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A number of economical difference schemes which are applicable to
regions of a special form (parallelepipeds or regions formed from them,
cf. [9]) have been put forward for the numerical solution of the linear
heat conduction equation in several space variables ([1]-[9]). Equations
with variable coefficients were studied in [7]-[12] and the other works
are concerned with constant coefficients. In [10] we proposed a local
one-dimensional method of variable directions for the linear equation
(1.14) (ef. Section 1) and for the simplest quasi-linear equation (1.1,),
and this method was suitable for an arbitrary region in space G, on the
boundary I of which boundary conditions of the first kind were given.

We constructed a family of local one-dimensional schemes which were
homogeneous with respect to space and cyclically homogeneous with re-
spect to time. It was shown that all these schemes were absolutely
stable with respect to the initial and the boundary data, and'also with
respect to the right-hand side of the equation (Theorem 1, [10]) and
that they converged uniformly at a rate O(hz) + O(t), i.e. had the same
order of accuracy as multi-dimensional implicit schemes (cf. [17]).

In this paper we consider local one-dimensional schemes on arbitrary
non-uniform nets for linear and quasi-linear parabolic equations with
the "heat conduction coefficient" kcx = ka(x, t, u) dependent on the
"temperature” u = u(x, t). The maximum principle, with the help of which
the uniform regularity of the problem for the error z = y — u with re-
spect to the approximation error was established in [10], does not hold
in the case ka = ka(x, t, u) and in the case of non-uniform nets when
k= ka(x, t) it enables us only to prove first order accuracy with re-

X
spect to h (for problems II  and II,, cf. Section 1). For a number of
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Local one dimensional difference schemes 573

schemes I1,, k =1°, 2’, 3 (cf. Section 1), the maximum principle has
not been established. We shall therefore pay considerable attention (cf.
Section 2) to the derivation of a priori estimates (estimates in the
mean and uniform estimates) for very complex equations which are satis-
fied by the error z = y — u where u is the solution of the differential
equation and y is the solution of the corresponding difference problem.
Since the coefficients of the space parts of the difference schemes
satisfy only the boundedness condition, in order to derive a priori esti-
mates we use the n~-th rank energy inequality method developed in [14].
[15]. {17]. with this method we take into account the complex structure
of the approximation error

»
\Ifa={pa + $q, 11:’4:0(1)’ z\%a.: 0,

a=l

P
Yo= ) [(ep) 2, + Yoz, Mag=O0(h), Yus= 0 (B + O ().

a=1

Two methods have been suggested, in {10] and [12], for summing the
principal part of the approximation error, &a' However, since the method
of [10] should be used when the maximum principle holds and the method
of [12] when p = 2 for a special form of the schemes, in Section 2 we
suggest a third method which is very general and can be applied in all
cases. The method for summing the local approximation errors with respect
to space is based on methods from ([13]-[18]. Together with the space net
of!), similar to the net in [10], we consider the net w}?’, the boundary
points of which are points of the boundary I' of the region G and so the
boundary conditions in them are given without extrapolation. It is shown
in Section 3 that the order of accuracy on both nets is the same (O(hz)).
Of the results of Section 3 we note only one: if the scheme II, (cf.
Section 1) converges uniformly on a uniform net at a rate O(hz) + O(1)
then on an arbitrary non-uniform net it converges in the mean at the
rate O (||h?|| + ||v||,) and converges uniformly at the rate

O (IR 1n® =) +0 (I <lloln® ),

P
where H h? ” is the mean square value of h? = Zhi on the net @,
x==1
P
| k2|, = max k2, ||t|, = max v;, H, = min H, H = [[ A, is the volume
xSop @ ©h a=1

of net meshes and § > 1 is an arbitrary number.

The a priori estimates we obtain enable us to prove without difficulty
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the convergence of all the local one-dimensional schemes of Section 1

in the case when the coefficients of the differential equation have dis-
continuities of the first kind on a finite number of hyperplanes parallel
to the coordinate hyperplanes (cf. [17]. Choosing special sequences of
nets mh(k), by analogy with [14], we can arrange that in this case our
schemes will have second order accuracy with respect to h.

By concentrating the net @) near the boundary we can also attain
Becond order accuracy for the third boundary problem in the case of the
parallelepiped considered in [10]. Section 1, Para. 7.

The methods of Section 2 enable us, in particular, to show that homo-
geneous difference schemes for elliptic equations as well as the split-
ting method of [7]-[9] for linear parabolic equations, retain their
maximum order of accuracy on arbitrary non-uniform nets. A brief account
of the corresponding results is given in Section 4.

1. Local one-dimensional schemes of variable
direction on a non-uniform net

1. THE DIFFERENTIAL EQUATIONS

We shall consider the p-dimensional parabolic equations

P
@
c(z,t)—a%=ZLau+f, (1)
a=1
where x = (%;, ..., %y ..., %) is a point of p-dimensional Euclidean
space R with the coordinates Xyy vees X wees X, (X t) = C(Xheen,

x,, t). The differential operator L,u and the function f are defined by
one of the formulae:

Lot = o (ka2 5 ) + Tela, Dgmr  F=t@d =g du

(10)
L,u=%(lc,(z, t) aaTl:) + r.(z, t,u)%‘:, f=,(zv t, u)s (11)
Lat =5 (ke (2 1, 1) )t b g, =1 @nw, )
L,u=%(k¢(z,t,u)§::), f=’f(z,tvu: g;‘"--::_:p)' (il)

let G be an arbitrary p-dimensional finite region with boundary T,
E=G+T, Or=Gx10<<t<T], Qr=06X (0t T) In the
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cylinder aT we are required to find the solution u = u(x, t) of the
problem

P
a_:l = a.Z:-lLau + f’ (x, t) € QT: ]}

ulp = u, (2, ), €T, t€(0, T  ul(z,0) = uy(a), »G, )

(D

where u 0 (®) and u,(%, t) are given functions.

Depending on the form of L of f we obtain problems I, I,, I,, I,.
In (10] we studied only the problems I and I The coefficients

ko (x, t, u), c(x, t) satisiy the conditions
ke (z t,uy >c¢;, >0, c(z,t)>¢, >0, a=1,...,p,

where <, and c, are constants. By analogy with [16] we shall assume that

Ok./0u, 0ry,/du, 0f/du, 0flog,, . . ., 0f/dqy, (2)
where f = f(x, t, u, Ty oo G ) are un1form1y continuous in the whole
region of variation of the arguments (2, t) € 0 W Ay e T It is

also assumed that each of the problems I, k=0, 1, 2, 3, has a unique

solution u = u(x, t) continuous in QT and possessing all the derivatives
which are required in the course of the argument. We use the same assump-
tions with respect to the region G as we used in [10); the intersection
of the region G by any straight line %., drawn through a point x € G
parallel to the coordinate axis qu consists of a finite number of inter-
vals. It is not difficult to see that we can conduct our argument for
the case when the straight line £, intersects ' in two points only
without loss of generality. Extension to the general case involves

nothing more than further difficulty for the printer.

2. THE NETS

In [10] we studied schemes for the problems Io and I1 on a uniform
net. Here we shall consider two types of space nets, each of which is
non-uniform.

i
Consider the set of nodes z; = (2™, ..., (“a . <l"))EEG of a

rectangular net covering G where 1 =0, 1, £2, ..., and let us con-
struct two nets o (1) and 0(2) on the region G.
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- i)
1. The net of!’ is defined as in [10}. The nodes x; and z; = (x; ,

14
(1) i) 3 : . .’ .
@, x;P ) are adjacent if :8 |ia—is| =1. The internal

a=x1

Cea X,

net region ofl) = {x; €& G} consists of the nodes, all of whose adjacent
nodes belong to G. The node x; is a boundary node if at least one of its
adjacent nodes does not belong to G. Through the point x; & wf!) we

draw the straight line ., parallel to the coordinate axis Ox and call
the set of nodes of the net m(‘) lying on E& . including the boundary
nodes x{~%) and x{*%) the chaln . (the coordinate x, increases on
passing from x‘-%} to x( )). Let y; denote the set of left-hand bound-
ary nodes x{~% and ya, the set of right- hand boundary nodes x{t®) of

all chains of a given directions Ya = Ya yu, Y=y; t-.. t Yp is the
boundary of the region o, 6= o 4 7.

2. The net m(z) = {x € (}. Every node x; & ( is an internal node.
The boundary y cf the net méZ) consists only of points of the boundary
I of the region G so that y CC T (ef. [12]).

For regions (¢ formed from parallelepipeds with their boundaries
parallel to the coordinate planes (cf. fg}) the nets mzl) and w%z) co~
incide.

Both nets mgl) and o{?) are non-uniform, and the step of the net

hﬁa>«« zﬁa} ““”” for each direction « is a function of the coordi~

nate x, (number ‘u)‘ The net of?’ is non-uniform even when the net of!’

is unlform. but the region G 1s arbitrary, since near the boundary [ the
uniformity of the net is, generally speaking, destroyed.

The net can also be taken to be nan*anifcrm with respect to the vari-
able t & [0, Tl. Let t, =0, t,, ..., t; ..., t, =T be an arbitrary
division of the segment 0t <:7‘1nt0 ijarts. Following [10] we can
divide each of the segments [t to 1 into p (the number of dimensions})
equal parts and introduce the 1ntermediate (fractional} times

tivap = b+ @Ti/p,  e=12,., p— 1,

where T.4, = Eitr - t. is the step of the hasic net. The net w, = {t..
(0, T} contains both integral (t = tys j* = J) and fractional times
G*=j +a/p) j*=0, 1/p, «eey (P=1)/P0 L weus Jo J 1D oen,
Jt(-1/p, jt1, ..., K. The set of nodes (x,, tj,), where

T e w(,f", tj & w,, forms the space-time net Q® = o % o, k=1,2

The boundary S of the net Q%) is defined in the same way as in [10],
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Q=Q+3S.

As in [10] and [14) we shall use the following notation for net func-
tions given on Q.

Y=o ) = U (o ) = PR, b= B, b = B
fig = 0.5 (hg + hg,),

) e (g0 et gt e ), w10
x‘(:.a:to.b) =05 (.'Ef:a) + x(:a__‘i:l)); y(:t'ma) =y (.’C(im“) , t),

y;a = (y - y(—la))/ha; y;'c‘z = (y(“") - y)/haw

ha
¥3 = G — ) = > ya,,
a

aQ
h
v = (y — g YR, = %y R ¢ ) = (y*le) —y(-1a)
Ve, =W =T =57yz, ys, =gz, Hyz) =070y 2k,
yr = (yit1 — yi)/x, Y5, = (yitalp — yit(a-1p)/y, T == Tjp.

