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WE SHALL consider homogeneous difference schemes 
(see [l]-[3]) for the non-linear parabolic equation 

of “through” computation 

(1) 

with a discontinuous “heat-conduction coefficient” k(x, t). 

Attention is devoted chiefly to determining the order of accuracy of the six- 
point schemes P& (see [3]) for the third boundary problem in a bounded region 

~(o<x<l,o<t<:). 

The investigation is carried out directly for a wide class of homogeneous differ- 
ence schemes (see 0 1.4), given in terms of pattern functionals of the type indicated 
in [l] and [3]. The functionals satisfy conditions which ensure a second order of 
approximation (with respect to x) of the scheme. Similar difference schemes (in the 
case of the first boundary problem) for the linear heat-conduction equation when 

f( x, t, u, 2, g ) = f(x, t)-q(x, qu-c(x, t,$$ 
were studied in [3]. 

Difference boundary conditions of the third .kind, with the same order of ap- 
proximation as the scheme in the class of solutions of the equations 9% = 0 are 
formulated in § 2. 

The problem of the accuracy of the difference problem obtained can be reduced 
to estimating the solution z of a linear difference equation with linear difference 
boundary conditions and zero initial condition by using the functions w, y1 and 
vZ, where y is the approximation ‘error of the scheme, v1 and v2 are the approxima- 
tion errors of the boundary conditions in the class of solutions of the equation 
9% = 0. A priori estimates are used to evaluate the solution of this problem. These 
are generalized from the estimates [4] and [5] to a more general equation and more 
general conditions. 

The so-called “fixed discontinuities” of the coefficient k(x, t), i.e. discontinuities 
on the finite number of straight lines x = 11. = const., parallel to the f-axis in the 
plane (x, t), are considered in this paper. By separating the error connected with 
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the approximation error of the boundary conditions it can be shown that the third 
boundary problem has the same order of accuracy as the first (see 9 3). 

The principal result has been formulated as Theorem 4 in $ 3. It has been proved 
that any scheme St, of the initial family (see 9 1.4) converges uniformly for O-5 < 
< a < 1, when the intervals of the difference set h = dx and t = dt tend to zero 
independently. The order of accuracy in the class of discontinuous coefficients is 
also evaluated. Results for the explicit schemes (CC = 0) are not given because they 
can be formulated by analogy with the case of the linear equation (3). 

As has been pointed out several times (see [l], [3], [5]), the difficulty in investi- 
gating uniform convergence in the case of the discontinuous functions k(x, t) and 
J(x, t, U, p, q) lies in the fact that the difference scheme does not approximate to 
a differential operator near the line of discontinuity of the coefficient k(x, t). 

For six-point schemes convergences can be proved only by using an improved 
a priori estimate (Theorem 2) which uses the norms IIy II5 and I/y /IS. of a special 
type for an integral estimate of the approximation error y. 

Although uniform nets are considered, the principal results and, in particular, 
Theorem 4 are applicable to difference schemes on non-uniform nets also. This 
question has been treated separately. 

The method of investigation adopted can be used to prove Theorem 4 for more 
general boundary conditions, including non-linear ones also. $ 1 and 3 remain 
practically unchanged in that case. 

It should be noted that there are a number of papers (for example [6]-[ll]) 
devoted to the investigation of difference schemes of a partial type for non-linear 
and quasi-linear parabolic equations (1) in the class of smooth functions k(x, t) 
and f(x, t, U, p, q). In most of the papers either average convergence or uniform 
convergence has been studied using the principle of the maximum (involving bound- 
edness for t/h2) for partial cases of eqn. (1). The method closest to ours is the 
one described in paper [lo], in which the uniform convergence of a scheme for 
the case of boundary conditions of the first kind and the continuous functions 
k(x, t) andf(x, t, u, p, q) was proved. The results given there follow from Theorem 
3 of our paper. The a priori estimates used in [lo] are unsuitable for proving con- 
vergences in the class of discontinuous coefficients. 

5 1. HOMOGENEOUS DIFFERENCE SCHEMES FOR THE NON-LINEAR PARABOLIC 
EQUATION 

1. Formulation oJ’ the problem 

In the rectangle A = (0 < x < 1, 0 G t < T) let us consider the finite number 
of non-intersecting differentiable curves r, (Y = 0, 1, . . . , Y,,+ 1) taken in pairs, 
given by the equations x = q”(t) in the segment 0 < t < T. We renumber these 
curves in such a way that q”,(t) < rYZ(t) when y1 < v2, and put qo(t) = O,Y/~,,+~ 
(t’l = 1. A, and J denote the regions 



Homogeneous difference schemes 

The initial problems is formulated as follows: 

Find a solution U(X, t) continuous in z of the equation 

‘A=x(k(x,t)~)+fi(X,t,U,~,~)=O in ,Q, 

satisfying the boundary conditions 

k&(t)u = ur(t), x=0 

au 
kz+Mb = udt>, x= 1, 

and the initial condition 

U(X, 0) = U&x). 

The coefficient k(x, t) has discontinuities of the first kind on the curves 

= 1, 2..., Y,,). The continuity conditions 
i 
matching on the left and right of 

function U(X, t) and k g 
1 

are satisfied on each of these curves : 

[uI~=O, kg “=O for x=qr(t), 
1 I 

O&T, 

where [4, = u,,,--~,,, u,, y = u(rl,O)+0, 0, un,+ = u h(FO, 4 etc. 
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(1) 

(2) 

(3) 

(4) 

r”(v 

the 

(5) 

The function f;(x, t, U, p, q) for the variables (x, t) has discontinuities of the 
third kind on the curves r,, v = 1, 2, . . . . v,,, and its derivatives with respect to 
U, p and q are bounded, or more precisely, 

where m and M are positive constants. 
The coefficients k(x, t) and al(t), oz(t) of the problem satisfy the conditions 

0 < m < k(x,t) < M, %(t) >, 0, a,(t) 3 0, o,(t)+02 >, m -2 0 (7) 

The condition oI(t)+az(t) 3 m > 0 signifies that the case when al(t) = 0 and 
az(t) = 0 simultaneously (second boundary condition) is not considered. Without 
any loss in generality we put 

x,t,u.$g 
1 i 

=f 

i.e.. henceforth we shall consider equation (1) in the form 

(8) 

(1’) 

This substitution is convenient because the argument kg is continuous because 
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of the condition (5) on the lines T, of discontinuity of the coefficient k (x, t). Since 
k(x, t) 2 m > 0, the conditions (6) for the function f(x, t, U, p, q) wiil be satisfied. 

We shall call the problem defined by the conditions (1’), (2)-(7), the problem 

(I) It will be noted that the equation 

is reduced to equation (1) if the new function 

U= y(u) = [p*(u)du. 
0 

is introduced. 

(10) 

The existence and uniqueness of the solution of boundary problems for a par- 
abolic linear equation of the type 

with discontinuous coefficients was studied in [12]-[15]. A large number of papers 
have been devoted to the solubility of the quasi-linear equation 

(12) 

with smooth coefficients. 
We shall assume below that a solution of the problem (I) exists and has the 

differential properties necessary for our discussion, leaving aside the question of 
conditions ensuring these properties. Only those requirements for coefficients of 
the problem are formulated which are used directly in proving theorems on the 
accuracy of the difference schemes studied. 

NOTE 1. The derivative 2 on the lines I’, of discontinuity of the “heat-conduction coefficient” 

k(x, t) undergoes a discontinuity equal to 

[~I. = - ~~]~s:(t), x =qp(f). (13) 

The equation (13) follows from the identity 

It can be seen from (13) that the derivative air/at is continuous along F, only when q;(t) = 0 
i.e. on these straight lines Q = const. (in this case we say that k(x, t) has a tied di~ontinuity). 

NOTE 2. If the new function 

n = u exp (i (+WdE), 

is introduced, the linear equation (II) is transformed into a linear equation for v not containing 
a term with the first derivative with respect to x(r = 0). But with this ~nsformation the second 
continuity condition becomes more complex. 

[k&+0 x=rl*w. 
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2. Zntegro-interpolation method 

The integro-interpolation method (IIM) (see [l], [2]) can 
difference equations corresponding to the differential equation 

be used to obtain 
(1). Since physical 

processes are usually characterized by integral equations expressing a certain law 
of conservation (for example, the amount of heat, momentum etc.), in writing 
difference equations describing the process approximately it is natural to start 
with integral balance equations written for a certain volume in the neighbourhood 
of a nodal point of the difference net. The integrals of the function and its deriva- 
tives occurring in the equation and taken over the surface of the volume considered 
are replaced by difference expressions by making additional assumptions regarding 
the behaviour of the function in the neighbourhood of the nodal point. As a result 
we obtain difference equations the form of which depends on the nature of the 
local interpolation used. The choice of interpolation is subjected to the requirements 
of stability, accuracy and simplicity (for the same order of accuracy) which the 
required difference scheme must satisfy. As an illustration of the method we take 
the heat-conduction equation 

(14) 

We consider in the rectangle (0 < x < 1,0 < t < T) a uniform net .@, i.e. a set 
of points (xi, tj) with the coordinates Xi = ih, i = 0, 1, . . . . N(h = l/N); tj = jt, 

j = 0, 1, . ..) L(z = T/L). The heat-balance equation for the rectangle Sij 
= (Xi_3 < X ,< Xi++, tj_1 < t < tj), Xi_* = Xi-O.5h iSI 

Xi+fr ‘j 

s 
[U(X, rj>-u(X, tj-,lldx+ S [W(Xi+,, t>-W(xi-i,t)ldt (15) 

“i-4 ‘j-1 

= 1s AX, t> dx dt, 

‘ij 

where W = -k $ is the thermal flow. 

