
ON A HIGH-ACCURACY DIFFERENCE SCHEME FOR 
AN ELLIPTIC EQUATION WITR SEVERAL 

SPACE VARIABLES* 

A. A. SAMARSKII and V.B. ANDREYEV 

(Moscow) 

(Received 21 June 1963) 

1. Suppose that in the region D, = (0 < x0 < 1, a = 1, . . ., p} we are 

looking for a solution to the differential equation 

Lu = 5L.u 
a-1 

=-f(x), L.u=$ 
a 

which satisfies the condition 

on the boundary r. Let &, = (q = (ix h, i&, . . ., iph) E&j be a 

square net with step h = l/N; and let y be the boundary of the net &. 
The numerical solution of the problem (l)-(2) is usually found with the 
use of the difference scheme 

where 

Ay + f (xl = 0, Y I, = g cd* (3) 

A = i A,, .h,Y = !&co (4) 
a==1 

(see fll for the notation). This scheme gives second order accuracy. 
There are many iterative methods for solving the problem (31, and of 
these we have picked out those used in [21- [81 which give the fastest 
rate of convergence. Without going into detail about any one method we 
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note that the methods of [A- C-4 are applicable only for a paralfelepinec 
and for p = 2 or p = 3, and [61- [81 for a few more complicated regions 
and [61 for p = 2, [81 for arbitrary p. The paper M generalises [?j, 
131 for some wider problems. 

2. To find the numerical solution of the problem (l)-(2) we use the 
scheme 

n’Y =&it-$ 5 2 AaABY = - cpw Y/Y = gv (5) 
a=1 @>a 

where 

This scheme has fourth order approximation in the class of sufficiently 
smooth solutions of (I), so that 

* = A% + 9 = 0 (A’). (7) 

It is not difficult to show that the scheme (5) has fourth order accu- 
racy. Let us introduce the scalar products (see [ll): 

and the norms: 

Let u be the solution of the problem (l)-(Z), and y the solution of prob- 
lem (5). For their difference t = y - u we obtain 

ll’z=-q, 2]Y=o. (10) 

Making a scalar multiplication of this equation by z we write down the 
energy identity (see El]): 

We use the obvious inequalities: 
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where co is an arbitrary positive constant. We insert these estimates in 
(11) end choose CO correspondingly. We then obtain 

We have thus proved the following theorem. 

Theorem 1. If the condition 

is satisfied then the difference scheme (5) for p < 3 converges in the 
mean at a rate O(h’) so that 

UY- u 11 < M’h’, M’= M-M,, 

where M is a positive constant which does not depend on h. 

(15) 

Note i. If instead of (1) we consider the equation 

La =Lu- q(z)u= - f (4. 0 < % 6 Q (4, lb Ir - g (4, 

then it is easy to see that the solution of the problem 

(1’) 

where 

A’y - JY + q (4 = 0, Y I, - g be, (5’) 

h’ 
d (4 = q (4 + 12 Aq (4, 

converges in the mean at a rate 0th’) to the solution of the problem 
(1’) for p = 4 also. 

3. Let us examine the following iterative scheme for the approximate 
solution of problem (5) for p = 2, 3: 

where v = H-1 is the (n + l)-th iteration, G= ~(~1, “1 = (V - vjif,; 

zn> 0 is an iterative parameter to be chosen later. The initial value 

w (x,0) = 2)(O) (z) is determined by the choice of the zero iteration. Let 
us construct two one-dimensional alternating direction algorithms for 
the numerical solution of problem (16). 

A. We insert Au = & j- zAq in (16) and, following [61, replace 
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the operator (E - ?A) where E is the unit operator by the operator A, 
where 

A = 11 Aa, A, = E - al,. 
a=1 

Then instead of (16) we have the scheme 

Av = [A C vi’1 ; -I- zcp, q, G g, 22 (G 0) = do) (z), 

which we shall call the generating scheme. Introducing intermediate 
values u(l), . . . . ufP) = v we reduce the solution of problem (5) to 
solution of p one-dimensional problems: 

A,rcl, = [A + aY1; f q, 

&v(o) = qo--r)r a = 2 ,...,p; v(a) t= -&+-I l l - &g for za =o, i. 