We shall introduce other notation in the course of the argument.

If the step of the net Or satisfies the condition

=0 or T=1(14+0(1) (=1, (3)

then o, = wf* is called a quasi-uniform net. If

T m's, (4)

where m* > 0 is an arbitrary constant, then @, = o} (and, correspond-
ingly, Q%) = (¥ k=1, 2) is called a normal net.

3. HOMOGENEOUS SCHEMES ON NON-UNIFORM NETS o,

Before going on to construct local one-dimensional schemes for the
problems I,, k=0, 1, 2, 3 let us first introduce a family of homo-
geneous difference schemes corresponding to the operator La' assuming
the net @, to be non-uniform.

Let us consider an operator of the form
a 0 .
Lu = »a—xa—(k,(z) 5—;{—) + f(x), * = (z1, ..., 2p).

We take the corresponding homogeneous difference scheme in the form
Agy = (aq (2) y;‘a);a + ¢ (z). {5)
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This scheme is defined if we can show a method for calculating the co-
efficients a; and ¢ in terms of the functions k (x) and f(x) which is
suitable for an arbitrary non-uniform net.

We shall start from the method shown in [14] for p = 1, bearing in
mind that ka and f can have discontinuities of the first kind on hyper-
planes parallel to the coordinate hyperplanes and passing through the
nodes of the net.

Let us introduce the mean value F(x) of the function f(x) at the
point * & w, putting

2 P
~ i (sp}
F@=— 2 f(@en.- o) . k" /H, H=1]]k, (6
2 c,,...,n;,:-—l a=1
where g, = Za — 0, Zgs= 24 +0, AP =h,, b® = h,,, and each

of the Ol see1 Ogs +e0, @ takes one of the values 1 or 2. In particu-
lar, when p = 1 and p = 2

7 (2) = g Ouf (21 — 0) + hu,f (2, + O)),
7(-‘51, z,) = zh—t‘ﬁ—" lf (z, — 0,23 — 0) lyhy + f (2, — 0, z, + 0) hohy, +
+ flzy + 0, 23 — 0) by g + f (2, + 0, z, + 0) h1+h2+]-

If x is a point of continuity of the function f, then j?(x) = f(x). On a
uniform net (hy, = h ) we have

7w=— mewuq%@ ()
By analogy with [14], let us consider the functions

1, s<o0 @ 0, s<o {1, e=0
{1) = N s} = , 4 5} = . 8
N () {0, e>0 Mo () {1, 6> 0 o (8) 0, so£0 (8)

Let F [u(s s ves, S ]=F [u(s)] be a linear non-negative functional
which is defined in' the parallelepiped {-0.5 s, <0.5, « = 1,...,p}
and satisfies the conditions

1-p

F, 11 =1, {H néaad(s )] 27’ , [sa H n(ok) (Sk)] =0

kdx
a=1,2,... p (9)



Local one dimensional difference schemes 579

Let us consider the function

£ = i flat sh o 5+ shn®) RPN (). k5P 0P ()
..... op 10
and define ¢(x) with the help of the formula
@) =F, [f ) =F, If (54, ..., 8)]. (11)
In the case of the simplest functional
FIf =7 (2 (12)

we obtain @(x) = f}x). On a uniform net, from conditions (9) it follows
from (10) and (11) that

9 (2) = Fp lf (23 + sy, - ., 2 + sphp)] (13)

For the coefficient a,(x) we shall use the formula

8, (2) = A (B (z + sqha)], (14)
where Alu(s,)] 1s the one-dimensional functional of [14] and
B (2 + sahe) = (15)
' 1—2
o=y % ] Ka(1, 00+ +s Ta—1,05_y» TatSallas Tat1eqqqres Tpiey) He,ol He,
k)
where
1—p 1—p
Hy=[] %, Hoo =[] BC¥.
kyha kpta

Thus when calculating a, we first carry out an averaging in accordance
with (15) with respect to the variables Rpo soes g 10 Zgys o000 %
and then operate with the pattern functional A[u(s j The mean value
(15) could be calculated hy analogy with ¢ using the linear functional
F}-1 of dimension p — 1. In the case of two variables (p = 2) we have
FO (2 + sihy) = 5 (s (21 + sshy, 23— 0) Byt K (21 + b, 23+ 0) ba,).

It is not difficult to see that the approximation error ¢ - f'can be
put in the form

¢ (@) —F(2) = Z(ua)A By = O (h2). (16)

a=1
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The dots here and everywhere below denote terms of the second order with

respect to ﬁl, e, ﬂp.

In fact, expanding f*(s), defined by formula (10), in the neighbour-

hood of the point x(9) = (x R

1,0, p,o):

Flay+ sh™, .z + A0 = f (2 2 - (519) sah % -
Putting this expression in (10) and (11) we obtain
1--8

e@=Tm+ 3 Z[ .

a=1 og, Byha

2 Of
0g=13 — he o

] X
oe==1

1~p

1—p o
X Fp[sano”(sa) [T ni® (Sa)] I h;")/H-}-

Bea Bra

Noting that

{—p {=p
H=Hyh, He=[[#s []H"*H!=0(1) and

f+a fra
c¢=l)§a+ Tt

Riigg )|, — gl @), = (K@)
and summing over % =1, 2, Pp=1, 2, ..., p, P #Fa, we arrive at (16).

By analogy with [14) we find

/'—“‘3/

(aa (2) uz ), —*—(k (2) 5o )=(p“)A +eey po=o0@d, (D)
a Xa

where the wavy line denotes averaging according to formula (6).

Note. In the case of the simplest functional (12) ¢(x) - f?x) =

4. LOCAL ONE-DIMENSIONAL SCHEMES ON NON-UNIFORM NETS

The basic idea of the method for writing down local one-dimensjonal
schemes for the equation (1) consists in using homogeneous difference
schemes corresponding to the one-dimensional parabolic equation

b4
gau':l/cu_‘;fc%i:’"*'fa:o’ E/¢=/ (18)

axs]l

at each moment of time tj. = O
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Let Auy denote the one-dimensional difference scheme corresponding
to the operator Ihu. Then we can write the homogeneous scheme ﬂa for
(18) in the form

ey = Aay —py. + @, =0,  Auy = Agyitelr. (19)

We shall assume that p does not depend on a, i.e. for all « =1,2,...,p
the coefficient p is calculated according to the same formula:

p=rp (2, tj11) = Fp [" (s, ti)], (20)

where c*(s, t) is defined by the formula (10) and F}[u(s)] = F [u(s
.o sg)] is the linear non-decreasing functional introduced 1n
Para.

The coefficients which enter into A, as well as ¢ will be calculated
with the help of the one-dimensional functionals A[u(s)] and the 11near
functional F luesy] (—o.5 <« s<0.5) used in [14] (F (1] =4, F [s] =
F ln{%sH)] =4, F, [v,(s)] =0, 0 =1, 2). These functionals operate on
the corresponding functions before they are averaged with respect to the
variable xp, pP#a Pp=1, ..., paccording to (15). We shall write these
mean values Ea (z + Saha, t, u), ‘;:a (z + szha, t, u): ?a (z 4 Saha, t, u),
omitting the upper index («); then

e (2, t,u) = A (kg (z + saha, t, 0)],
bz (z, t,u) = F, [ra (z + saha, t, u) 0 (sa)],

21)
b+($ t u) = Fl r (JE + sa (- X t u) 71(2)(-5\:)], (
9, (2, t,u) = lgzh, +ofh, VA,
where ¢a(x, t, u) are expressed according to the same formulae as
(x, t, u).
Let us first consider the problem Il. In this case
Ay = (aa (&, )y )y + 0 (2 t, )y, + b2 (2 8,9)y, -
Xa Tg o Ta
(22)

Pa = Pa (2, t, J),

where y = yi+e/p, y = yite—/p, In [10] we showed how the coefficients
entering in (22) could be chosen at any moment of time t & [t ., t.+1].
We obtained schemes which were equivalent with respect to their order of
accuracy. To simplify the printing we shall put t = tj+1 in (22,) below.
It turns out that, in general, the smoothness requirements with respect
to t for the coefficients of the differential equation are weakened.
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The schemes 1l for the different equations 1,, k =1, 2, 3 differ
only in the expressions for A,y and ¢,. We shall therefore write down
these expressions for the equations 1, and 1. For the quasi-linear
equation (12) we shall use the homogeneous scheme

Aey=(aq (2,1, @)@y ), + 0L (=, 1, ) y, Tzt R
) (22,)
a = Qg (x, t, y)1
where (1)® =By* + 1 —B) ¥, 0B <L, 4" = 0.5 (y + y@), t = t;u,.

Besides schemes (22,), (22,) the following schemes are of theoretical
and practical interest:

Aay = (aa (.’E, t) ya_c );a + bz—l (.’I:, ta ‘!’/) .'v/;c + b;—-l (xv ta g) ;; * (221')

(Pl! = (Pa (z’ t! 1;)7
(aq (1‘, t, .'7.) y-). + b;—l (.’L‘, t, .1;) .lv/»\ + bz (z, t, :i/) :{/v ’ (222’)
Xy Xy x x

«-1 a-1

I

Ay
e = Pa (2, 1, 3),
where bf , = bgz(x,th v, éxw_l:= yip for a = 1. These schemes corre-

P
spond to different methods of partitioning the operator L = Y L,

a=1

P
: . 3
= 2 L,u, Lou = ‘5}1_ (ka (z, t, u)

du ou
3 5 >+ ra.—l(zy t, u)T—

a=1 a—1
for a >1,
Liu = 7‘1—;(/{:1 (xz,t, u) 7;9:—1)—{— rp (z, t, u)-a%— for a =1.
The coefficients a, and p satisfy the conditions
ag > ¢; >0, p>cy >0, (23)

and T« (bi too) can have any sign. Therefore in solving equations (22 ),
(22,) for example, with respect to y by the method of successive sub-
stitution [21] it is, generally speaking, required that the step h <ih
shall be sufficiently small, where h depends on max(lb*l/aa) (cf. [161
The difference schemes (22, ), (22, ) do not possess this defect.

We shall not give the scheme for (1,) since it follows from (22,) in
the case ry = ry(x, t), f=flx, t) - qu We have given equation (1 ) in
Para. 1 in order to establish the connection with the work (10].