We shall consider that the values of u are taken at the points (Xi, tj) of the net 
and the flow W refers to the point (xi_&, tj). 

Suppose, for example, that W = Wi_a = const. in the interval (Xi-l, Xi). Then 

the expression W = -k --&will be replaced by the approximate relation 

Ui_l-Ui = i (W/k)dx x Wi_1 ii ~, 

i.e. 

3-l xi-1 

(16) 
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To calculate the first integral in the balance equation (15) we suppose that u 
= ui = const. in the interval (xi_*, xi+*), so that 

1 
3+$ 

i? s 
udx=u,. (17) 

“i-4 

It can be easily seen that the assumptions u = const. when xi-4 -=c x < xi++ 

and W = const. when xi_l < x < Xi do not in general agree with one another. 

But the assumption W = const. when Xi-1 < x < x1, if consistently carried out, 
leads to a more complicated scheme without increasing the accuracy. 

Other interpolations of the required functions for deriving a difference expression 
for the flow are also possible. 

If the flow is to be expressed in terms of the value of u at two nodal points, then 
from the equation 

3 

ui_l- ui = 
5 

$dx, 

Xi-1 

it follows that all formulae obtained for Wi_& will have the form 

w._ = a!h’k)(Ui_l-ui)/h, 4 ’ 

where aihsk) is a coefficient depending in general on h and on a function k(x, t) in 
the interval (x~_~, Xi), i.e. it is a functional of the coefficient k. 

If the integrals in t in equation (15) are replaced by, for example, the formula 

‘i 

s 
Wdt = crWj+(l -ct) Wj-I, O<a<l, 

‘j-1 

we obtain the difference equation 

‘i Xi+1 z 
w,_ = a(h,k Yi-l--Yi 

IS * h ’ 
Fi = ; 

s s 
j(x, t)dxdt. 

The balance method (IIM) leads to convergent schemes in the class of discon- 
tinuous coefficients, as was shown in [l] for the stationary equation of heat con- 
duction. In this paper we shall show that this is also true for a parabolic equation. 

3. Notations 

Let D(xi=ih, tj=jt, i=O,l,... N, j=O,l,..., L,h=l/N, t=T/L) be 

a difference net, J? the set of its internal points (xi, tj) (where 1 < i < N- 1, 1 < 
<j < L), mh(xi = ih, 0 < i < N) is a x-net. 
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A function yi given on the net a or part of it will be called a net function. In- 

stead of v{ we shall simply write y or JJ(X, t); the dependence of the net function 
on the intervals h and t of the net also will not be indicated. Further, we shall use 

the notations 

i = Y(X, t-r), #+I) = Jqxfh, t), y(-1) = y(x--h,r) 

y; = (y-y’- 9/h 3 y, = (y(+l’--y)/h = yc+y 
x Yi = (Y-& 

Hence 

~[ai+,(ui+,-y::)--al(y~-_y’i_,)] = (aJ$. 

We shall use the following notations for sums over the net cr),, or part of it 

(19) 
i=O 

We shall use the norm 

where the maximum value is taken from all points of the net CJ,, in which the net 
function z is given. 

Depending on where the function y is given, we use one of the following defini- 
tions for the norms: 

IIYIl0 = (1 > Iwi?~~ IlYlIo = (1, Iyl”lf9 j’y/lo = [I, lylUlf, cr= 1,2, (20) 

without specifying this in cases where there is no possibility of confusion. Thus, 
for example, if the function z is given on the entire net q, , its “difference derivative” 
zX is defined at the points x = h, 2h, . . ., Nh = 1; therefore 

/1z;l12 = (1, -$I’, where Z: - (2;)‘. (21) 

In our previous papers (see [4], [5]) we introduced the norms 

x’=x llwll3 = lIPlIz, Pu(N = c ~yW5 
xr=h (22) 

IlYll3* = II& IlYll4 = llYlls+lY~ 1>/7 /IY/la* = llYll3*+ IKY 7 111 * 

The positive constants independent of the nets (i.e. of h and t) will be denoted 
by M and m. e(d) will everywhere denote an expression uniformly tending to zero 
when 6+ 0, so that /~(6)1 < &c?), where ~~(8) depends only on 6 and ~~(a)+ 0 
when 6 + 0; O(P) (m > 0) is an expression with the order of magnitude 6” when 
6-t 0, so that 10(~3~)] < Md” 
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When no confusion can arise we shall write 

au . au 
Uf=ax, U’Z. (23) 

In referring to formulae of another section we shall use two numbers, for example 
(1.20) is the formula (20) of 9 1. 

4. Initial jbmily oj’ homogeneous difJerence schemes 

The integro-interpolation method described in section 2 is useful in selecting 
the initial class of schemes for differential equation (1). As we have seen in the 
example of the linear heat-conduction equation, this method gives six-point schemes, 
the space part of which is a self-conjugate or conservative scheme of the type 
(ay&+v and the coefficients a and q are functionals (depending on the nature of 
interpolation) of the coefficients k and J’ of the differential equation. 

On the other hand, it was shown in [l] in the example of the stationary heat- 
conduction equation (ku’)‘+j’= 0 that only the conservative schemes (ay&.+p, 
converge in the class of discontinuous coefficients. We shall bear these two points 
in mind in choosing the initial family of difference schemes for non-linear parabolic 
equations. 

Let us consider the differential equation 

(24) 

and the corresponding six-point homogeneous difference scheme 

B&y = My-)‘“)+ap,(x,t ,y, a(+l)yX+ay;,y;)+ XX 

+(l -a)q(x, r,$, &(+‘+,+;I;;;, y;) = 0. (25) 

The superscript a indicates that the expression is summed up over the rows t and 
t--t with the weight factors a and (1 -a) 

v(“) = av+(l -a);, 

where a is a numerical parameter, 0 < a < I. 
The net functions a(x, t) and ~(x, t, u, p, q) are calculated with pattern function- 

als (see PI, [31) 

Ahb WI (-1 <s < 0) and Fhb WI (-03 < s < 0.51, (26) 

defined in the class of piecewise continuous functions Q(O)(p(s) E Q(O)) and depending 
in general on the parameter h: 

a = Ah[k(x+sh, t)], 

v= &x,t,y,a(+‘) y,+ay,,yr) = FhV(x-t-sh, t, y, a(+?yx+ay;,y,-)l. 

The dependence of (I and ~1 on h will not be indicated explicitly. 
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For the linear equation 

31 

9% = ;i;; k(x, ‘>z -q(x, t>u+r(x, t)$-C(X, t,; = 0 “( au) (11) 

the difference scheme (25) assumes the form 

s;*y = [(ay;;),--dy+b(a(+“y,$.ay;)+~](‘)-@(”’y, = 0; 

its coefficients are determined with the same pattern functionals (26) by the formulae : 

a= Ah[k(x+sh, t,], d = Fh[& + sh, t)] > b = F$(x+sh, t)] ;= +k, 

cp = F*[f(x+ sh. t,], @ = P[c(x+sh, t)]. 

A class of homogeneous schemes for the linear equation (11) when r(x, t) = 0 
was introduced in paper [3]. The difference between those schemes and the ones 
considered here is that the coefficients d and Q were calculated independently of 
the coefficient CJJ using the functionals D”b(.s)] and Rhb(s)] (-0.5 < s < 0.5) 

respectively. The term r (x, t) $ in (11) can be approximated by using a simpler 

expression, for example 

Fh[r(X+sh, 9].0*5(y,+y;). 

But, as will be seen below, a higher order of accuracy in the class of discontin- 
uous coefficients can be obtained by approximating with the expression b(a(+l)y,+ 

+a%). 
For the same reason we take 2ku’ (see section 2) and not U’ as the argument 

of the function J: 
The class of homogeneous difference schemes P& is determined by choosing 

the class of pattern functionals Ah and Fh and the parameter a. We shall assume 
that the (@) conditions are fulfilled: 

(@3 The functional of Ahb] is of the third rank and F”(,u] of the second rank; 
(@J F”[p] is a linear functional; 
(C&J The pattern functionals A”[p] and Fh[p] satisfy the necessary conditions 

for the second order of approximation (see [I], [3]). 
We shall examine the six-point schemes (25) satisfying the conditions (@) as 

an initial family of schemes. 
If the pattern functionals are canonical, i.e. are independent of h, the scheme 

is called canonical. Since non-canonical schemes are equivalent to their canonical 
part as shown in [I], [3], we shall deal with canonical schemes only. However, 
all the results are also valid for non-canonical schemes forming the initial family 
defined above. 

