case: 

e (AlArry, ~~)>O.~~~~~S-,-,i(l~-Mr(z+r). 

if I (a,)+\6 con&. when a f p. 

Now let us transform 2r(g, zT), using the fact that q~ = yll + vy2, 
‘9,. = W;, ’ 

As a result we obtain an energy identity for Ilrlb< q, : 

(I- w 1 < (1 -ww T-- 5 ((IL09 2; ~,)I~+~~~llIr~I~+ll9*IP+~l~~~~~~~ II (‘6) 
a=1 

OL 

where 

II CL II = i II PLO Ih. 
a==1 

ECY analogy with [l21 and Section 2 we find from this 

II 2 (~,‘t) ll G M { II P (2. t) ll~+,llPi (zt ‘1 II + 119 * (2, ‘1 II + 23 II ‘l’~uillI (17) 

for sufficiently small llz/~<q,. 

This Proves that the scheme (11) retains second order accuracy on an 
arbitrary non-uniform net a,,: 

II Y - a II B M ( II fi’ II + II’* Ila ) when U r II < TO. (18) 

We note that the smoothness requirements laid down for the solution 
u = u(x, t) and the coefficients of tbe differential equation for which 
estimates (17) and (18) are valid augment as the number of dimensions 
increases (cf. [71- [91, and compare with Para. I, Section 3). The 
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possibility of removing the restriction 1 (a,);, I < cord., whose presence 

makes it doubtful whether this method can be used in the case of discon- 
tinuous coefficients and quasi-linear equations when ko = k,(x, t, u) is 
an interesting question. 

Note. In [21 the scheme 

yr, = A, y”“a + a&, yl; = &yf+l- A@$ = TAJf 

of first order approximation is discussed. It Is not difficult to show 
that that scheme 

yi, = 0.5hl yj+“* + yj) + id, yr; =o.5r&yi 

leads to equation (12) and, therefore, has second order accuracy. The 
estimates (17) and (18) are valid for this scheme. 

Tram latcd by R. Peinatein 
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