Let us now formulate the boundary conditions. On the net m(l), by
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analogy with [10], the boundary conditions are set up by means of an
extrapolation "I.F on y, with the help of linear interpolation, which
gives for y = yJ*®/p

y =Py + (1 —P)u, (I{a)» tit1) TE Yg
y = ﬁ":y("‘la) + (1 - ﬁ:) ul (x(r-{—d)‘ t5+1)’ rE T;’ (24)

where x{~®) is the point of the boundary I' nearest to x{~-*) € y; and
#{*) & I 1s the nearest point to (" & Y4 (the points x{~%), 2
and x(*®) lie on the straight line Z. ), BT = xF/ (1 + xD), k. is

the distance between x(l'“) and x(-%), Kyla is the distance between x£+°‘)

and x(*®) ang OQB; < 1. We shall only consider nets w}il) for which

ﬁ; < P* < 1 where p* is a constant.* In other respects m}ll) is an arbi-
trary non-uniform net. On the net "’;.2) the boundary conditions have the
form

yitap = u, (&0, t;,) for r = zt*®) e=yF, a=1,..., P (25)

which formally corresponds to the case [3; = 0. Therefore we shall always
write the boundary conditions in the form (24) below and, on passing to
the net i), we shall put B = 0.

It is clear from (24) and (25) that the boundary values u, - ulr for
all a =1, 2, ..., p are taken at time t = tirye This does not restrict
the generality of our argument, since if we éake uh— at any time
t & [t,, t.4,] we obtain schemes which are equivalent with respect to
their order of accuracy.

Thus, we set the following difference problem I, in correspondence to
the problem I, (k =1, 2):

Ay —py; + =0, a=t2...,p (HEL

y =Py + (1 —pD uf"  tor zend, (IT)
y (z, 0) = u, (2) for. = € oy,

where A, is defined by formulae (22,) and (22,). Depending on the form
of Aa we obtain the problems (schemes) II1 and II2 corresponding to
problems I, and I,. If Aa' 9, are defined by formulae (22,¢) or (22,¢)
we obtain the scheme II,. or II,-.

* We shall always assume below that this conditions is satisfied.
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We set the problem 13 in correspondence with the scheme II3 for which

Ay = (a5 (z, 1, ¥") v)s  e=12...p|
. I
a ™ 6“,P(P (‘t’ tv .% y]j-l/p e ey y]°+1) } (223)

= t=1t,,..
{ a=f=p i+1

We shall consider the schemes II ’, II » and II only on arbitrary non-
uniform nets w(l) and on normal nets w*

The local one-dimensional scheme II is obviously homogeneous (for
each a) with respect to space and cyclically homogeneous with respect to
time (with period p).

D
Note. The decomposition of f into the sum f=2 f, is done for con-
a=1{

venience in the computing. We could put, for example f, =0, « =1, 2,

e P -1, fb = f and, correspondingly, ¢, =0, « =1, ..., p -1,

q’p—q>‘

5. THE APPROXIMATION ERROR

Ilet u = u(x, t) be the solution of problem I and y = y(x, t) the solu-
tion of the difference problem II. Let us examine their difference, which
characterises the accuracy of the scheme II, putting 2zi#¥P = yita/p — yitl
fora=1, 2, ..., p, 27 =y' - u/. For the net function z = z(x, t) we
obtain the following conditions:

pZ? == (aaz ) + Qa (Z) + II!au
2= B (2 F1 4+ vE) forzerd, (111)
z (z, 0) =0 for xE—(;)h,

where oy = a (%, t;4,) for the scheme II,, a, = aa(x,tﬂq,(y?(m) for
the scheme II2 and Qh(z) is an expression containing the earliest terms

(z, z. , =z, and so on) and is a special case of the expression
Xa Ko

Qu(2) = (gia2)y + (Gud)y + (ghad), + (i), +ba%, + (26)
+bazy 4 duz + oy 2.

We shall not write out the expressions for the coefficients. We note
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only that in the case of the scheme II, we must put gém =0, dal =0,
m=1, 2 a=1, 2, ..., p. Due to the assumptions made in Para.
1, 3 and 4

>0, p>6>0, ldml <cs |05 <yl gim| <6y m=1,2

v

where Cys +++s Cg BTE positive constants which do not depend on the net.

Let us show that g& = g% (=, tivs ¥°)s = b¥ (z, t%+1,y) depend on

y and so cannot be differentiated with respect to x or to t. For the
local approximation error of the scheme II, and, therefore, of the
scheme II,, we obtain

y a=1,
611,1: 0 a1,

11;(1) (ay (z, tist, (u” )(B)) u]ﬂ)% + by (x, Lists u) qu +

Y, = Tg) —p (x, tis1) u—"ba,l + Pa, (27)

+ b_ (.‘II, t.7+1’ u’) u’Hl ! (Pa = (Pa (.’E, t_’i+11 E)’
where u = /™! for a> 1, u=uw for a =1, (u)P) = )t for o > 1,
@)® =8 @y + (1 —p) @) for « = 1.

It is clear from this that T(l’ represents the error of approximation
of the scheme Ayy. It follows from Para. 3 and 4 and from [14] that

Y = (L) 4 @), + 810 @ + -+, B =00,
Noting also that
P = fa (2, tig, W) + (}LS’)A + 08,0 (%) + -+, p® =0 (1),
p=c (x tiv1) + 2 P-(S)) ) H&s) =0 (h2),
a=}

we see that

1

Yo =V + ba, fpa=@;u=(m— “cat+fa”, ]L
&

1 =1
Yo = (P'a)A + Ipa + 60! 1 Z [(p‘k)‘ =+ \PI?] 6“'1 0, Z#i (28)
k=1

ba = O (BY), pa= 0Ky, Vo = O R + 0 (v), V= O (R2).

It is clear from this that the principal part &a of the approximation
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error satisfies the condition
p o
a=1
We assume here that we have satisfied conditions A, under which on a
uniform net in the class of continuous coefficients A, ¢, p have the
maximum order of approximation

IFS) =L,u + 0 (hg), p=¢ +0 (kg): P = fa + 0 (hg)'

If the node x € o, lies on the hyperplane of discontinuity of k,,
and f perpendicular to Oxa and conditions A are satisfied to the left
and right of this hyperplane, then formulae (28) for Y, still hold.

r
The approximation error ¥ = 2 ¥, of the local one-dimensional
scheme T = {l_} has the form

a=1

P 14
\Fz 211’1: Z [(“l';a);a_’—‘_pa]’ 'I;=l‘fa+p; =0(h§)’
Q== a=1 (30)
%= 0 (B) + 0 ().

In proving the convergence of a local one-dimensional scheme on a
sequence of non-uniform nets we must overcome two difficulties: (1) the
absence of an approximation at any time t = tj+u P’ @a = 0(1), (2) the
lowering of the order of local approximation with respect to space due
to the non-uniformity of the nets «p.

For the error z of problem 113 we also obtain problem 1113 where
Q&(z) is the expression defined by formula (3;) of Section 2. The
approximation error Ya of the scheme II3 can be represented by formulae
(4) and (5) of Section 2 and we obtain

—— hae- i ~ 1 »
e du du du ° .
«\pa:[Lmu-—-éa’lc-é?+6¢.pf(z,£, u, E,‘-.,E)] R ZipE:O’

a=1
Bag = B0, +mpd, +pgd,,, B, =00,
py=0@®), py=0(0m.
Formula (28) for Yo 18 also a special case of (2.5) for

p’aﬁxpaéaﬁ +p’l.36a'1" B, = O(hg)’ }";3= O(h's)'

Calculation shows that (2.4) and (2.5) are also true for the problems
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111}., 1112. corresponding to the schemes II./, IIzv. The expressions for
Q&l ) and Qéz ) are given in Section 2, Para. 1

In fact, in Section 2 we consider problems III,, k=1, 2, 3, 1', 2’
which are more general than the problems which are obtained for the
error z = y — u of the scheme II,. This enables us to use the a priori
estimates of Section 2 to estimate the accuracy not only of the initial
schemes, defined above, but also of a wider class of schemes.

2. A priori estimates
1. STATEMENT OF THE PROBLEM

When studying the question of the error of the schemes II k=1, 2

3, 1°, 2’ we obtained linear equations in Section 1 for the net function
z in all cases, distinguished only by the earlier terms \u(z). It is
therefore natural to formulate the general problem and to study the
special cases corresponding to specific schemes. We shall consider the
following problem for z = z(x, t), given on Q:

PZy — Azt duz = Qq (2) + ¥a, Az = (@az; )z, a=1,...,p, (1)

2=BET 0 4 4d), z=vE  2(2,0 =0, zEG, @)
where (. (z) is one of the expressions:
QP (2) = bizp + bazy + dusz, (3,)
() =0 @+ G Q) =gy + (gudy + (34)

+ (g22);, + (gad)y,,

v P . .
0 (2) = Q5 (2 + dusk +8up 3] (B + Bk, |
S0 b (3,)
QX (3) = (ghat)z, + (gmdy,, j
2') (2) = b;—léx';_l + b;'l\i;a—x + daz; for a>1,
O (= (B3zz + byzy ) + du, (3,)

Q¥ () = Q" () + Qa (2). (3%)



588 A.A. Samarskii

The net function Ya is given by the expressions

p L] ]
¥, = Po + Ve, 2 P = 0, Py = ) (1)’ (4)
a=}
P
\Pa = Z {({Lug);c\ﬁ + 1%5}, Pap = 0'0‘?3), ‘p;ﬁ =0 (ﬁ?a) + 0 (17) (5)
p=1

We shall assume that the following conditions are satisfied:

aa>cl>07 p>62>0, ) {dazlgcsv (baikf<c41

Igfklgcb |P{|<Cev k:1’2’ (6)

dy>M tor 1< 1, if g& =0, (7

da> M'2" for v < 7y2", 1f gh+40 (r=12..), (7

where ¢,, ..., cg are positive constants which do not depend on the net,

M* is an arbitrary positive constant and To > 0 is a constant which de-
pends on ¢;, ..., ¢ and M*. Let us explain conditions (7) and (7').
When deriving the energy identities which we have used to obtain the
necessary @ priori estimates we first make the transformation (cf. [14])

7z = v, (8)

where w is a net function defined by the conditions
w; = Mw for W = (1 + MO WV, w(z,0 =1, (8)
&

and ¥ is an arbitrary positive constant which is chosen so that condi-
tions (7) and (7') are satisfied, where M* and T, are given constants_
depending only on ¢,, ..., cge If gék #0weput M= Mb x 2", where Mb
is an arbitrary positive constant and the whole number n is the rank of
the energy identity.

We note at once that on an arbitrary non-uniform net o w has the
estimate

1 <w3’+a/p < epiiijﬂ, ©)

since w*P < Mty Py L eMPTiyl. To simplify our argument

we shall assume that the transformation (8) has already been carried out
and retain the former notation z for the unknown function (i.e. we re-
place v by z).