Let us consider the properties of the canonical pattern functionals A[,u] and 
Fb] in greater detail. Here the conditions (@) denote: 

1) Ah] is a linear homogeneous functional (A[cp] = cA[,u]) having a differential 
of the third order, i.e. 
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4p+wl= A.[pl+~.Mpu, fl+m[ps fl+J%[p> fl+d3@(s), 

where e(d)-, 0 when 6-+ 0, If’1 < M; 
2) AQA] and F&G] are non-decreasing fimctionals, i.e. 

A b.4 >, A [PII 3 f%hl 2 UPI1 for Y, 2~~; 
3) _4b] and Q,u] are normalized functionals, i.e. 

A[l]=F[l]=l; 

4) _4b] and F[Fc] satisfy the necessary conditions of a second order approxima- 

tion 
A&] = -0.5, P[s] = 0, (27) 

where 

Ml = A#, 81. 

It will be noted that schemes symmetrical with respect to change in the direction 
of the x-axis satisfy the conditions (27). 

The difference scheme CPiz belonging to the initial family, and having the pattern 

functionals (see [16]) 

so that 

(s(x,Ly,p,q) =t’t31’5”f(~,I,~,~,q)dS (28’) 
S-O.688 

occupies a special position. 
This scheme will be called the best canonical scheme because it gives the best 

accuracy in the class of discontinuous coefficients among the initial schemes. 
In practice discrete schemes [I] are often used, the coefficients of which s are 

calculated from the values of the ~oe~cients of the differential equation at particular 
points. We shall give the pattern functionals for some of the discrete schemes: 

Af/.J($l = P(-0.5)‘ 

0 (@I = P (0) 9 F[p(s)] = 0,5[~(0,5)+~(-0,5)] etc. 

instead of scheme (25) another equivalent to it in accuracy can be considered 

Piry = (uy;)$ + f$? (X, t@), y’@‘, (a(+l)y, +ay$? y,) = 0, (253 

where t’@) = ~t+(l-CC)>,> = t--c. 
The difference equations P&y = 0, where P&y is determined by the expressions 

(25) or (253, are non-linear with respect to the values of the required function 
y(x, t) on the new row. For this reason its solution can be found only by iteration. 
The difference equations 
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sgy = (uy,)lp’+p,(x, t:;, ;i(+l)k+iij;,, y7) = 0 (252) 

are linear with respect to y(x, t), if the function f(x, t, U, p, q) depends linearly 

on q: 

f(x, c, 24, p, 4) = j-(x, t, 24, P) ff(x. t, 24, p)q. 

In this case the difference equations (25,) can be solved by the non-iterative method 
of successive substitution (see Q 2.4). But the difference scheme (25), is only of the 
first order of the approximation with respect to t for any a, 0 < a < 1. 

It should be noted that all the results obtained below for the scheme (25) can 
be easily transferred to schemes (253 and (25,). 

The family of homogeneous schemes for the equation 

:pu = $ 
[ 

x(x, t, u) +;* 
I ( 

au au 
+ f x, t, u, 2x - 

ax’ar =O 1 
(2% 

with the heat-conduction coefficient x depending on the temperature u can be determined similarly 
In this case 

IJ’hnY = @Y#+“m, t, Y, a(+l)Yx+uY;;, Yi)+ 

+(1-a)q(x, < i, S(+l)j;x+lij;r, y:) = 0, (30) 
where 

a = a(x, t, y*) = Ah[x(x+sh, t, y*)], y’ = 05(y+y(-q, 1 

P (x, t, 4 P> 4) = mf (x+& t, 4 P, 4). J 
(31) 

Here Ah and Fh are the functionals defined above. 

5. Equation jor the solution error 

Let y = y(x, t) be a solution of the difference equation (25) and u = u(x, t) 
a solution of the differential equation (24). We shall show that the error z = y--u 
satisfies a linear difference equation. To do this we form the difference 

where 
Y = xzu - (‘$U)‘“’ . 

Let us transform the expression 

P~ry-P~zU = (az;)~)+aB,+(l-a)&, 
where 

B, = v(x, t,y, u(+l)Yx+aY,, Y:)--q(x, 1, u, a(+l’u,+au;, UT), 

Taking account of the differentiability of the functionf(x, t, U, p, q) with respect 
to the arguments u, p and q, and using the mean value theorem, we obtain 

where the line on top indicates that the value of the derivative is taken for certain 
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mean values of the arguments u,p and q. Because of the linearity of the functional 
I+] we have 

1 aP, 
’ - = F ap g (x+sh, t, u, p, q) 

I 
, 

&J - a4=F& 
[ 1 

Using similar reasoning for the difference B, we obtain from the identity (32) 
the following linear difference equation for the net function (z(x, t): 

where 
Rlz = (a~;):)+ Q (z)-e.z; = -Y on J2, (33) 

& b,, = c&f’) - 
aP ’ 

b,, = (1 --a);i(+l) -g , 

bzl = (l-a)ag 
d =,% 

1 au ’ d,=(l-a)$$ v*= 
(35) 

The net function Y = Y(x, t) is obviously the approximation error in the class 
of solutions u = u(x, t) of the differential equation (24) and can be written in the 
form : 

Y/ = y’=‘+yq, Y = Y.-tYPSYV yq = Qy4*+(1-Q)yq**, 

y. = (a+),- W)’ 3 

yp = q(x, t, u, a(+‘)u,+uu;, ti)-~(x, t, u, 2ku’, ti), 

y~=~1(x,f,u,2ku’,ic)--f(x,t,u,2ku’,ir). 

y,* = pl(x, t, u, u(+l)u,+uu,, u;)-CJ?(x, t, u. u(+l’u,+uu-;, G), 

Ye ** = pl(x, t: ii, ;;(+l)&_;;;,, u;)-v(X, i, 6, ;;‘+%X+F7;;, t>. 

6. Approximation error of’ initial schemes 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

Let us investigate the asymptotic behaviour of the approximation error !P for 
any scheme P& of an initial family when h + 0 and t--t 0. The asymptotic order 
of y depends on the properties of the pattern functionals of this scheme, and the 
order of yq on the values of the parameter a (of course, when the solution u(x, t) 
of the differential equation (1) and the functions k(x, t) and j(x, t, u, p, q) are differ- 
entiable the required number is 1). 

LEMMA 1. If in a fixed neighbourhood of the point (x, t) of’ the net 52 the j&nctions 

k”(x, t), f’(x,t,u, P,4), .“‘V, f) 
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satisfy Lipshitz’s condition jbr x, and the Jimction zi(x, t) satisfies the condition _fbr 
t, then~~r s~~cient~~ small h and z 

!f’=O(h*)_tU(~) for O<a<l. (42) 

(The dash indicates partial derivatives with respect to x, ti = ih@t). 

It will be remembered first of all that, by hypothesis, the function f(x, f, u, p, q) has derivatives 
aflau, afiiap, 3flaq that are finite for any values of u, p and q. 

For any initial scheme we have 

(I =: k--o+sw+ha 
i 
q &a]+ q AM +eo% 

i 
a(+l) = a+hk’+O(!P), 

m, t, WI P, cr) = l-(x, t, u, P, q)+W(x, t, u, P, q>Fr4+w2) = m, t, u, P, d-t-m% 

i.e. yip = 0(/P). With the expansion 

u, = *‘to+hu”i~ rP+O(hs), u;; = u’-o~5hu”+ $ U”‘+O(h*), 

we find 
~‘a = O(@. a(+r)u, = aq-2&u’O(h*) 

and hence 

v’~ = g (o(+l)u,+cur3;--~~‘) = O(h*), 

where the bar above means that the derivative is taken for a mean value of the argument p. Thus, 
for any values of the parameter a 

VJ = Y.+VP+Y~ = O(h.7. 

Using the mean value theorem we obtain 

% = ~~(ui-4+(1-a)~(q-;) = O(T), 

Since ui = i+O(t) = 2+0(z). Q.E.D. 

LEMMA 2. Ij’ the conditions of’ Lemma 1 are satisfies and, in addition, the firnc- 
tions k, u’, ii. satisjj Lipshitz’s condition fbr t, and the derivative a~~~q satisfies the 
condition for t, u, p and q, then 

Y = O(h*)+O(Pa) +U(hz), i. e. /Y/j Q M(ha+r”‘a), 
where 

I 2, lx = 0.5, 

%= [l,a#@5, 

To prove the lemma it is sufficient to prove that 

y, = O(,“@)+O(ht). 

