ON A HIGH-ACCURACY DIFFERENCE SCHEME FOR
AN ELLIPTIC EQUATION WITH SEVERAL
SPACE VARIABLES*

A.A. SAMARSKII and V.B. ANDREYEV
(Moscow)

(Received 21 June 1963)

1. Suppose that in the region Dy, = {0 <z, <1,a=1,..., p} we are
looking for a solution to the differential equation

»
=S7 4= — = %u
Lu = Z_‘,l L.u f(z), L. Pct (1)

which satisfies the condition
ul, = g (2) 2

on the boundary . Let on = {z; = (iyk, ish, ..., ih) =D} be a

square net with step h = 1/N; and let y be the boundary of the net .
The numerical solution of the problem (1)-(2) is usually found with the
use of the difference scheme

Ay+f@ =0, y| =g, (3)
where
»
A= 2 Aq, Aay = Yxex, (4)
a=}

(see [1] for the notation). This scheme gives second order accuracy.
There are many iterative methods for solving the problem (3), and of
these we have picked out those used in [2]-{8] which give the fastest
rate of convergence. Without going into detail about any one method we
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note that the methods of [2]-[4] are applicable only for a parallelepipec
and for p =2 or p =3, and {6]-[8] for a few more complicated regions
and (6] for p =2 (8] for arbitrary p. The paper (5] generalises [A..
[3] for some wider problems.

2. To find the numerical solution of the problem (1)-{(2) we use the
scheme

, L
Ay =Ay + ?22} Adbgy = — 9(2),  ylh=8 ©)
a=18>

where

9@ =f@=)+". (6)

This scheme has fourth order approximation in the class of sufficiently
smooth solutions of (1), so that

v=Au+o=0(0. @

It is not difficult to show that the scheme (5) has fourth order accu-
racy. Let us introduce the scalar products (see [1]):

M y) =2 ymh®,  (Gnle= 2 yinek?, (8)
wp Bh+¢

and the norms:
Inl=Vmn. Inz =y %] - (9)

Let u be the solution of the problem (1)-(2), and y the solution of prob-
lem (5). For their difference z =y - u we obtain

Az = —1, zly =0, (10)

Making a scalar multiplication of this equation by z we write down the
energy identity (see [1]):

L , P
=522 Pt I=3 ][z (11)
a==1 B>a A==l
We use the obvious inequalities:
i Al —
leP<gl T3 ezl <EFIL

(12)
(9 2 <I2I] <7 T I<eod + g5 0P
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where co is an arbitrary positive constant. We insert these estimates in
(11) and choose cqg correspondingly. We then obtain

' 3
12l < Mp|¥|, where Mp=—m—, p<3. (13)

We have thus proved the following theorem.
Theorem 1. If the condition

Iv] < M4, (14)

is satisfied then the difference scheme (5) for p<3 converges in the
mean at a rate O(h*) so that

Iy — ul < MRS, M'= M-M,, (15)
where M is a positive constant which does not depend on h.

Note 1. If instead of (1) we consider the equation

Iu=Lu—g(@Du=—f(2), 0<,<q(a)y ulp=g(a) Y}
then it is easy to see that the solution of the problem
Ay—dy+o(z)=0, yl,=¢g), (5"

where
h’
d(z) = ¢ (=) + 13 Ag (),

converges in the mean at a rate O(h*) to the solution of the problem
(1') for p = 4 also.

3. Let us examine the following iterative scheme for the approximate
solution of problem (5) for p = 2, 3:

2 L4 v
ot =Av+ 2SS AAgr o, vl =g (), v(z,0)=2z), (16)

a=18>a

where » = p™ is the (n + 1)-th iteration, » = o™, vy = (v — vS/t,.;
Tn >0 is an iterative parameter to be chosen later. The initial value

v (z,0) = »® (z) is determined by the choice of the zero iteration. Let
us construct two one-dimensional alternating direction algorithms for
the numerical solution of problem (16).

A. We insert Av = Av + TAv; in (16) and, following (6], replace
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the operator (£ — tA) where E is the unit operator by the operator 4,
where

A=IPIA¢, 4, = E — tA,.

a=]

Then instead of (16) we have the scheme
Adv=[A+WN]v+19 vh=g o0 =00(, {7

which we shall call the generating scheme, Introducing intermediate

values v(1), ..., V(p) T v We reduce the solution of problem (5) to the
solution of p one-dimensional problems:
Ay = [A+ 1A' + 19, (18)

Ag¥(@) = Va—1)» a=2,...,p; V(a) = Aa+1 ... 4pg for z, =0,1.