We shall call the problem defined by conditions (1), (2), 3
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(4)-(7), where k =1, 2, 3, 1', 2 problem III, or IIIj if vi=o.

We shall direct our main attention to deriving a priori estimates for
problems III, and III,. For problem III, on the net Q1) we shall assume
everywhere that

g5 =10, a=12..,p.. (10)

We note that scheme III coincides with the scheme considered in [10]
on the uniform net Q(l). For this scheme the maximum principle holds and
we have the a priori estimate of the form

12 (@ )l <M (v D) hs + ¥ (& D), €0,

Iv(z, )be=  max v (z,|oy, V(2 Doy, =
o't a=1,...,p
= max |vs (z,0)], (11)
xevazvz+wr;

— i+1 /2
G b= (R wl¥@ 0E) »  1¥h=_ mx [¥(n0]

. s x=1,...,
i=1 Che 3=10ooP

The estimate of H z||o in terms of ||? Ho is too crude for an estimate
of the order of accuracy on a non-uniform net. Below we find estimates
of " || in terms of the analogue of the one-dimensional norm H Y||

used in [14] and these enable us to show that the scheme has the same
order of accuracy as in the case of a uniform net. The method of integral
or energy inequalities explained below is a natural development of the
method which we have used before (cf. [14]-[17]) for one-dimensional
problems. Estimates "in the mean* are comparatively simple to obtain for
all the problems III,, k =1, 2, 3. 1’, 2’. However, since it is in
practice very desirable to have uniform estimates of accuracy of
numerical algorithms, we have given considerable attention to uniform
estimates, first for problem III corresponding to scheme II1 for the
quasi-linear equation (1.1 ). ‘In [14] we used estimates in the mean
successfully to obtain uniform estimates. In the multi-dimensional case,
unfortunately, this method is inapplicable. Therefore the uniform esti-
mates of the solution of problem III, are more crude than the correspond-
ing e?tiTates obtained in [14] for the one-dimensional problem (p=1)
(cf. L171).

Besides problems IIIk we shall study the standard problems IV, which
differ from IIIk only in the expression for

a = (Ba)z, + Va. (12)
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It will be shown below that the estimate of the solution of problem III,
reduces to the estimate of the solution of the standard problem IV, (cf.
Para. 5).

2. ENERGY INEQUALITIES ON THE CHAIN I[],

In deriving energy inequalities we shall use the following systematic
device. We consider an arbitrary chain I, of the fixed direction %, On
which, for t = we write down the n-th rank energy identity. Using
majorant estimates f14] we obtain energy inequalities which we then
weight-sum

1—2
H, = H Ry (13)

kaka

over all the chains I, for fixed a. As a result we obtain inequalities
on the net o,.

Thus, let us consider the arbitrary chain IL:; with the boundary points
2 e=y; and z"Y vl let y, denote the set of internal nodes of
this chain yi = ya + 2, 42 = ga + &, Ju = yo + "V 21Y,

let v and z be certain net functions given on ;h’ We introduce scalar
products and norms:

(v, z):,a = 2 voly, (7, 2)y, = Z vehe, (2, 2)y, = Z v2hg s,

=Yy =Yy XEY

@, 2l = Z v7hy, [7, 2)y, = Z vzhay, (14)
seu, xSy

lol, .= @ ol Iz b, = % T

Let us consider the difference operator Az = (a"zEm );a. The first
difference formula of Green will obviously have the form
* 2 (+1g)
(ASz, 2}y, = — (4a, B 1, + 02z 2l _ ey — 00 ¥252] _ oy (15)

If z = 0 when x = v**)_ the substitution becomes zero. Suppose that z

satisfies the homogeneous boundary condition

z =PpEsF) for z = zize®), (16)
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Using the fact that z*'@ =z 4 hyz, ., 270 =z — haz;ca, we obtain
from (16)

(Alz, 2)y, = —I{Y, IiY=(aa, 2], + (17)

a Ug

- _(+1 3
+ ha'*xca(. o 2x, xl(-a) +h, uﬁang—c“ .

—x(ta)’

As usual we shall use Holder’'s inequality as well as Green’s difference
formula and the elementary inequalities

"

H z‘;k< 2 WrZk, Lk >0’ Bk > 01 2 B = 1*; (18)

k=1 k=1 k=1
lab| < 5-a* + 2—:;17’ (co>>0—an arbitrary constant). (19)
Pogitive constants which depend on c,, .. and on the diameter of
1

the region G and do not depend on the net wili be denoted by M and ex-
pressions for them will not, as a rule, be given.

It is not difficult to see that the following lemma holds.

Lemma 1. 1f z satisfies the condition

z =B (T +vf), z=YerI, 0PI (20)
(B is a constant which does not depend on the net) then

|2, = max [2[P < Mo (aa, 22 1, + Mo|val, 1)
EL=tT
1204, < M1 (@ (”;;‘)2] T2 (22)

n ’ .
where z = z°", My, My, M,, M,. are positive constants which depend on
cp f* and the length la of the chain I{,, and |;u| is either of the
quantities |v*|.

It follows from condition (20) that |z|<<P*|z%'e| 4 8°|va| (z=1T2).
The inequality |z*'@ ||z (2", &)+ hie? "I gives |z | <P (1 —
BT Ve I+ Rdei™(1 — B I and |z 277, 1) | <<B(4— B! | val+
hIpci™ x (1 —pB*)"", where I = (a,, ";glu.’ From this and from the
inequality |zly, < [z(zt%,8) |+ Il¢7sI'"s we have (21). On the net

maz) Bé =0 and
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N n n—i 2
Ihue <M (@ 200 Phue <M (7)1, (29

By analogy with [1;] let us write down at once the n-th rank energy
identity on the chain If,:

(P, 2ug )y, + 2153 + P+ 2[da, 2k = 2" (Qa (2) + Wa, 2% )+ (24)

:;‘ L
+ (P7,» D, + B

@ ne1 22 n—2 s k 2
-3 R—A— . o
M= () 1yt 320 (5, ) o+ @)
k=0
, B2 op-opyy
108 () s 2"
n—1 k. k 2 * k
Pﬁ.",’l =1 Z 2n (e (z"ta) » zu"‘ak“)ua’ o = 2" —1, (26)
k=0
R;ﬂ =2" (v:aaz"nhgl chx('*‘“) - v‘a‘af:la) zaﬂh’;‘t lx_—.x(‘“)}’ (27)

n n, n n
[da, z]"a = (da, z)u,x + @z (e he)t lxax(ﬂ) + a;'*‘la)z (xa a'p)-l-lx._.‘x(-a)}- (28)

When deriving identity (24) we wrote the boundary conditions (2) in
the form of conditions of the third kind:

Zxy = 2/¥zhes — Valhys for z = 2% —z; = z/%ghy — Vilhy for p= i+

and used an expression for

n N1 k .
Zay = 2722, — 3 PSS SRR S (29)
k0

n
and a similar expression for ZB’:,' It must be borne in mind that
n n A -
2(%aha) 1 =0, 1f k= 0. On the net of [da, zly, = (da, 2)y, and Ry} = 0,
+ + n n .,

if z|y, = 0. If z= vy when 2&Ya, then [dy, z]y, = (du, 2)y,, and
formula (27) for RY) is true.

Let us now suppose that vi'= 0, i.e. let us consider the problem III°.
Putting n = 1 in (24) we obtain an identity of the first rank and, accord-
ing *o :17) we can write this in the form



Local one dimensional difference schemes 593

(P, 22, )7, -+ 200 4 P 4 2 (day )i, = 2(Qa (2) + ey )y + (P, r 2)u
(30)

2 + 2 (+14),2
Igal) = (aq, z;ﬁ ]ua ~+ hu“aaazx *Zxy (31)

I

PA=1(p, 7).
Let us consider problem III,, of which problem III, is a special case,
for gak =0, k=1, 2. We 1ntroduce the function n,, putting
Moz =¥a, 97 =0 for & = 2™, (32)
and put

Pl = UMby + 1m0 = |y o Inal,, = (21 (39)

Lemma 2. 1f z satisfies the homogeneous boundary conditions (16),
then

2(ba, 2), <glid+ M, [, (34)

For
2 (\l’ay Z). = - 2 (na7 z-;a]“a + 2naz Iar_x(+“) <

<20Mal, (125, k., + 210, (™9, 0|2 (2%, 1))

«r

Then using Lemma 1 we obtain (34).

Lemma 3. We have the estimate
(35y
(1) -~ * 1 v Ve
2(Q" (2 + (g2, + g2y, 2), < I3+ Mzly ,+ M (p, ),
Lemma 3 can be proved by analogy with [14]. using Lemma 1, Green’s

difference formula and inequality (19).

Lemma 4. On the net w{?’ we have the estimate

2 ((gaf)z, + (Burd)y, D <5l + MG, 7). (36)
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The inequality (36) follows from the estimate of the form

2 ((822z, 2y, = — 2 (805 23D, <26l 2,025 |,

a1’

Using Lemmas 2-4 we obtain an inequality of the first rank on the
chain Il.:

(. ), + T + P 201, ), <A+ MY ¢, ), + (37)
+ Me|bal |+ 2 (s 2), 5T,

where c* is an arbitrary positive constant depending on the choice of M.
It is not difficult, by analogy with [14], [15], [17] to obtain an n-th
rank energy inequality on the chain I/,:

(P Q)LG + U+ PP+ 2 (1, 2), <+ M) (p, 2);“ + (38)

+ T(Ma]y, [, )" + 2" (¥, z°");a, m=n tor IIl;, m=2n for 1l

where M, = M x 2". Conditions (7) and (7°) are satisfied.

The last terms in (37) and (38) are estimated below.

3. ENERGY INEQUALITIES ON THE NET o,

Let us consider the sums (14) with respect to ZJ,. Multiplying them
with Ha and summing over all chains of the given direction a we ebtain
sSums Over wy:

(v, 2) = NusH, (v, 2)a = D vzH®,
“h wn
(v, 2)z = 2 vz H*®, @, 2] = Z vzH™,
Op wxa
[v, )i = 3 vzH",  H® = Hhyy,  H" = Hoha,,

“n

P
H = Hho =[] bsy of*=o0,+7%

k=1
These sums are associated with the norms |v| = (v, v)s, |vls, = (v, V)}s

or |v),, = (v, v], for example
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I oz ks = (o5, v 1 (39)

Xgg

In addition, we shall need the norms

i1 ,
Izl = ﬂ;:le (0 v(zti)]= ( P KIER ty)rw) % (40)

§=1

Now let us multiply (37) and (38) by H& and sum over all the chains
of the direction a. As a result we obtain energy inequalities of the
first and n-th rank on the net

;) + © (I + P{) + 2" (1, )< (41)
<U + M0 (p, &) + M, [+ 2 (a‘i;,,, 2,

(0,3 + T (IP+PD) + 2™ (1, < (U + M) (b, D+ (42)
+ v (Mx2*[¥, ¥, lag.0)®" + 27 N’m .