From the conditions of the lemma we can write 

9$x-, t, 24, ai+l)u,+au,, fq)--p)(x, t, u, a(+%l,~uuj;, ii) 

= 4$-(x, t, li, a(+l)tl&-tIu;r, ir)(~-iC)-fo(r2), 

$p,; ” 9 u, ri(+l)k+&i;,, i) = s (x, t, u, at+1h4,+au;;, ii)fO(r)+O(h), 
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taking into account that 

Cz&+= ku’-&?+U(fi) = O(t)+O(h). 

For ‘yq we obtain the expression 

l/I4 = @7#;+(l_a)@* = $(x, t, U, u(+l)u,+au~, Zi)(CL-O’5)iir+O(~“)+Q(h:). 

whence it can be seen that only when a = 0.5 

tq = O(t”)O(&). 

Since hz < h*+t2 we obtain jP’/ Q M(he+t2). 
As can be seen from (43) Lemma 2 is useful only for symmetrical (with respect to t) schemes 

when CC = 0.5, because when CC + 0.5 the order of approximation of this scheme cannot be increased 
by increasing the smoothness of the solution u(x, t) and the functions k(x, t) and f(x, t, u,p, q). 
For this reason we shall always assume that the conditions of Lemma 2 are satisfied only for the 

schemes CP~zs(a = O-5), and the conditions of Lemma 1 for all schemes & when 0 < c( < 1. We 
shall aiso assume that the conditions of Lemmas 1 and 2 are satisfied in each of the domains 

dr (Y = 0, 1, ,,. . . . , vo) into which the principal domain z is divided by the lines of discontinuity 
I’, of the coefficient k(x, t) (for more details on this see Q 3.2). 

Lemmas I and 2 are also true for scheme (253, and Lemma 1 is true for 
scheme (25,). 

3 2. DIFFERENCE BOUNDARY PROBLEM 

1. DiJJerence boundary problems oj the third kind 

In order to formulate a difference problem corresponding to the boundary 
problem (I) for the differential equation ISU = 0, it is necessary to write the difference 
boundary conditions when x = 0 and x = 1. The conditions of the first kind u (0, t 
= u,(t), ~(1, t) = us(t), considered in [3], can be represented exactly on the differ- 
ence net, if we put ~(0, t) = y,, = u,(t) and ~(1, t) = yN = z+(t); for the function z 
= y--u, where y is the solution of the difference problem and u the solution of the 
problem (I), we obtain the homogeneous boundary conditions z,, = 0, z,~ = 0. Hence 
the error in z for the solution of the first difference boundary problem depends only 
on the approximation error Y’ of the scheme ‘PET. We cannot accurately satisfy 
boundary conditions of the third kind on the difference net. The function z will 
therefore also depend on the error due to approximation of the boundary conditions 
by the difference conditions. The difference boundary conditions must naturally 
have the same order of appro~mation as the scheme itself. Incidentally, direct 
substitution of the derivatives occurring in conditions of the third kind leads to 
difference boundary conditions of the first order of the approximation only. We 
shall illustrate this with an example of a boundary problem of the third kind for an 
ordinary differential equation 

~k~~)~‘)’ = -f(x), O<X<l, (1) 

ku’- olu = ul, x = 0, (2) 

ku’+ 02u = u2, x= 1. (3) 
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Let us examine the case of the boundary condition for x = 0. We shall consider 
the difference boundary condition 

%Y, 0 -fflY0 = % 

and calculate the approximation error 

y = (%%,ll -OIUo)-(k,u;-fJ*uo) = a,uX,,Aou; (k, = k(0) etc) . 

Taking into account that a, = ~~+0.5~~~+~(~z), uX,0 = u~+05hu~+O(h2) we 

find that 
Y = 0.5h (ku’);+ 0 (h2) = 0 (h) . 

Using this expression it is easy to write a difference boundary condition with 
a second order of approximation in the class of solutions u = u(x) of the differential 
equation (1). From (1) we write 

v = -O#rf,+O(k”) 

and consider the difference operator 

~lYX,o--alYo+O’5~flJ = Ul’ (4) 

It follows from the above reasoning that this operator has a second order of 
approximation in the class of solutions of a differentia1 equation satisfying condi- 
tion (2). 

Now let us examine the third boundary problem for (1.1) : 

i%f = (ku’Y+f(x, t, u, 2ku’, U) I- 0, 

If% = kzi’--o,(t)@ = u,(t), x = 0, 

Pu = ku’+cr,(t)u = 242(I), X=1 

(5) 

(6) 

(7) 

i 
here u’ = 2 , zi =: -f$- 

The difference boundary conditions satisfying (6) and (7) can be written directly 
by analogy with (4). 

@)Y = (~~+1’y~-~~y)‘“‘+~5h[~~(0, I, Y, 2ky,., yt)+ 

+(I -a)f(O, T, i, 2&,,J$)] = U?)(f) for x = 0, (8) 

py = (ay~+bey) o - ( ) @5hbf(l, t,y,2ky,-,y;)+ 

+(l-E)f(l, t:Y,2&,Y;)] = Q’(t) for x= 1, (9) 

where ;== t---t (the arguments of the functions k, y, yx, y: will not be indicated). 
We may point out that 2u(+l)y, (or 2ayg) can be written instead of 2ky, (or 2ky,-) 
in (8) and (9) (see section 4). 

We give below some other boundary conditions equivalent to (8) in its order 
of approximation: 

@‘Y = (a”f’Y,-o,Y)~~~+o~5hf(o, P), y’“‘, 2(k,y,)@‘, y,-) = UP), (8,) 

$l’y = (a(+l’y, - Cr1 y) ‘“‘-+-05hf(O, i, 2& ,fi) = z/I”‘. (8,) 
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From the boundary condition (6) we have 

f(0,t,U,2ku’,ic)=f(0,r,u,20~u+2ul,~). 

Instead of 2ky, (or 2~z(+~)yJ in (8) we can write 2o,y+2u,. The boundary condi- 
tion for x = 0 will then have the form 

Ip’y = (ac+1’y,--o,y)c~)+0.5h[af(0,t,y,2~,y+2ul,yi)+ 

+(f--rr)f(O,~,~,2r;1~+2~l,y;-)] = UP’, (8,) 
or 

Z$l)y = (a’+l)y,--~y)(=)+0*5hf(o, t,;,2;,;+2ii,,y,) = u1”‘. (84) 

As already mentioned boundary conditions (8), (S&(83 have the same order 
of approximation. 

We prefer to take the boundary condition in the form (8),, although (8.J, (8,) 
and (8$ are simpler, because it is easier to pass on to the case of a non-linear boundary 
condition of the form 

ku' = X(t,u,ti). 

All the results obtained for condition (8) can be easily adopted to any of the bound- 
ary conditions (8~(84). 

We write the approximation error of the boundary condition 

y1 = Ii% - (Z(l’u)@) 

in the form of a sum 

Yl =(Y,+~p)f=)+~*, 

where 
IlO) 

Y, =a(+1)u,-ku'+0.5hf(0,t,u,2ku,,i), (11) 

~~=0~5h[f(O,t,u,2ku~,ti)--f(0,t,u,2ku,zi)], (12) 

vq = wn*+(l-a)$*, (13) 

Y,* =0*5h[f(O,t,u,2ku,,u,)-f(O,t,u,2ku,,$], (14) 

v:* =0~5h[f(0,;,;,2~z;,,u,-)-f(O,;,~~,,L)]. (15) 

We shall find the condition for z = y--u, where u is the solution of the differ- 
ential equation (5) satisfying the boundary condition I% = u, and y is the net 
function satisfying the condition Zj’)y = u1 (Or). For this purpose we use the identity 

Iil)y - $144 = ---VI . (16) 

Using the mean value theorem we shall have 
- - - 

f(O,t,y,2ky,,y7)-f(O,t,u,2ku,,ui)=~z+~2kz~~~zi, (17) 

f.(O,i,~,z~~~,Yi)-f(o,i,ii,21;ii,,ui)=~;+~2~~~+~z7, (18) 
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where 

ii = u+e1z, p = 2~(%-i-f4z3, 4=Ui+81Zi, 0 < 616 1, 

ii*==ii+e i 2 3 I;* = 2k’(;,+e,ix;,>, 4* = Ui+82Z?_, 0 Q BP 6 1. 

Substituting (17) and (18) in (16) we shah have for z the Iinear boundary condition 

f1 2 = (u(+~)zX - Cf~Z)‘“‘+h&{Z)-ClZ;i= ---VI for x = 0, (1% 

where 

41(r) = Sllz+T~zi+%lz,+aZlzk, (20) 

Taking into account that 

-$$G---mar -g >m>o, 

we find 

where m is a positive constant independent of h. Since the derivatives @/au and 

aflap are &rite, 

l&n/ < M, j&,/ Q M, s, k = 1,2. 