B. Putting w = v;, we rewrite the generating scheme in the fomm
Aw = A'v+9, wl=0. (19)
From this we have the alternating direction algorithm
Agpog) =A% + P, (20)
AaWio) = Wa—1)y a=2,.., p; W =0Iforz =01,
v=1v+ TW(p)+
To go from ¥ to v during the computation we must store the two layers:

v and W), &« = 1,2, ..., p. However this algorithm requires fewer oper-

ations than (18) (thus it is not necessary to calculate AU) and, further-
more, the functions w(,) always satisfy zero boundary conditionms. For

p =2 by analogy with {2] we can use an algorithm which does not contain
the product A,A,E:

v h’ v
Ay = Ap + (14 5) A + o, @1
hi v v
Awg) = wq) — G—Tsz’ v = ¥ 4+ Twy); Wy =0, o =0, 1.
Each of the equations Aaw(,}=q;,, where @, is a given function can be

solved using the formulae of one-dimensional successive substitution
(see [9], pp. 283-309). All the computing algorithms which we have
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mentioned give the same generating scheme (17) as we can see by eliminat-
ing the intermediate values of ¥ OF Wy, a=1,...,p— 1.

4. We show that the iterations defined on scheme (17) converge what-
ever the choice of the zero iteration v {z) and of the sequence {Tn}
satisfying the condition 0 <{e¢; < Ta < ¢y, Wwhere c; and cy are con-

stants which do pot depend on the iteration number n. Following [3] we
give a method of choosing {T,)} for which the rate of convergence of the
iterations will be "sufficiently fast". We obtain the following condi-
tions for the difference z = v - y, where y is the solution of the initial
problem (5), v = v'") is the solution of problem (17):

Az = A’z zly = 0, z (z, 0) = 20 () = pO—y (2). (22)
Let us expand z and z in terms of the eigenfunctions

P
pk=H3inkdnx¢, ky=1,...,N—1, k-—:{k;,...,kp}, T, = ik, (23)
Q==]

of the operators Ag:

2=z = D oy, =2 = D) af,. (24)
k k

Inserting (24) in (22) and using the linear independence of {“k} we
obtain

a&ﬂ-i—l) — (tﬂ+1)a£u)' (25)
(nt1) 8 2 5
A =1 A3 te— 23 5 ke 1T ¢t + 280,
am=} am} f>a L 5] (26)

k7t
2 .

4r,
M=ty =, Ba= b, =sin?

Theorem 2. The iterative method (17) for p = 2, 3 converges in the
metric Ly(wy) whatever parameters T, satisfying the condition 0 <c3 <
T, < c2 are chosen.

Thus using (25) we can write
) 1 (s} {0}
o't = ﬁ pral”, 27)
=]

and it follows from (24) and (27) that
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Z?H’” — {0) asy s o)
= 31 af? T otis (- 28)
k -

Hence

jzntn] = [2 e (2 aﬁ"ﬁl P?)pk(i)):]'/s < max 'ﬁ‘ S P (29)
oy I 4 a1

Sy

where z(® = pl%—y is the difference between the zero approximstion and
the exact solution of (5). We have to show that

1
maxﬁ P =0 as n—s oo,
E o

Let us first estimate p(® Since 1 ks KN — 1 we have

sin® - < B <1 (30)
and therefore
28 B <B+ B <&t 31)
Using (26) and (31) we obtain

P
A, (1 —P—;_i") Ex Ee

01— 32)
ﬁ (1 - Ak,)
am=]
It follows from (32) that
<< (33)

for 0 < c; AL ¢, p = 2, 3, where ¢, €3 and p do not depend on the
number of the iteration.
Using (29) and (33) we obtain
2D < prt1] 2] —0 a5 5 oo,
Note 2. For equation (1°) and the corresponding difference scheme (5°)
(see Note 1) the generating scheme is

Av=[A+ A —dl v+ ¢ (17)
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It is not difficult to see that Theorem 2 remains valid for (17') for
p = 4 also.