We have used the notation

Peub =Inb+imal, 0 Il = (2 nH, ) (43)

7«

] ¥, “‘m, o 18 the maximum value of |, 4 .1 Over the whole net @, or,
more exactly, over all the chains of the given direction a,

19, leg.o = 19, karlo

¢ A n—2
1= ()14 327 flea (52, o+ ()
k=0
+ [a (+1q) (;x )2, z"n“kﬂ):}’
n—1 *
sz) -1 Z gn-k-1 ® (Z_ia)t’ 27k, x=1,2,...,p n=12.... (45)
k=0

Let us recall that (42) and (41) were obtained for sufficiently small
-r<-ro and for arbitrary n. Summation of (41) and (42) over a = 1, 2,
«esy, P Elves

(b 2 + (I, + P + @ ST, APP<U+ M), 2+ (46)

a==1
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+eMIvE+2 S (e 7)1,

a=1

n, j+a/p

B, P+ T Uat P+ 2 S (L5 <A+ MO+ 6D

a=]

L .
+ T (M2 Pl + 2° Y (@, @) T,

a=1

. D
ILy=I"="7) I, = Pt = 2 P m—n for 1l m=2n for Ill,,

a=] a==1

[$h = E ﬂ"paﬂh» 19l = E I, 4q.0’ ”‘pau‘,.o =l]|l\P-ﬂc¢,1'L. (48)

a==1 a=1
fpals, and [P lu,., are defined by formulae (43) and (33).

Let us now estimate the last terms in (46) and (47).

4. BASIC LEMMA

Lemma 5. Suppose that the arbitrary net function z = z(x, t), given
on Q* (k =1, 2) satisfies conditions (16), and &a satisfies the condi-
tion

p o
3 e = 0. (49)
a=1
Then
n ° ¢ on\ita/p 1 o " i+a/p
2" 3 ($a (2™ ) < gWn+Pa)+M D (1,277 + (50)
a=1 e=1

+ (M2"Vt 2 1 %a o )”»

a=1

P o . p—1
2 (bas 7)< 5 Pt M3 D) [P (51)

am=] a=]
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If o  is a normal net (v < m*t), then

P ° Yoo S
2 S (be MK Un + Po) + p 5 Ta+ (M2 VT [$h)™, (52)

Q=]

where

19ho= 31 ¥eheo  1¥eliao =1 $bon:

@z

L=0% IL=L +t=%, t=1u (53)

Let us just derive inequality (50). Putting v/T/P in the form
i+a/p j+1 <
pi+a/p = pHl ¢ v
m=2u+1 fm’
OR

where v = z *, and using the formula

() =S pokgonns
2 ).{m = 2 z2"*2z Z*i
k=0

m

¢cf. [14]) and condition (49) after changing the order of summation over
a and m we obtain

n L S a n g ¥ 65, Opn—G k e
23 (e 2 == 2% 3 N @, S ),
a==] k=0 m==g a=1

where the summation sign on the right contains z = zi*m/P, z = zittm-1lp,
Then arguing as in [14] first for the chain I, and using Lemma 1 we
find

n—1 o —_— .
"0 S (@ kg, ha)<co (Int+-Pu)+M (4, 2P (MY | fo)™
k=0

This and the previous formula give (50).

If y, has the form
a » o
o= S Vs (54)
B=1

then in (53) we must put
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19ko = 3! 1us bgo- (55)

a,f=1

5. A PRIORI ESTIMATES IN THE MEAN

Let us now return to the first rank energy inequality (46). Substitut-
ing here the estimate (51) we obtaln

(p, 2 + L <<U + M) (p, 2 4+ My WP, T=%a,  (56)

EP=1vE+ TIf,  Ivl= Sk, 19I= S8 6D

a=}1 a==]1
where "Wq||4 is given by formula (43).
X
Since z{x, 0) = 0, Lemma 4, of [14] gives
i+
(p, 22 + 2 Wl <M 2 | ¥ = MY & )T (58)
=1

This proves the following theorem.

Theorem 1. The solution of problems IIIZ and IVS, k =1, 2 on any

sequence of non-uniform nets Q'!) and Q(?) for sufficiently small v+ < 1
satisfies the inequality

0

12 (2, ts) |+ V Wl 2z (2, i) IS M¥ (2, ) |, (59)

where l!? ” is defined by formulae (57) and (43) and for problem Iv;

Ihobis = e b+ e b+ el o+ Ibial - (60)

P

lzz (@ tid | = D) 12z, (@tisasm Vo

a=1

Corollary. If y, = 0 then for sufficiently small [l 7]l < v, the solu-
tion of problem III7 has the estimate

bz (z, tpd |+ V s Zz (z, i) << (2 12 [N) P) " (61)

=1
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where (!; || is given by formula (57).

We recall that we have agreed to consider only those problems III
b 4 (1) k
for which g, = 0 on Q**’.

According to (5), the function y, for problem III, (k =1, 2) has the
form

) 4
Yo = Z ((P'aﬁ)s‘cp +1P;Q] (62)
B=1

It is then clear that the norm (43) is not suitable for the estimate
(62) on a non-uniform net since it will contain the step ratio ﬁa/ﬁp.
Therefore we first reduce problem IIIk to problem Iv, for which

Yo = ()2, + Var (63)
and then use the norm (60).
It was shown in Section 1 that

H‘B = p.‘:Bhg, where uo, = o(1). (64)

Let us introduce the notation

eelo= 20 Iwesle (9o = maxfpd. (65)

Lemma 6. Let z be the solution of problem III, and v the solution of
the same problem with the right hand side

P P
¥ =V + (llv,,);;u +1¢;, wherep = BE, Paer P, = 92 Y, (66)
=) =1

then for sufficiently small v < v, we have the estimate

0

12 @, ti42) — v (@ L) I <M (o (Iea +[5]2), (67)
where
it s P
el =telin= (2 4) . 15l= 2wl )

We recall that in our terminology (cf. Para. 1) v is the solution of
problem IV2. Consider the difference w = z — v. For this difference we
obtain the conditions
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P
pw; —Aaw+daw=Q®@) +¥,, V.= 2 (B,)z o)z
7 El (Bap)z, 2_} (Mea)3, )

w= ﬁ::;o("‘:la) :for;zeq'f; ‘ w(z, 0) = O-iforr TE (Dh,

It is clear from this that

D%, =0 (70)

and, therefore, we can use Lemma 5. Using the fact that

Wap)z, < 2 U100 |+ hioe | (u20) ™ |, g < 285, gy < 20,

we obtain |$‘ﬂ’§Mﬂﬁﬂ’3 ||$ﬂ’<Ml|ﬁ[]’. Then using the estimate (61)

f:r w and the fact that 2|v}}|B]<|v]s+]%]* we arrive at inequal-
y (67).

From Theorem 1 and Lemma 6 we have Theorem 2.

Theorem 2. Let z = z(x, t) be the solution of problem IIIj. Then for
sufficiently small v < T, OD an arbitrary sequence of nets Q(l’ and
0(2) we have the estimate

12(2, ti) | < MTY (=, ) [+ M[p| (I vls + 1212, (71)

where H Y(x, t)|| is the expression defined by formulae (57) and (60)
with

P P
B, = 2 Paar iP; = 2 ‘p;p'
B=1 =1

We note that since III1 is a special case of the problem III2 Theorems
1 and 2 also refer to problem IIIl.

The maximum principle is valid for problem III1 and so its solution
depends continuously on the boundary data (cf. [10]). In order to obtain
an estimate for the solution of problem III, for v; # 0 it is sufficient
to estimate the solution of the corresponding problem 111, with the same
data and then use the following lemma.

Lemma 7. Let z be the solution of problem III2 and v the solution of
problem III, with the same coefficients and Ta, v;. Then for sufficiently

small || = ”o < 7, on any sequence of nets Q1) and Q(2) we have the esti-
mate
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HZ(z, t5+1) —-—v (.’E, ti+1)l< M‘Iv (Z, t5+1) “ . (72)

For w = z — v i8 the solution of problen III; with homogeneous bound-

ary conditions and the right-hand side "i"u = (Q2(v). Applying Theorem 1
to w we obtain (72).

6. UNIFORM ESTIMATES FOR THE SOLUTION OF PROBLEM III,

Theorem 3. The solution of problem IV° on an arbitrary sequence of

nets Q1) and 9(2) for || v ”o o has the uniform estimate

V2(z, tin) ) <MD ¥ (2, t,ﬂ)l"lnb—-for H=min H<H,(), (73)
where 5§ > 1 is an arbitrary number
|'¥ @, ty) = max ¥ |,
0 <y<i+1
1) =1%o+ VIbl,

,0—2 KA

a==]

Iy u.a,o ICARAE (74)
P
l:”o: ! [I;pul]o, and !|\pmﬂda“1 is given by formula (33).

am]l

If @y is & normali ¢y, then
Ph=19] =1%o + VTl $la0
[l20= g A
TR TN (74
Let us put (50) in (47) and use Lemm: 4, of [14]:

L H1 " n : n
(p, 2T < D) (M2 W7 ) vy T (M27) W )" (7

=1
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It then follows that Jz(z, )oK Mx2*|¥ (2, t;4))|°H, ~". Using

(8) and (10) and choosing n = n(H,) as in [14] we obtain (73). To prove
the second part of the theorem we must put (52) in (47) and repeat the
previous argument.

Corollary. If y, = 0 then (73) takes the form

12(z, ti1) 1o HV"}-‘H !P (2, ti4a)k° lna

H < Hy0), Hh <. (76)

If y, = 0 and the net o  is normal (v<C m*t), then

2(2, ti0) 0o < MIV T ¥ (2, ti0) [0 10° -

<SH,(3), Ite< . (76')

Lemma 8. Let z be the solution of problem III, and v the solution of
the corresponding problem IV, with the right- hand side (66). Then on
Q1) and Q2 for H, H, (5). | v1l, < v, we have the uniform estimate

ﬂz(z i) — v (2, i) e < M"P""o(”‘-'"o l]h"g)ln”-if—-
, @
12le= 2 [Ralo

a=1

To prove (77) it is sufficient to estimate the solution of problem (69)
where Q, = {17, using (76).