For x = 1 at the other end there is the similar condition 

12z = (az,+a,z) ‘“‘-hq~(Z)+&2Zi= I-T’s for x = 1, 

q&r) = 522z+&lrz+~22z~+~2&. 
(19’) 

The approximation error p12 is determined from formulae similar to (lo)-(15). 
In investigating the order of accuracy of a difference problem corresponding to 

problem (I) we shall require the asymptotic expansion of y1 and y2 when h-t 0 
and T -+ 0. 

LEMMA 3. If’ the jollowing conditions are satis$ed: 

1. The junction $ (0, t , u, p, q) satisfies L~pshitz~s ~ondjtiun j&r p , and af 
as 

(0, t, u, p, q) the condition jbr q 
2. Thejicnctions I?, u”’ satisjj Lipshitz’s condition jbr x in the fixed neighbourhood 

of’ the boundary x = 0 (0 < x -C X, 0 < t < T) 
3. zi(0, t) satisfies Lipshitz’s condition jbr t, 

then the approximation error of’ the boundary condition (8) in the class oj’ s~~~tion~ 
u(x, t) of’ the di@rential equation (5) satisjjing the condition (6) has the jbrm 

v1 = @+O(hz)+O(h3). (221 
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where 

1 +$ (0, t, U, 2ku’, z&W’, = ; 
X 0 (23) 

and if; moreover, $ (0, t, u, p, q) satisfies Lipshitz’s condition jbr t, u, p, and ii (0, t) 

the condition jor t, then 

y1 = Gf“+ 0 (hz”a) + 0 (h3), (24) 
where 

1 

2, lx = 0.5, 
m,= 

1, c( # 0.5. 

Similar expressions can be obtained for Ye. 

The error y1 is determined from formulae (lo)-(15). We shall show that Y.+Y~ = <+0(P). 

From the expansions 

a(+‘) = k+0.5hk’+h2 
(k’)’ 

-$A&‘]+ k A.J~I 

u, = u’+0.5hu”+ f u”‘+o(ha), 

we find 

(25) 

From the relations 

l&---u’ = O(h), a(+%-ku’ = 0*5h(ku’)‘+o(ha), 

VP = @5hV(O, t, u, UC&, Ii)---f(O, t,u, 2ku’, i)] 

it follows that 

= s(O, t, u, 2ku’, li)(ku,-ku’).h+O(hs) 

vp = $0, t, u, 2ku’, li)ku”~,=oh2+O(hs). 

Combining this with (25) we obtain Y,+ vp = &+ 0 (P); yq can also be evaluated without difficulty. 

NOTE. If g satisfies Holder’s condition of the order y > 0.5 for t, u,p and q, then 

91 = Yl’“‘+o(Jrrr+r)+o(h’). 

This calculation is sufficient for the proof of Lemma 4 in 0 3. 

2. Statement oj’ the difference boundary problem 

Having chosen the initial family of homogeneous difference schemes (see B 1.4) 
and written the difference boundary conditions, we can formulate the difference 
boundary problem corresponding to (I) as follows: 

Find a function y = y(x, t) defined on the net D, satisfying the difference equation 

%kr =(ay;)~)+crg,(x,t,y,a(+l)y,+ay,,Y_i)+ 

+(l--)~(~,;,~,Zi(+‘)~,+~~~y~) =O on B, (26) 
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the boundary conditions 

@‘y = ul”‘@, x = 0, (8) 

rpy = z&)(t) , x= I, (9) 

and the initial condition 

Y (x, 0) = &(X) (27) 

The continuity conditions (1.5) are absent in this formulation because we are 
~onside~ng a through computation scheme in which the lines of di~ontinuity of the 
coefficient k(x, t) are not explicitly separated. 

Because of conditions (1.6) and (1.7), and the normalization and monotonization 
conditions of pattern functionals (see 0 1.5), the following inequalities must be 
satisfied 

M>a(x,t)~m>0, O<m<--‘P<M 
aq‘ ’ Islam, l~;~M, (28) 

a, 2 0 (J2 > 0, oz+a, > m > 0. (29) 

We shall call the difference problem defined by the conditions (2(i), (S), (9), 
(27)-(29), the problem (II). 

3. D#erence boundary problem for the solution error 

To investigate the problem of the convergence and accuracy of the solution 
y(x, t) of problem (II) as compared with the solution u = u(x, t) of problem (I) it 
is necessary to evaluate the net function z = y--u in terms of the approximation 
errors ul, vl and st,. Taking into account the results obtained in 8 1.6 and 5 1.2, we 
see that Z(X, t) is a solution of the foIlowing difference boundary problems: 

(a&‘+ Q(z) - QZ; = - Y , (30) 

llz = (a(+“!z, -b~z)(“)+hq,(z)-~~z,-=~,, x= 0. (31) 

l,z = (az~+o~z)f”)-~q,(z)+~~zi = --_yZ, x= 1. (32) 

z(x, 0) = 0, (33) 
where 

Q(z) = bllz,+b,,i,+bszz,+b,,i,fd,z+d,i, (34) 

!&(z) = tr,lz+r~zi+~~,,z,+i2,,i,)Ix~*, 

%(Z) = (mz+5;li+;lzzz;;+~~~~~)/,,1. 1 
(35) 

The coefficients Q, a, bsk, d,(s, k = f ,2), defined by formulae (1.35), and the 
coefficients &,, Csk, Ask@, k = 1,2) defined by formulae (20 j(21) satisfy the con- 
ditions 

O<m<e<M, O<m,<a<MM, IL1 < M, Id,/ < M, 
~5~ 2 mh > 0, o, 2 0, ox+ok 2= m > 0, IL/ Q M, 

J 

(36) 

l&l < M (s,k = 1,2). 

The problem defined by (30)-(36) will be called problem (III). 
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Here Y is the approximation error of the scheme 9$,, v, and v2 are the approxima- 
tion errors of the boundary conditions in the class of solutions of the differential 
equation (1.1). These functions are defined by (1.36)-(1.41) and (lo)-(15). 

4. Solution of dfference equations 

We introduce a computation scheme for the solution of the difference problem (II) 

5%~ = [(ay-,lx+b(~,t)(~(+~)y,+ayj;)--d(~.t)y+~,(x,t)(b)-_(e(x.t))~=).~~ = 0, 

#)y = &M$’ for x=1, ) 
(37) 

up’ for x = 0, y(x, 0) = E&Q for t = 0, 

corresponding to problem (I) for the linear equation (1.11). Assuming that q(x, t) > 0 and hence, 
d(x, t) > 0, we rewrite the difference equations and the boundary conditions (37) in the form 

We shall not write the expression for pL,. 
Because of the conditions or > 0, az > 0, a,-+~, > m > 0, E1 > mh > 0, 6, > mh > 0, 

q > 0 one of two cases is possible (when 7i > 0, see (43)): 

l)O<%<l. 06X,< 1; 2) O<x,<l, O=G%<l. (40) 

The solution of the problem is known at the moment t-t. Hence the right-hand side of F* and 
the coefficients xl, x2, p1 and ,u~ are known while determining the values of y = y(x, t) on a new 
row of t. Consequently all the calculations on each row are reduced to a solution of the difference 
boundary problem 

AiYi-,-CtYi+&yr+l= --Ff, O<i<N, (41) 

Yo = xlYl+l-%, YN = “d’N-1+/h, (42) 
where 

Fi = h*FT, Ai = ai(l-O*fihbi), Bi = ct+r(l+0.5hbi), 

Ci = Ai+Bi+h*&, Di = di+@r’jaz, 

ai = afxi2 t)* bi = b(xi. t) etc. 

The problem defined by (41)-(42) can be solved if 

Ai > 0, Bi > 0, Di>Oa (43) 

The conditions Ai > 0, & > 0 will be satisfied if I-05 hbi > 0 or h < ho = min Wlbil, 
i.e. if the x-net is sufliciently fine. If bi = 0, then the condition h 4 hc disappears. 

The difference boundary problem defined by (41)-(42) the coefficients of which satisfy the 
condition (43), and hence the conditions (40), can be solved either by one of the iterative methods, 
or the non-iterative method of successive substitution widely used in recent years in computation 
work (see [17]-[19], [2], [ll]). We shall consider this method in greater detail. 
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1. The dispersive formulae for the right-hand side are 

+ B 
w+‘= Bi+(l-ai)Ai+h*D1 ’ 

l<i<N, a1 = Xl. 

%+I = T(AiBi+Fi), 1 < i-c N, /% = PI, (45) 

Pi = ai+lYi+,+Pi+l9 O<i<N. YN = OL~+~*BNY(l--X*~N). (46) 

The arrows + and t indicate the direction of computation: --) from i to i+ 1, + from i+ 1 to i. 
Formulae (44)-(46) can be derived by using either the factorization method [17J, or the exclu- 

sion method (see [18], [19]) described below. The solution of our problem will be investigated in 
the form (46), where ai and pi are coefficients to be determined. We write Yiml = atYi+Bi in 
equation (41): 

(Aimi-Ci)Yi+BiYi+l+AiBi+Fi = 0; 

then, using (46) we eliminate Yi: 

[(Aiai--Ci)ai+,+Bilyi+l+[(Aiai-Ci)Bi+l+(AiBi+Fi)l = 0. 