5 Lemma 1. It 0 <m <1 < ¥ and

= 2(a+b)
PO =1~ st s 9
then
_ —max[t— M g _aM
pr=_max o, b)—max[i srrm | 3(1+M),]. (35)

In fact it is not difficult to see by a direct check that
P (a, b) < p (e, a) p (b, B). (36)

Since the region of definition of p(a, b) together with the point (e, b)

also contains the points (a, a), (b, b) and conversely, on the basis of

(36) we can state that max p(a,bd) is attained when a = b. Let us
m<a,b<M

examine the behaviour of the function

4a
SAFar"
dp 4(1—aq) >0 for a >1,
@ TT30 4T <0 tor a1

Pla)=1—
@37)

It follows from (37) that max E(a) is attained either when a = m or when
a =M, which the following lemma proves.

Lemma 2. If 0 <m <% < M and

p(a, b, C) =i—%0 (a‘ b,C), (38)
where
_ a+b+4c
8 @b =traurnars
then

m M
Ps —mina%x'ogéa, b, ¢) = max [1—m, 1 (TW] (39)

The lemma will be proved if we can show that the minimum of the func-
tion 6(a, b, ¢) is attained either when a = b =¢c =m, or when ¢ = b =
¢ =M. Let us fix a and examine the behaviour of 8(a, b, c) depending on
the change in b and c¢. By a direct check we see that
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8% (a, b,¢) >0 (a,b,b)0 (a, ¢, ¢). (40)

Noting that

30 (a, e, ¢) =9 t—a—b >0 for b1 —a, (1)
% A+ad+op L0 tor b »1—a,

and using (40) we obtain

0(a) = min® (a, b,c) = ming (a, b, b) =
m<h,e<M m<HM

) (42)
= win [ aradEE)
Further,
do(a) _ either +1¢)—’(i’:- m)} >0, (43)
“ ol eg Ty <O
On the basis of (42) and (43) we conclude:
min (o) = min 0 (a,,¢) = min( i”‘m), . f‘;l),). (44)

m<acM mgab,c<M

6. Now let us choose the sequence {A,} so that it satisfies the con-
ditions

MEM =m,  Aptet= M, B0 =sint 2L, 45)
and the number of iterations n = ng so that
§(’H)< 1, g(ﬂri-l) > 1. (46)
It follows that
An=mgisint B pw = gt sint (47)
21n sin 3t 1n7g < np < 2Insin Flntg+1, (48)

where g = m/¥,

Lemma 3. If a cycle of ng iterations using the method (17) is carried
out with the set of parameters {A,} defined in (47) then

e R Ea (49)
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where Pp is given by formulae (35) and (39).

Thus when
™ L B < 8, (50)
m < ke < M, (51)
and the intervals [i", E"+1] cover the whole region of values of §4 for

each value of 4, there exists in consequence at least one value of n
for which

P < pp. (52)

The inequality {(43) and Theorem 2 prove the lemma.

Note 3. Bearing (37) and (41) in mind it is easy to see that max(¥/m)
(or min ng, which is equivalent) is attained for fixed Pp When the first
and second terms on the right-hand side of (35) and (39) are equal:

4m 4M m M
l—sa+m =30+ '“@TFw-—gx¥rmp ©

Then when p = 2

1
M= (54)
when p = 3

_ VBT mpLtiim—(3+m
= - )

M (55)

Theorem 3. In order to reduce L, the norm of the error [z°] , 1/e
times using method (17) it is sufficient to carry out ky cycles of ng
iterations with the set of parameters {A"} given by (47), where ny is
defined by (48) and kg by (56):

In(1/e)
k0>in(1lpp) . (“)
The proof of the theorem follows from Lemma 3.

Note 4. It follows from Theorem 3 that the total number of iterations
required to reduce the error fz°] 1/¢ times is

2 In sin -’-‘ih-lne

VX"Th¢hvw, ©7

Using Note 3 and optimising v w.r.t. m we obtain:
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for p = 2
—500la 1
Yopt™ 3.00 sin (xA/2) In & ©8)
- m
Moy ™= 0.24, Pgopt= 0.79, 1= = 0.058; 59
forp =3
i 1
Yopr = 8.40 lnm -, (60)
- m
myp = 0.13, Psapt =0.91, I=3F= 0.080. {61)
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