Let us now pass to problem III;. For this problem we have the inequal-
ity (75). However, on transforming to the old function Z,14 accor%ing to
(8) we must multiply z , which figures in all our reasoning by e a® tit,
and this gives

Fz (z, 1) flo << MeM2™ | W (24t544) | H (78)

for sufficiently small |t}, < T, {(n) = 72", which in this case depends
on n. This dependence occurs in connection with the fact that it is not

simply M but H/(1 + ﬁr) which enters into d (cf. [14]).

Making the requirement that M/(1 + Mt) > M'2®, and choosing
M = M2" we obtain M,>(1 + M2"t) M", t.e. My> M1 —
M 2™). It follows that ©< t/2" 1,<1/M". It is clear from (78)
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that elﬂ”l{:db" takes its least value if we choose 2"~} In({/H).

This leads to the uniform estimate
12(z, tip) Lo < MT¥ 42, i) jexp (MY In 1), (79)
H.

which is true for sufficiently snslli7,<§£% with the additional condi-

tion Via (1/H) v v,, where T, is a positive constant which does not
depend on n, i.e. on fi,. In (17], section 2 we obtained the estimate
(79) for a multi-dimensional scheme, but did not show that there is the

relation ¥In (I/H)t< v;. between 7 and H,. In [14] we found the
estimate (73) for the one-dimensional problem III2 (p = 1). Unfortunately
the method of (14] 1s not suitable for the multi-dimensional case. We
note that for the special problem III, for gi, =0, b% = 0 on the net
Q¢2) this additional condition 1s removed.

7. A PRIORI ESTINMATES FOR OTHER PROBLENS

Theorem 4. The solution of the problems III}, k =1‘, 2, 3 on any
sequence of nets Q{17 and Q(?) has the estimate (59) for sufficiently

small ||T ”o < To

The proof is done in a similar way to that of Theorem 1. We have to
use the estimate

P . . :

2 (b+;z”‘“/” + b;zg“/”, z""’) M|z 4 ol
(3

a=af ®

for problem IIIa. where N is an arbitrary number, and for IIIl' and
IIIz' we need the estimate

(b:_lzsa_’ + b;_‘;;a-l,z) S M) eP g g (ah.

Lemma 5 does not depend on the form of Qa and so is true in this case
also.

From (59) we have the estimate (61) and using this estimate we can
prove Lemma 6 for the given problems.

Problems III3 and 1112' reduce to problem III2 and IIIl' to problem
IIII.
Lemma 9. Let z be the solution of problem 111, and v the solution of
the corresponding problem III, (i.e. that which has the same coefficients
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and the same right-hand sides). Then for IIT ”o < 1, we have the esti-

mate 0

Vz(z, tiy) — v (z, tip) |+ (80)
+ V2 (2, tip) — v (2, 1) [ < M|V T (2 )],

where

L5y (5 ) | = 31z (22 )

a=]

For the function w = z — v is the solution of problem III; with the
right-hand side

bo=—(barg, + b;v;¢)+6.,,,§ (3% 0z +ivs,) ser={5 2P
ke=d

which satisfies condition (70) and this enables us to use the estimate
(61).

Lemma 10. Let z be the solution of III,. and v the solution of the
corresponding problem III + for gdl =0. If the net o is quasi-uniform

(1t | <m't), then for |t < T, we have the estimate
i 0 = 0

Pz — o]+ V1l z; — o P < MV G v (2 41 ] - (81)

For the difference w = z -~ v we obtain problem IIIZ: with right-hand
side

q’a (b+ lv'\_l—b:vx"a)-’-( ;—lv; —b-v“)v a=2! ooy Py

-1 T xe
‘7;1: [(b;vé\p)-"_b;v;‘]-’- [(b;p;p)i_b;v;‘]’ =1,
which satisfies the condition

p o~ — ')
W Pe=—vap 9= b,fv;p +ory, o= @ - r (82)
a=1
The last term on the right-hand side of inequality (46) for the func-
tion w will have the form

Pp—1
2 2 @B )T = —2 D) gy W — ) 1 — 21 (g (0)*Y). (83)
a=1 a==1

Reasoning as in Para. 4 we find
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P31 p—1
2 D) {, v — vy 1 <_;rp, + M D [§, (1%
== =1

Let us transform the last term on the right-hand side of (83):

— 20 (g, (w)*) = — 2t (vg, w) + 20T (¢, wy) + 205 (W, ¢ <
< —2v(tg,w); + %tPl + Mo P+ MY VT Gt (=7, T=T).

As a result, instead of (46) we obtain

b o)
(o4 th (U + M7) (o + MT (VT &1+ DUV T F 1020 (sqm),  (84)
a=i
I(‘;) = (am'% | L= 3} Iga).

.25

Summing this inequality over all j' =0, 1, 2, ..., j and then using
Lemma 4a [14] we obtain

(P + T S MR, ) + M’ [ (vg,0)™)], (85)
where R is the expression in curly brackets in (84). Estimating
M’ (vg,w) < 0.5 (p,03)* + M2 ¢ |3, we arrive at (81).

I we know an estimate for |o|+ VT lo-l, then Lemma 10 enables us
to find an estimate for [z[+- V'?[[z;" .

Lemma 11. Let z be the solution of problem IIT, with the right-hand
side Ya = 0. Then for sufficiently small H T ”o < T, on the arbitrary

net Q(1) we have the inequality
Vil @ tiap) oo SMIVT VI A2, (86)
where

hey = min igs 4)-
=€§Y¢,fl-=i,2.- EE 4

From Theorem 1 of [10] we have |z (s t;,)l,<M|v] ,. let us write a
first order inequality for the chain If, assuming that the boundary con-
ditions are not homogeneous (z=Bt:Fla) v, reyd):

(B )y + 7 )y + 7 (00 2L lug <UL+ M) ¢ P+ 4,

where
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_ — (+
4, —21'0“2;: PR ) 2va, ‘)’zax e (T2

In this we put z from the boundary conditions s=h,,%,3, + va.
z=han:z;¢‘l +v:. Then

A, =—2v { alH®) hy 8h w + gk, 2%} } +2t (“a‘:‘:,”a —altla) 5. v )
Since 2ta, 2 Vi e, 52 h o« + 8 (Vih; %2, we obtain
Valoe 3 I <U+ M)z by o +M VT UG+ v b I (8D)

If, for example, vy = O(h2,), vi=0(h}), then it follows from (87) that
Vis, ko <#Ibl .+ Ms
-3
Noting that
nz-u<M2uz-nz o

a={

we can see that the following theorem is true.

Theorem 5. Let z be the solution of problem III, . for Ya = 0 with the

boundary conditions x=B§zﬁ”¢)+v£’ z€1s. 1f @ 1s a quasi-uniform net
then

™ + V= < Miv, +MVurqu max | vg | A" +mex | vg Al (88)

a=1Y x“f ¥ xu,

3. On the convergence and accuracy on non-uniform nets
1. INTRODUCTION

In order to clarify the question of the convergence and accuracy of
the schemes IIk (k =1, 2, 3, 1', 2’) examined in Section 1 let us use
the a priort estimates for the solution z of problem III, which is the
error of the solution y of the problem II, (z = y — u), obtained in
Section 2. These estimates take the structure of the approximation error
into account, and for all the schemes it has the form

P
Wc=\P,+iP,, 2 \Pa.:ov Yo =0(1), (1)

a==]
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P
b= 2 [gg)z, + 9540, )
B==1

ll'aa:O(hf;)v 1P ‘_O(ﬁ)-{—()(‘t) (3)

On the uniform net of!’ we must put Bop = 0,9, = Sapy,, Yoo =
O (B3) + O (1) where Yoo = O () + O (1) in the case of the net o}’

at nodes adjacent to the boundary y,. Nevertheless, as we shall show be-
low, this does not reduce the order of accuracy of the schemes.

Let us formulate the conditions laid down on the solution u = u(x, t)
of the problem I, and on the coefficients of the differential equation
(Section 1, 1,, k =1, 2).

We shall take it for granted everywhere below that the following con-
dition is fulfilled:

in GT c(x, t) satisfies the Lipschitz condition with respect to t,
80 that

fer| < e ¢; = const,> 0. (a)

All the a priori estimates in Section 2 were obtained for this condition,
i.e. for |pr|<Cey.

Condition A. The solution u = u(x, t) of the problems I, (k = 1,2,3)
and the functions c(x, t), k L%t u), f(x, t, u, 4y, +-+» 9,) DOSsess
all the derivatives which are sufficient for formulae (1)-(3) for Y to
hold at any point of the net Q(!) or Q(2),

Condition B. The functions w /c(x, t) satisfy in QT the Lipschitz
conditions with respect to the variables xﬂ where P <a for « <:[p/2]
or > a for a > (p/2], a, pP=1, 2, ...,

Condition C. The expression (W /c(x, t)) is uniformly bounded on
any net Q(1) or Q(2) for all p K« for a < <lp/2) or p > « for « > p/al,
a=1, 2, ..., p.

Let us illustrate condition A using the example of problem Io' For
condition A to be satisfied it is sufficient, for example, that du/dt,
u, ky, f, ry Bu/3x3, Oc/3x,, Or /dx,, 32kq/3xé, 9f /3x, shall satisfy

the Lipschitz conditions for x, a =1, 2, ..., p and ¢(x, t), Su/dt the
Lipschitz condition for t.

Since we have agreed to take all the coefficients p = p(x, tj+1),



608 A.A. Samarskii

Gg = ay(%, tig)s by = by(x, tig))s 9y = @g(%, toy)) 8t time t = .,
it is not necessany for the coefficients k (% tS, ro(%, t), q(x, t),
f(x, t) to satisfy the Lipschitz condition with respect to t (in [10]
this was necessary when the principal part Wa of the approximation error
Y, was taken separately).

The results of the work [10] are obviously valid for problem I, if
conditions A and C are satisfied.

With the additional requirement that Ju/Ot shall satisfy the Lipschitz
conditions with respect to %, conditions A are equivalent to the condi-
tions under which every one-dimensional scheme ﬂ has the maximum order
of. approximation O(h2) + O(t) on a uniform net.

We shall conduct our next argument for the scheme II,. only briefly
indicating the results for other schemes.

2. ON THE CONVERGENCE OF THE SCHEME II,

It follows from [10] that schemes IIo and II1 have accuracy O(hz) +
O(t) on the uniform net Q1) if conditions A and C are satisfied. The
method of [10] did not allow us to examine the question of the con-
vergence when weaker conditions were laid on u, ¢, ka, Ty f even in the
case of the uniform net Q{1). This can now be done, using the a priori
estimates of Section 2.