Formulae (44) and (45) are obtained from the condition that the expressions in square brackets 
are equal to zero. The initial conditions a1 = x 1, B1 = ,u~ follow from the conditions Y,, = x,Y,+ 
+,u> = ulY,+B1, the expression for YN (from the formula YN-~ = CQJYN + BN and the boundary 
condition YN = XZYN_l+,UZ after eliminating YNml. 

Computations according to the formulae (44)-(46) are stable if conditions (40) and (43) are 
satisfied. All cl{ < 1 and aN < 1, if x1 < 1, and aN = 1, if x1 = 1, Di = 0. Therefore the expression 
1 -X2 UN is always positive. 

2. The dispersive formulae for the left-hand side are: 

F;:=- Ai 
Ai+(I-ti+l)Bi+h’Di ’ 

l<i<N, tN = %, 

; = &By.+ +F.) 
Ai “I ” 

l<i<N, r]N = uan 

;+I = Si+lYi+rli+l, O<i<N, Yo = (PI+%%Y(l--~lEl). (49) 

3. Cross-dispersive method. Sometimes, especially in manual multiplication (or when the 
internal store of the computer is small) it is convenient to use the cross-dispersive method (shuttle 
method) in which the computation is carried out independently by formulae (44), (45) and (47), 
(48) up to a certain i = n. The continuity conditions determine Y, and computation is continued 
on the right from the point i = n from formula (49) and, independently, on the left from formula 
(46). Suppose the quantities a,, + 1, @,, + 1, 5, + 1 and T,, + 1 have been found. Then we shall have 

Yn = ~n+*Yn+l+Pn+l, Y,+l= cn+lYn+%+1. 

Eliminating Y,+, we find 

f%+1+ &l+1rln+1 
“= 1-a,+l%+, * 

Knowing y., all yi for i < n can be found from formula (46), and all yi for i > n from for- 
mula (49). 

Various iterative methods are generally used for solving non-linear difference equations and 
the dispersive method is used to compute the iterations. We cannot deal with this question here 
(see, for example, [lo], [ll] etc.). Scheme coefficients independent of the required function on the 
preceding line are sometimes taken to avoid iterations, so that a linear equation may be obtained 
for Y on the new row. In this case of course a scheme of the first order of approximation with 
respect to r is obtained. 
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0 3. ACCURACY OF THROUGH COMPUTATION SCHEMES 

1. Evaluation of the solution oj problem (III) 

In 0 2 the problem of the order of accuracy of a solution of problem (II) was 
reduced to an estimation of the solution of problem (III) for z = y--u by using 

the approximation errors Y, y1 and Ye. 
The solution of problem (III) was evaluated with a less general formulation in 

[4] and [5]. 

THEOREM 1. Ij the following conditions are satisfied 

a<M, (a;\ < M, o, < M, :(o,)i.l < M, S = 1,2, (1) 

0.5 < a < 1, (2) 

then j6r the solution oj’problem (III) with the initial conditions 

zl,=o = Z(X, 0) 

the following inequality is true when z < t,, is suJiciently small 

t,=t 

IIz(x, t$l < [C +7(x, ty;] 
8 t-fi(llz(x9 t)ll%+‘Izf(x, fN2) Q 

t’=I 

t,=t 

where M and G are positive constants independent of h and z, 

ilz(x7 t)llr = Ilz(x, t)ll,+Y,lz(O9 t)l+yzlz(L t‘)l7 

ys=O for os=O, ys= 1 for o,>m>O, 

ilytx, 912 = I[p(x, t)llaS-I~:(t)l+:~z*(f>l~ 

(4) 

(5) 

v:(t) = 1 v,(t) for C, > mh >0, 
dh (s = 1,219 

v:(t) = vS(t) for C, > m > 0. 

Expression (3) is true for the first boundary problem (~(0, t) = ~(1, t) = 0) if we 
formally put Y, -_= 0, s = 1,2. 

Theorem 1 was proved in [4], [5] fdr the case & r. 0,&k = O(s, k = 1,2), i.e. for the bound- 
ary conditions 

1:z = (~+‘)z,-o,r)(~‘)-C,z~ = Y, ( x =o, 

I;2 = (azi+o,z)(=)+Cnzi = -Y*, 
(6) 

x= 1, 1 

and also for the operators 

Q(z) = b,z,.+b&+~&r+&, r,. = 0.5(ZXfZJ (7) 

and 

Q(z) = b,z;+b,;;;+d,z+&. (8) 

The method of deriving (3) proposed in [5] is perfectly suitable in our case. The modifications 
necessary because the operator Q(r) is more complex are so insignificant that we shall not discuss 
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them. On replacing conditions (6) by conditions (2.31) and (2.32) on the right-hand side of identity 
(2.11) of [5] we have the additional term 

ii = 7h(tllZO+Cl(~O+~~IZx,0+~la~~x,0)Z~,0+~~(~**z~+ 

$-5al~~+l,,zlx,~+j(sl~~,~)li N (zo = z(o, t), zN = Z(l, t> etc.). 

With the arguments usual for the procedure described in [4] we obtain the expression 

- t * 
IR[ Q -(&I$ ,+E,zf N)+Mr(z+z. 

8 ’ ’ 

The main integral inequality (2.17) from [5] and all the subsequent calculations remain unchanged. 

Evaluation of the right-hand side in terms of the norm /Y[I, is too rough for 
proving the convergence of the solution of problem (II) when the heat-conduction 
coefficient k(x, t) is discontinuous. An improved estimate was obtained in [5] for 
solving problem (III) with the additional assumptions 

y = F(I), Y1 = Yj”‘, vg = q’, (9) 

Q<MM, [1< M, [S < M (10) 

and the norms 

IlVllr, = II1yllP+l~~l+I’yzI~ llyl/j5*= ilvll4*+I~1l+I4. (11) 

THEOREM 2. rf the conditions (l), (2), (9) and (10) are satisfied, then the jbllowing 

a priori estimate is true jor the solution oj’problem (III) when t < z,, is suficiently 
small 

Ilz(x, t)llo G ~(llF(~9 oN5+ljY(~, OIL*+ 
v=t 

+[~~(llw t’>ll,*+Iligx, t%.,q’)+Jqy zl/ij(x, t)ll$, (12) 
V=* f’=T 

where _%f = 0 when b, = b,, = b,, = b,, = 0. 

This theorem corresponds to Theorem 6 of [5] with the qualifications made above regarding 
Q (z) and the boundary conditions. To prove it the solution of problem (III) must be written in 
the form of the sum z = er+w, where w is the solution of the “stationary” problem 

(aw;), = - y > alw,,,--a,w” = --81, UNW;,N+OaWN = 82. 

We then obtain the following conditions for ZJ 

(uv,)$)+Q(w)-ev,= -Y*, Y* = Q(w)-e(w,), 

1x7) = v: , v: = ~1WT,,-o.5h(C11wo+C,1~;O+AllWX,(L+~12~X,0), 

I,v = +a*, va* = cpwi N -0.5h(5‘,,~~+521~~+Azaw;,~+iia'w;,~). 

TO evahate the function V(X, t) we use Theorem 1. Taking account of the expression obtained 
in 8 1 of [5], 

llwllo < Mlvllll*, llwtllo G Mllylls*, Iwwl G WFIIs*9 

Iwj;,,i t; Mli+l16*, Iiwr;ll’d Q Mll& 
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we find 

NOTE. It can be seen from (12) that, when bsk = 0 (s, k = 1,2) and !&(x, 0) = 0, the in- 
e-quality (lZ2) contains only 11~ IIs* and l$Gs IIp. 

2. Properties oj’ the solution and coe@icients oj' problem (Z) 

To simplify the formulation of the following theorems we shall always assume 
that the solution of problem (I) and the functions in the differential equation 
9% = 0 and the boundary conditions have differential properties. (over the entire 

domain n or in each of the domains A, = (q,(t) < x <r,+l(t), 0 < t < T), v 
= 0, 1,2, . . . , v,J, which ensure the maximum order of approximation of the scheme 
and the difference boundary conditions. These conditions will be formulated below. 

It is assumed everywhere that the function j(x, t, u, p, q) has finite derivatives 

-!$- , -f$, g for all values of the arguments (see (1.6)). 

The functions k(x, t) and j(x, t, u, p, q) have discontinuities of the first kind 
with respect to the variables (x, t) on a finite number of curves r,(x = qr(t), 

v= 1,2, . . . , u,,), which divide the domain ,@ into subdomains A,. The following 

notations will be used 

k,, v = k(rl,(r)-OO, 0, k, y = k(r,(t)+O, 0, 

fn,, = f(rAt)-- 0, t, u(%(t), t), 2(ku’),,,, L.J etc. 