We shall need conditions A(°) and A(9):
a'%), The functions ky ¢, f, Bko/’axa, 3rq/3u, T _3u/3xa, Bzu/axé
%u/dt, « =1, 2, ..., p are unifornly continuous in Qp

A(9), The functions listed in A'%) satisfy in Q the Hélder conditions

of order o, > 0 with respect to z,, @ =1, ..., P and %u/dt in addition

satisfies the Hélder condition of order o, > 0 with respect to ¢t.

It is not difficult to see that

P

Y. =9, +%, Db, =0, (4)

a=]

b, =p(B) + p(v), If the conditions A (5)
are e
(p (e) = O whene — 0), !

P
b, =O0(#") +0(r™), 1f the conditions A®, K= Nk, (5)
« are fultilled a=1

on arbitrary nets Q{1 and Q(2),
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Theorem 6. 1f conditions A{®) are satisfied, then the scheme II, con-
verges in the mean on an arbitrary sequence of nets Q(1) and Q(?):

ly —ul=p, (1R]o) + po ([T]o) tor [T, < Tor (6)

where p,(§) ~0as §~ 0, k=1, 2.

Proof. For the error z =y — u of the scheme II, we obtain nroblen
III,, where ‘l’a is given by formulae (4) and (5). Let us put . in the

form of the sum z= ; + v, where z is the solution of this problem III1
for ‘l’ =0, and v is the solution of the same problem with homogeneous
boundary conditions (v} = 0); z = 0 on the net Q!2). Due to conditions

A‘®) we have v; = O(ha) and Theorem 1 of [10] gives ﬂZ“o = 0 (|Rh]} ).

To estimate v we make use of Theorem 1. Remembering that |¥| = p (&) -
O (/1) + p (1), we find ilvl] = p; (J%{)o+ Pa(j Tlo). For the problems IT,,
k=2 3, 1’, 2’ there is an analogous theorem.

In order to prove uniform convergence conditions A'®) are insufficient,
due to the factor Ind (1/H,) in the estimate (2.73). Due to this factor
in the case of a non-uniform net w, we must introduce an additional re-
striction on the magnitude of H_:

H, > exp (— ¢/|H|$), H«mmH H= Hna, (7

a=1

where € is a positive number as small as we please, and ¢ is an arbitrary
positive constant. It follows from condition (7) that

H<

IIHIIe

It is not difficult to see that this requirement is not very onerous
and is a weak restriction on the arbitrary selection of the nets w,.
When formulating our theorems concerning uniform convergence below we
shall take it for granted that condition (7) is satisfied.

In proving uniform convergence we shall use Theorem 3. Estimate (73)
contains the norms [¥.[, =] ¥, .

along the chain IIG, defined by formula (2.33). Let us introduce the con-
cept of the mean square step along a given direction a. We take some
chain II of length ! o It is obvious that l is a net function on wj
which takes constant values along each of the chains L[ Let I, be
the chain of direction a having the greatest length [ _ﬂl Jo- We

ylo» where [u.f, , is the nom
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define the mean square step in the direction a to be the quantity
1 A
Phal, =— (1, BL. @)

e

We recall that

[ he |° , =max (max he,, max hg),
g - +

x E’l. xEY

»
1Al = 2 bhal

[ S

0.Ys
Theorem 7. If conditions A{?) are satisfied, scheme 11, for p(z,1?)

Pt (1) (2).
=¢(z, t} converges uniformly on the non-uniform nets Q'°’ and Q'*":

('R ; 0' 1
W —ul, <M +e bl +Iti) 0t 57

for "Tﬂo<"o’ H, < H,y (%), (9

where o, = min (0.5, 0,)<C0.5, § > 1 is an arbitrary number

P
ol = D lhal,, &= onthenenQ®, k=t 2. (10)

Q=]

The proof is also based on the representation of z = y — u in the
form of the sue z = Z + v; for z we have the estimate fz],= O([k]3,,)
We use Theorem 3 to estimate v, and take into account ‘the fact that

Bup = Qand 9], = O(1h21s,) -

3. ON THE ORDER OF ACCURACY ON A NON-UNIFORM NET

Theorem 8. 1f conditions A and B are satisfied, then on an arbitrary
sequence of non-uniform nets Q(!) and Q(2) scheme II 1 has first order
accuracy with respect to v and second order accuracy with respect to A,
so that when ” T | < 1, we have the estimates

0 0
lv—ui< MR, + )i, +1tl ), (11)
by — u], < MR +]v)) In® o tor H,<H,(9), (12)

ey = bk.l ={ (i): : : ;OII the noﬁQ“).
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Proof. Let us put z =y — u in the form of the sum z = n + z+
where n is the function defined in (10], section 2, Para. 2
(p = ) Z is the solution of problem I, yith the right-hand side
Y, = 0 and non-homogeneous boundary conditions z = PFz'¥'e 4 3% when
z e 1%, where vi=P.vi—n+ prnF'a) when BT =0 on 9?) and v
is the solution of problem III1 with homogeneous boundary conditions and
the right-hand side W.=1, + Aen + Q1 (n). By analogy with (10] we
find [nl,=0(7). Theorem 1 of [10] eives z], =0 (}*],+]k*],,)
on Q1) and |z],=0([t]s) on Q?). To estimate v we use Theorems 2
and 3, remembering that

b4
¥, = 2 gz, + ¥l
Bl
Let us first calculate ” Y ” using formulae (57) and (60), putting

P P
Pa = 2 Pga = D) Ppahi.
B=1 B =1
The calculation gives

Ak, =0(nz ) =0, Q&L M, =0, Ikl =0 (k],)

Combining the estimates for n, z and v we obtain (11). Let us now return
to Theorem 3 and Lemma §.

Noting that [¥ ] = O (|k[p) + O (x), we obtain (12).

Theorem 9. If conditions A are satisfied, then the solution of prob-
lem 11, on Q1) and Q%) for |+ ||o<-ro satisfies the inequalities

ly —ul< M)+ a)h .+ 17k, (13)
b—uh <MW+t g, H <H ). (14)
These estimates follow at once from Theorems 2, 3 and Lemma 8.

Estimate (13) is valid for the schemes IIz, IIa, II,., II,.. A com-
parison of Theorems 8 and 9 shows that by weakening the restrictions on
the solution and on the coefficients of the differential equation we ob-
tain the cruder estimate (13) instead of (11).

Assuming that conditions A and B are satisfied and using Theorem 5 we
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can obtain the following estimate of the rate of convergence (in the
mean) for the scheme II, . on the net Qﬂ) (o, 18 a quasi-uniform net):

ly—wl<M (IR +Ivh I/ 2 ) 1th < T

where

k.ﬁ = min k.

X€=vg,a=1, 2,..., P

In the case of a system of N parabolic equations, by analogy with [14],
Section 4, Paragraph 5, we can write down an absolutely stable local
one-dimensional scheme. To solve the resulting difference equations with
respect to the vector y/*®/P the oN-times application of one-dimensional
successive substitution is required. This scheme converges in the mean
at a rate O(h%) + O (V') (cf. Theorem 9).

4. Appendix
1. THE THIRD BOUNDARY PROBLEM FOR A PARALLELEPIPED

Let 6= {0<z,<!l, a=1,..., p} be a parallelepiped on the boundary
of which conditions of the third kind are given (ka—g;-:— — o tu,
-3
du

when z,==0, — kag—a =oqu + u;; when =z, = la). The corresponding prob-

lems Il' and II; where considered in [10], where we took the simplest
difference boundary conditions of the first order of approximation for
II::

1

ai‘”a)yx« =06,y + Uy for z, =0, — oy = 63y + Uy, for =1

For the error z =y — u of the scheme II  on the non-uniform net+ 50
we obtain problem III ; with the boundary conditions

- - +
aMads, _oix+ v, for z, =0, — agz; =0,z + vy for z =1, 0

where v =0 (h,,),v. =0(h,). By analogy with Section 2 of [10] we find
the a priori estimate

Iz (@ OIS M@ 01+1vE 00, 4) for.]Tlh < %, (2)

¢ If the region G is a parallelepiped, we shall denote the net Ql by
Qo be low.
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= FTh b 2= 1 (1= ),
a={

which holds if o->e>0. Here |[¥(z, f)| is the expression (2.40). The
following estimate of the order of accuracy is true (for conditions A
and B of Section 3) for the scheme II:

ly—uli <M T+ 171+ 1R, ), 3

i.e. generally speaking the scheme II; has first order accuracy with re-
spect to h. Concentrating the net near the boundary, or, more exactly,
choosing ||h||0'Y=0(l| n2f), we can increase the accuracy on a non-uniform

net to second order (jy—ul|=0(}|A|)+0 (frlp) -

It is not difficult to obtain uniform estimates also, by analogy with
Section 2, Para. 5 and Section 3, Para. 3. The results (2) and (3) are
also true of the scheme IIz.

2. DISCONTINUOUS COEFFICIENTS

The a priori estimates obtained in Section 2 enable us to examine in
detail the question of the accuracy of the schemes II, in the class of
coefficients of the differential equation (1.1,) with discontinuities
of the first kind on a finite number of hyperplanes Xy = §a = const.
parallel to the coordinate hyperplanes. We can formulate all the results
by analogy with the one-dimensional case (14]. If the net o, is arbitrary,
then the estimate for z = y ~ u will contain first powers of the steps
h at the points adjacent to a discontinuity (cf. (13]). concentrating
the net near the discontinuity x, = &y 1.e. choosing hy = O(H'h2 H) at
these points we obtain second order accuracy with respect to h on such a
net. The nets oh(k) introduced in [14] are more economical; they are
selected so that the nodes of the net lie on the hyperplanes x, = §,. In
this case, as we showed in Section 1, the expression (2.5) for y  is
valid at all points of the net wh(k) and hence our schemes have the same
order of accuracy as in the class of continuous coefficients.

3. ELLIPTIC EQUATIONS

The methods of [14]-[17] and of this paper are also applicable to
the study of the convergence and accuracy of homogeneous difference
schemes for multi-dimensional equations of elliptic type.
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Suppose that in the region G we are given the boundary problem

4 ) du
Li—g@u=—1@), uwp=w@), Li=Ly Lu=z(k@s) @

a=t
ke>a>0,  ¢()20.