If a function a(x, t) is considered in the closed domain 

3, = (%(0 < x < $+l(f), 0 < t 6 T), 

it is assumed that a(q,(t), t) = q,,,., v(q,+l(t), t) = o,,,+~. 

The curve r, intersects each of the straight lines t = it, j = 0, 1, . . . , at the 
point x = q.(t) = x,,~ +O,h, where 0 < 13. < 1, x,,, = n, h, n, is an integer, (x,, , t) 

is a point of the net Q. The numbers n, and 0,, generally speaking, are functions 
of h and t, n, =i n,(h, t) and 8, = B,(h, t). If the line r, is parallel to the t-axis 
(tied discontinuity), n, and 0, will depend only on h; n, = n, (h), 8, = B,(h). 

In this paper only fixed discontinuities are considered, i.e. 

X=r.=const.(y=1,2 ,..., YJ forO<t<T. 

We shall assume: 
(K,). The conditions of lemmas 1 and 2 are satisfied in each of the domains 

TV. Then the approximation error of the scheme LP;~ in the class of solutions of 
the equation 9% = 0 

!J’ 0 (ha)+ 0 (~“‘a), 
1, a = 0.5. 

= where m, = 
2 9 a# 0.5, 

at all points of the net G, except the points 

(X”. Y t> and (X”V+l, r), V = 1,2, . . ..ql. t=r,2r ,..., Lt=T. 
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The asymptotic order YY when h + 0 and z+ 0 at the points mentioned is exam- 
ined in section 4. 

(IQ. The conditions of Lemma 3 by virtue of which the appro~mation errors 
of the boundary conditions have the order 

Y, = &VP+ 0 (h?Q) + 0 (P) 9 s=1,2, (14) 

where GS is determined from formula (2.23), are satisfied. 
(KS). Lipschitz’s condition is satisfied by the functions ad and CX#) for t when 

0 < t f 2’ and by k(x, t), in each of the domains &. 
(K$. The limiting values of the functions 

k, k’, k”, u’, u”, u”’ 

satisfy Lipshitz’s condition for t along each of the lines P,.(u = 0, 1, . . . , v,,, u,+ 1) 

and the limiting value of the function ~~u/~~~t only aIong the internal lines for 
Y = I, 2, . . . , v,. 

For the smooth function k (x, t) and J’ (x, t, u, p, q) condition (K,) is sat- 
isfied over the entire domain z and condition (IQ only when Y = 0 (X = 0) 
and Y = v0 + 1 (x= 1). 

It follows from these conditions that the fo~owing inequalities are true for the 
coefficients of problem (III) 

O<mh<d's&Mh, O<m,<e<M, O<m<a<M, O=Goa,(f)<M, 
(15) 

l&j < MS !k/ < M, s, k = 1,2, (16) 

/+I < M> /(o&i < M, (17) 

Theorems 1 and 2 can therefore be applied when 05 < a & 1. 

3. Ejj&ct oj’ the approximation error of’ boundary conditions on the accuracy 
oj’ solution of’ the di#erence problem 

The solution of problem (III) can be written as the sum of two partial solutions 
z = .z+z,, where z, is a solution of the problem with the homogeneous boundary 
condition (Ye = 0, Ye = 0), and z2 is a solution of problem (III) with a homogeous 
equation (Y = 0). 

As mentioned in section 2, we are considering fixed discontinuities only of the 
coefficient k(x, t). 

LEMMA 4. When z =C z, is su~ciently small the following expression is true jtir 
the error z2 oj’ the solution oj’problem (II) b ecause of’ the approximation error of 
boundary conditions 

I]z,(x, t)llo < M(hZ++m~), if 0.5 < a < I _ (18) 

To prove Lemma 4 the solution z, of problem (III) has to be evaluated for 
!P= 0. We write Y, and correspondingly 2, in the form 

Y, = Y!l) + Y$21, z2 = zp” + zp’ $1 = $9 s ) 

1, r= p'O'h2 
s l 

vi2) = 0 (hf”=) +0 (h3), 
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where ~1”) is determined from formula (2.23) and depends on the values k, k’, k”, 
uf, u”, 7.J”) ic when x = 0 (there is a similar expression for 2ip). 

Using Theorem 1 we fmd 

IIzp~lo < M(pL-Q+hj. (19) 

To evaluate 11z$J) Ilo we use Theorem 2, which gives 

]]#‘ila f ~~~~~~~ q’(ql+ / “P’(t’I] + j(Vf)7_/ + l(~~o))(t’)~]] t- 

+ / @$“(O)l+ j P&Of(O)]} h2, 

Since Iv$~)~ and I(PFO’)i 1 are bounded it follows that 

~~z~~P(x, q, 4 Mh2. 

Using (19) we obtain (18). 

4. Accuracy in the class of’ continuous coeficients 

Now let us suppose that the coefficients k(x, t) and j(x, t, u, p, q) do not have 
lines of discontinuity (Q = 0) and the conditions formulated in section 2 are satis- 

fied over the entire domain z Then 

y = o(h’)+o(Z”Q) at all points of the net Q (20) 

THEOREM 3. When h and z independently tend towards 0 the solution y oj’problem 
(II) unijbrmly converges to the solution u(x, t) oj’problem (I), so that when z < t,, 
the jtillowing inequality is true 

~~y---u~~, < M(h2++) for 0.5 < a < 1, (21) 

if condition (20) is satisfied. 
To prove Theorem 3 it is sufficient to evaluate q-the solution of problem 

(III) when y1 EGG 0, v2 E O-from Theorem 1 and then use Lemma 4. 
Noting that II&x, t)& = 0(h2)+O(zma) and using Theorem 1, we find 

//Z&C Q/lo < Mlh2++=) - 

5. Approximation error in the neighbourhood of’ a line of’ discontinuity 

Let the functions k(x, t) and j (x, t, u, p, q) and their derivatives 5, f- , and g 

have discontinuities of the first kind with respect to (x, t) on a certain curve x = q,(t) 
belonging to the family (FVf (see 5 1.2). We shall investigate the asymptotic behav- 

iour of the approximation error Y of the scheme Pph”, at the points (xnV, t) and 

(%+P t) of the net Q. 

To simplify the notation we shall omit the index v and write 7, n, 0 instead 
of Q,, n, and 8,, setting q = x,+Rh, x, = nh, 0 < 0 < 1 (see section 2). The net 
function 

y = @.+Yp+Y,P+Y, (22) 

is determined from formulae (1.36)-( 1.41). 



Homogeneous difference schemes 49 

The expansion for Y4 at the points x = x, and x = x,+~ was obtained in [I]: 

h?j%,fl = 0 (l), kL,Pl+1= 0 (1) f %,n+Y@,“+l = Q(l) 

for any scheme of the initial family. For the best canonical scheme 
pattern functional 

0.6 

Q-441 = p(Ws s 
-0.6 

we have 

(23) 

(1.28) with the 

(24) 

Wa, n - O(l), yo.n+y..n+1= (0.5--8)[ku'):,-(ku');,l$O(h). 

Now let us consider the error wp at x = x, and x = x,.,.~ 

+%%&-2(~u’):). 

(25) 

(~,.,~,,.+,-t~"+l~,"-2(~~'~"+,~ 

where GWWn and GW%h are the values of the derivative &@p for certain 

mean values pn and &.l of the ar~ment p; thus, for example, 

pn = 2(ku’),+8,(a,+,u,,,+a,u;,.-2(ku’)3, 0 Q 0, Q 1. 

It follows from the expansions u,,, = &&+(l--O)u~+O(h), ~2,” = &+0(h) 

u,,,+~ = &+0(h), a, = k,+O(h), a,.+, = k,+O(h) that: 

a n+lu,,,+anu~,,-2(ku’)~ = 

a,,,u,,,+,+a,+,u,,,-22(ku’),+, 
where W = k, z& = k, u& (see (1.5)) 

Hence 

w p,n = O(l), Vp,n+l = O(l) 

in the initial class of schemes, and for the best canonical 

YJe,n= OWY YJp,n+1= ova, 

because in this case 

scheme 

cm 

(27) 

a,,, ( &+~;+)-l = O(h). 

It can be easily seen that the following lemma is true. 

LEMMA 5. If’ q = const. when 0 < t < T (Jixed discontinuity) and the function 

s (x, t, u, p, q) ~atisfie ~~~h~tz’~ condjtjon for t, u, p and q, then 

I(y,,,)i I < Mh”-“9 Iwp,n+di I < Mh”-‘9 (28) 

where 1c = 1 fbr the entire class of’initial schemes, x = 2 fbr the scheme (24). 
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We now find out the value of the expression 

prp = FUG+!-sh, 6 u, 2ktt’, t;] -f(X: t, tt, 2kn’ 2) f-0-S =G S < oq. 

at the points x = x,, and x = x, fl. 
It will be assumed that the discontinuity is fixed, i.e. 7 = const. when 0 < t < T. 

Because of Note 1 (4 1.1) the derivative u is continuous when x = r(& = 2;,). 
Two cases are possible: 6 < 0.5 and 6 > 0.5. We carry out the reasoning 

assuming that @ < 0.5. Since the discontinuity is outside the interval (x,+O*51t, 
x,+,+0*5@, we find directly that F’+,, #+i = 0(&P for any initial scheme. 

Next we consider the best scheme (24), for which 

0.5 

Yf#,n = s f( x,I_sh,t,z(,,2(ku'),,~,)ds--f(x,,t,u,,2(ku'),,ic,), (29) 
-0.6 

and assume that the discontinuity is fixed. 
Expanding the function under the integral in the neighbourhood of the point 

x =r] we find that: 
1) If s c 8, then 

2) If s > 8, then 

The expansion for the second term in (29) is obtained from formula (30) when 
s = 0. ~ubstitu~ng these expressions in (29) we ftnd 

Yq%n I- (0~5---B)(&-f~>+ 

To expand v+,,= for an arbitrary scheme of the initial family we use formulae (30) 
and (31), writing the principal terms only: 

where 
fCx,-S& t,%l* 2(ku’),,ir,) =I’*(s)SO(& (33) 

Then 

f*(s) = ; I n 

1; ;> 
* 

YQ,tl =F[f*(s)l-fn+"(~> == 0(1)* (34) 
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Collecting all the results we obtain the following expansion in powers of h for 

Y),, and yfn+l: 

q% = (~+~~+~~~)+~(~2) = &+O(h*) QfJ = %-tWpfWq?), (35) 

Yn+Yn+l = (Yo+Yl~)+~w) = G”+‘tOn+l)+wZ), (36) 

where ,B_1 depends on the limiting values of the function k, u’ of the left and right 
on the lines x = q; ,BO and y0 depend on the limiting values of k, k’, u’, u“, PI; y, 
depends on the limiting values of k, k’, k”, u’, u“, u”‘, ti’. 

/?_1, BO, y,,, /?I and y1 satisfy Lipshitz’s conditions for all the arguments. For 
the best canonical scheme (24) 

fgL = 0, yo = (05--)[(9q,-(%)JJ = 0. 

the following lemma is then proved automatically. 

LEMMA 6. Ij’ k(x, t) and f (x, t, u, p, q) have discontinuities of’ the first kind on 
the straight line x = q = const. and all the conditions mentioned above (in sections 2 
and 5 ) are juI$lled then 

h$ = 0 (hX-‘), &,-G&l = O(h”-I), 

h @,,)i_ = 0 (h”-l), @,+Yn+dr= OVV, } 
(37) 

where it = 1 jor the entire class oj’ initial schemes, x = 2 for the scheme (24). 
Since ic is continuous for x = q in the case of a fixed discontinuity, 

Ye = 0 (z”9 at all points of the net C2 

If the discontinuity is moving, then ir, # i and y0 # 0 for scheme (24) also 
(condition /?-1 = 0 for scheme (24) is always satisfied). 

NOTE. As the above arguments show, if a line of discontinuity passes through the points (x,, t) 
or (x,, + 1, t) of the net 52 (6 = 0 or 8 = 1) and the function /(x, t, u, p, q) is continuous when x = q 
then for any initial scheme 

v7, = O(M, ?G+,+, = O(h). 

If however the point x = r] is irrational, then 6 must also be irrational, i.e. in this case the condition 
0 = 0 or 0 = 1 cannot be realized for any h = l/N. 

6. Accuracy in the class of’ coeficients having fixed discontinuities 

We shall now evaluate the order of accuracy of the difference problem (II), 
assuming that k(x, t) and j(x, 1, u, p, q) have discontinuities of the first kind on 
the straight lines x = qr = const. (u = 1,2, . . . , ~3, 0 < t < T. Here Y must be 
written as a sum 

where 

6(x, l) is Kronecker’s symbol 

!P = Yl+Ya, 

* PY = Yn,*G(x,x,Y)+yn”+*8(x,xn,+z)t 

(W, 6) = 0 when x # E, SO, 6) = 1). 

(39) 

W) 
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The following expression is true for the function va at all points of the net Q 

YE, = ~(~~~~u(~)~a). (41) 

Expressions for &, and @nV+l are obtained from formulae (35) and (36). 

Since the effect of boundary conditions has been taken into account by Lemma 4, 
it remains to find an expression for the function z, which is a solution of the problem 

(az;;)~‘+Q(z)-~z~= -Y, 

‘&z=O for’xz7&O, l&z =O for x=1, z=O fort=O. t 
(42) 

In accordance with (39) we write 

21 = ZlLtZlat 

where z,, is a solution of the problem (42) with the right-hand side of Yr, and al% 

a solution with the right-hand side of Yz. Noting that \\!Fs!iz = U(~)~~~(~Q) 

and using Theorem I, we find 

(44) 

.e=x 

(4x9 t) = 

Substituting expression (44) for @@ we fmd 

1 

o, X(&l, 

Er(x,t) = G”, X%X”, 

MG,+G+1), X > X” . 

In particular, JA(x~_~, t) = h(ij,+W,+& Therefore 

!(V. 111 = h i%zt%1/ + 
Losing (46) we find 
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lIY*llr* = IIPlll+j(Y*~ l>l G ~%nl+2Ily”+Fn+II~~ 

ll~F11~. < hBI(Wn)~I+2hl(Y.+Pn+l)ti. 

(45) follows from this and inequality (12). 
Because of Lemma 7 we have for zll 

\jz&, 011, < k& (48) 
and consequently 

1/z&, t)ljo < M(h++z”=). (49) 

This result is used to prove the following theorem. 

THEOREM 4. Ijk (x, t) and j’ (x, t, u, p, q) have discontinuities oj’ the$rst kind on 
a finite number of’ straight lines x = qV = const., v = 1, 2, . . . , v,, and all the conditions 
mentioned above (in sections 2 and 5) are satisjied, then the solution y(x, t) oj’ the 

difference problem (II) converges unijormly to the solution u(x, t) oj’problem (I) when 
h and t tend independently towards 0. Thus jor any scheme flz oj’the initial jamily 
the jollowing expression is true when t < to is suficiently small 

IIy-ullo < M(hf+ama) for 0.5 Q a < 1 (50) 

and jor the best canonical scheme (24) 

I/Y--ujl, < M(h’+t”$ (51) 

To prove this theorem it is sufficient to evaluate the function z~(x, t) from set- 

tion 3 and use Lemma 4. 

REMARKS 

1. The solution of problem (II) for an arbitrary difference scheme P:, of the 
initial family in a class of discontinuous coefficients k(x, t) converges under much 

less rigorous conditions: 1) k, k’, j(x, t, u, p, q), u”, zi are continuous in d, (v 

= 0, 1, . . . , v,,), 2) k, u’ satisfy Lipshitz’s condition for t along r,, 3) k(x, t) in 0, 
and o,(t) when 0 < t < T satisfy Lipshitz’s condition for t. Under these conditions 

IIY-ullo < eo(h)+Qo(r), 

where PO(h) + 0 when h -+ 0 and eO(r) --f 0 when r+ 0. 
2. To simplify the treatment only the conditions sufficient for ensuring the 

expressions obtained above are formulated. Some of the requirements imposed 
on these solutions u(x, t) and the coefficients of problem (I) can be relaxed. Thus, 
for example, Theorem 4 remains valid without the requirement that the limiting 
values of the functions k”, u”‘, u’ on the straight lines f,(v = 1, 2, . . . , vo) should 
satisfy Lipshitz’s condition for t. 

3. If -$- (x, t, u,p, q) = 0 and one of the following conditions is satisfied: 1) u(x, 0) = zi (x, 0) 
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= 0.2) The heat-conduction coefficient k is independent oft, then instead of (50)-(51) the following 

inequality 

Jb-uJfo < ~@X+~m=l, 
is satisfied, i.e. inthe class of discontinuous coefficients scheme (24) has the same order of accuracy 

as in the class of small coefficients k(x, t) and f(x, t, u, p, q) of the equation gu = 0. 
4. Theorem 4 is also true for the first boundary problem (~(0, t) = u,(t), ~(1, t) = u*(t)). In 

particular, the corresponding results of [3] for the linear equation of heat-conduction follow from 

this. For a four-point scheme @t)(c~ = 1) Theorem 4 can be made more rigorous by using special 
a priori estimates which will be considered separately. 

5. Differential difference equations obtained by Rothe’s method and the method of straight 
lines are investigated similarly. 

A. 

In conclusion the author takes this opportunity to express his gratitude to 
N. Tikhonov for discussing the results obtained. 
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