The corresponding multi-dimensional homogeneous difference scheme on a
non-uniform net w\?’ has the form

14
Ay = 2 Ay=d(@)y—9(z) for 2 E o)s,z), ul,=uw(z) Ay = (a, (2) y;a)ia. (5)

am=i

The coefficients a_, d and ¢ are calculated from the formulae of Section

al
1, Para. 3.
For z = y -~ u we obtain the problen

P
Ar—dz =¥, z€of =0 ¥=2 (M2, +¥;l, pa=00d), 4s=0(:). ©)

a=1

A priori estimates for z can be constructed, as in Section 2, using
n-th rank energy inequalities. We majorise 2"(?, zon) for n > 1 thus:

P P 4
(P, )<L+ M2 QTR 7, Ty= Ju@, ¥=Y ¥
amsi ) a={ a={

For n = 1 we have the estimate

P
i< M Z‘w,.n.ﬁw;r.a) ¥, =M, () =per WVe=0, zETL O)

On the arbitrary non-uniform net of?’ the difference scheme (5) has
second order accuracy:

1
By —wI<MiR] snd jy—uhb<MIhIGI® 7, He<Ho(). (8)

The net w}?’ is obviously more convenient than the net oi!) since the
procedure of extrapolation of the boundary conditions from lon y in
this case is less convenient than for the local one-dimensional method.

It i8 clear from what we have said that these schemes converge in the
class of coefficients having discontinuities of the type described in
Para. 2.
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In [15], [19], (20] a method of putting ¥ in *divergent* form and
then applying the first rank energy identity was used. More refined
estimates, based on the use of Green’s function, were obtained in (18].

4. EXPLICIT SCHEMES

The advantage of local one-dimensional schemes over multi-dimensional
schemes is easily appreciated even in the case of purely explicit
schemes. Let us illustrate this remark, taking equation (1.1y) with con-
stant coefficients and putting, for simplicity, r,=q=f=0, h =

[0 ¢
¢ = 1, taking the net oy to be uniform and "square" (ha = h = const.).

Let us write down an explicit multi-dimensional scheme and the corre-
sponding local one-dimensional scheme (cf. [3]):

P
e e A B _ _
yr= W' —vIr=Ay,  Ay= 21 Ay Aey=v; &
o=
v =Ag, a=12...,p y=y"P, gyt (10)
- 3

The stability conditions for them have the form
T 1 T {
m<3p Tfor (@, p<y for (10).

Thus, the local one-dimensional method allows us to increase the step
with respect to time p times without increasing the amount of calculation
required.

5. ON SPLITTING METHODS

In [3]-[5], (71-[o], [11] the question of the accuracy of economical
schemes, which the authors call splitting methods, reduces to the in-
vestigation of a multi-dimensional difference equation connecting the
values y/ and yj+l on integral steps, and this greatly restricts both
the class of equations and the class of regions G for which these methods
are applicable. While this method is suitable for the schemes of (7]-[(9]
in our opinion a more natural method for the schemes of [3]-[5] is that
described in [10] and [12]. The fact is that in the simplest cases con-
sidered in (3]-[s] the algorithms of [3] and [10] are the same. In this
connection it should be noted that the works [3]1-[5] gave the stimulus
to the author for the work of [10] and [12].

In [3], [11] the following six-point schemes were used:
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= Ay (0P - (1 — )y DP), 0o 1.

In [12], for p =2 0=0,5 it is shown that these schemes converge
in the mean at the rate 0(” h? ”) + 0(” T ” ) on an arbitrary sequence
of non-uniform nets "’h“' When p > 2 this estimate holds if the maximum
principle is satisfied.

Let us show that the splitting method of [7]-[9] preserves the
maximum order of accuracy O(h%?) + O(t%) on arbitrary non-uniform nets
Qo' Without attempting to generalise this method for the general equa-
tion (1.1 o) and arbitrary p let us give the argument for the case ¢ = 1,

=0, q =0, f=0and p = 2. Then we can write the scheme of [7] in
the form

J+1

vy, =0.5 [Ar (5 + ¢+ AWl +FeAAY, g =05Ay (11)

where A,y=(s, (z,t;) y;m) 5:' a4y is given by the formulae of Section 1,

Para. 3, and in this case k_ is continuous and k, = k, (in [7]
a2, = k{™%) and the net w, is uniform).

The method is applicable to the parallelepiped G={0<z,<!,} and

can be generalised (cf. [7]) to the case of regions formed from parallele-
pipeds. The second equation is also written for x, = 0, x = ll and used
to find the boundary values of y/*% for x;, =0, #, = ;. Eliminating

y/*% from (11) we obtain

I3 . ’
¥ =05A (™ +41) — F Audw. (12)

Using this to find z we have
2;=054A (27 4 27) — :—1‘A1A|z ;% zIY =0, z(z,0)=0, (13)

where ¥ =0.5A (/! + uf) —-ﬂ AIA,u..—“u- On a uniform net ¥ = O (A% 4 O (7).
On a non-uniform net Q

¥=3 W)y +9% P =FHON+0M), F=—T Aduy. (14
=<1
It is not difficult to see that § = = O(+?) on any net Q The methods
of [14] and [17] enable us to obtain the necessary a prwn estimate for
z without difficulty, with the condition that |(a,);|<e1®, &1® = const > 0.

As usual, making a scalar multiplication of equation (12) by 2tz;H, we
obtain
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225 P + I +0.5¢ (Ashaz, 2y =14+ 21(¥, 2.) (15)

2 2
I=1%= 3 (ait'h, (zj.:;l)qa, I*= ) (ait", (z%u)qa, T = I’ (see below),

a=1 a==1
which differs from the usual identities considered by us previously in
the presence of the term 0.5¢®(AiAgsf, z7). In (22], where an a priori

estimate was obtained for the problem (13) on a uniform net this term

is transformed by a double application of Green’s formula in the direc-
tions x, and x,. (The substitution becomes zero since °;, =0 when
zg=0,z5=13 for B # a.) The estimate of [22] is also valid in our case:

© (Mhaz, 27) > 0.56°0 | —Mt(I+T),

]
’;,;,;“
1f |(a,)z,| < const. when « # p.

Now let us transform 2v(y, z;), using the fact that ¢ = ¢, +y,,
P = (p'a):;c\n '
T((l"’a)fa . zt-) = —1 ((lla, z;a],.)t‘ +T((p'a)!-' ;;u]av
20 (9%, =) <TIP*P+ iz I

As a result we obtain an energy identity for [tlh<7T, :

2
A —M) I <A+MOT— 3 (o 5 ) )+ MTUuPHI9* P+ oAk | (16)

a=1

where

2
Tl = D) likg loas

a==]

By analogy with [12] and section 2 we find from this

fz (= )} S MA{[[p(z, O+ ey @O0 +19* = 00+ v Mdeu ] } (17)
for sufficiently small [tjh<T,.

This proves that the scheme (11) retains second order accuracy on an
arbitrary non-uniform net QO:

fy—ul<M (A +[*[a) when [v] <7 18)

We note that the smoothness requirements laid down for the solution
u = u(x, t) and the coefficients of the differential equation for which
estimates (17) and (18) are valid augment as the number of dimensions
increases (cf. {7]-[9], and compare with Para. 1, Section 3). The
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possibility of removing the restriction |(a )z, | < const., whose presence

)..
a xg
makes it doubtful whether this method can be used in the case of discon-
tinuous coefficients and quasi-linear equations when ka = kq(x, t, u) is
an interesting question.

Note. In [2] the scheme
yp= Myt Ay, g =AM — Ay = tAy;

of first order approximation is discussed. It is not difficult to show
that that scheme

Y = 05A Y+ )+ Aw!, g =05vAw;

leads to equation (12) and, therefore, has second order accuracy. The
estimates (17) and (18) are valid for this scheme.

Trans lated by R. Peinstein

REFERENCES
1. Douglas, J., J. Soc. Ind. and Appl. Nath., 3, 42-65, 1955.

2. Douglas, J. and Rachford, H.H., Trans. Amer. Math. BSoc., 82, No. 2,
421-439, 1956.

3. Yanenko, N.N., Dokl. Akad. Nauk SSSR, 125, No. 6, 1207-1210, 1958.
4. Yanenko, N.N., Dokl. Akad. Nauk SSSR, 134, No. 5, 1034-1036, 1960.

5. Yanenko, N.N., Izv. vyssh. uchebnykh zavedenii. Ser. matem., 4(23),
148-157, 1961.

6. Baker, G.A. and Oliphant, T.A., Quart. Appl. Math., 17, No. 4, 361-
373, 1960.

7. D’ yakonov, Ye.G., Zh. vych. mat., 2, No. 1, 57-79 and No. 3, 512,
1962.

8. D’ yakonov, Ye.G., Uspekhl matem. nauk, 17, No. 4, 1862.
8. D’ yakonov, Ye.G., Zh. vych. mat., 2, No. 4, 549-568, 1962.
10. Samarskii, A.A., Zh. vych. mat., 2, No. 5, T787-811, 1962.
11. Yaninko, N.N., Zh. vych. mat., 2, No. 5, 933-937, 1962.

12. Samarskii, A.A., Zh. vych. mat., 2, No. 6, 1117-1121, 1962.



13.

14,
15.
18.
17.

18.

19.
20.

21.

22.

Local one dimensional difference schemes 619

Tikhonov, A.N. and Samarskil, A.A., Zh.
832, 1962.

Samarskii, A.A., Zh. vych. mat., 3, No.
Samarskii, A.A., Zh. vych. mat., 1, No.
Samarskii, A.A., Zh. vych. mat., 2, No.
Samarskii, A.A., Zh. vych. mat., 2, No.

Tikhonov, A.N. and Samarskii, A.A., Zh.
1961.

vych. mat., 2, No. 5, 812~

2, 268-298, 1863,
3, 441-460, 1961.
1, 25-56, 1962.

4, 603-634, 1962.

vych. mat., 1, No. 1, 5-863,

Lebedev, V.I., Dokl. Akad. Nauk SSSR, 138, No. 1, 39-46, 1961.

Lebedev, V.I., Zh. vych. mat., 2, No. 4, 595-602, 1982.

Berezin, 1.8. and Zhidkov, N.P., Metody vychislenii (Computational
Methods), Vol. 2. Pizmatgiz, Moscow, 1960.

D’ yakonov, Ye.G., Reshenie nekotorykh mnogomernykh zadach matemati-
cheskoi fiziki pri pomoshchi metoda setok (The Solution of Certain
Multi-Dimensional Problems of Mathematical Physical using the
Method of Nets). Candidate Dissertation in Physical and Mathe-

matical Sciences, MIAN SSSR. Moscow,

1962.