(17) 

the 

(18) 

B. Putting w = VT, we rewrite the generating scheme in the form 

Aw = x;-pq, wly= 0. (1% 

From this we have the alternating direction algorithm 

Al%, =A% i- cp, (20) 

A~;Lu~=) = w(~-I), a = Z,..., p; w(a) = 0 for oh = 0,1, 

v = v’ + “W(P). 

To go from 6 to v during the computation we must store the two layers: 

I? and W(a), a = i, 2, . ..%p. However this’ algorithm requires fewer oper- 

ations then (18) (thus it is not necessary to calculate Av’) and, further- 
more, the functions W(a) always satisfy zero boundary conditions. For 

P = 2 by analogy with t21 we cau use an algorithm which does not contain 

the product &A,& 

A,w(,) = A,; + (if ;) A,; + T, w 

A1wf,, = wcl, - ; A,;, v = ; + zwca,; %, = 0, za=o, 1. 

Each of the equations A,ur,,,=cpo where (pa is a given function csm be 

solved using the formulae of one-dimensional successive substitution 
(see [93, pp. 283-309). All the computing algorithms which we have 
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mentioned give the same generating scheme (17) as we cau see by eliminat- 
ing the intermediate values of vto) or q+ Q = 1, . . ., p - i, 

4. We show that the iterations defined on scheme (17) converge what- 

ever the choice of the zero iteration v(*) (5) and of the sequence (Zn) 

satisfying the condition 0 < cl < z,, < cl, where cl and c2 are con- 

stants which do not depend on the iteration number n. Following [33 we 
give a method of choosing (r,,} for which the rate of convergence of the 
iterations will be “sufficiently fast”. We obtain the following condi- 
tions for the difference z = v - y, where y is the solution of the initial 
problem (S), v = v(n) is the solution of problem (17): 

AZF = AG, 

Let us expand z and 

P 

zlr = 0, 2 (z, 0) = do) (2) = v(O)--y (z). 

r* in terms of the eigenfunctions 

m 

k 

Inserting (24) in (22) aud using the linear 
obtain 

5 

independence of {Q! we 

‘lkcorea 2. The iterative method (17) for p = 2, 3 converges in the 
metric L2(oh) whatever parameters f, satisfying the condition 0 <cl < 
rn <cl are chosen. 

Thus using (25) we can write 

(27) 

and it follows from (24) snd (27) that 



1378 A.A. Sararr&ii and V.B. Andraysv 

Nence 

where a(Q) = oCO)-y is the difference between the zero epproxiaation and 
the exact solution of (5). We have to show that 

ff 

1 

max pP - 0 as n-,oo. 
k 

8-l 

Let us first estimate pt). Since 1 < k, <N - 1 we have 

and therefore 

Using (26) and (31) we obtain 
P 

A, i-J+ 

O<PP<i- 
( P 

t, 
8-l 

d 

I 

v +&I 

a-l 

It follows from (32) that 

(321 

P!?GP<~ cw 

for 0 < c; ( I < 4, p = 2, 3, where c;, c; and p do not depend on the 
number of the iteration. 

Using (29) and (331 we obtain 

[Iz@+l)[<pn+rfzq-0 as n4bc. 

IVote 2. RX equation (I ‘1 end the corresponding difference scheme (5 ‘) 
(see Note 1) the generating scheme is 

Au = $A + zA.’ - zd] 0’ + qb WI 
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It is not difficult to see that Theorea 2 rmains valid for (17’) for 

P =4 also. 

5. Lerrrcr 1. If 0 < a < 1 < M and 

then 

In fact it is not difficult to see by a direct check that 

P’ (c, b) 6 P (a* 4 P (b* 4. (36) 

Since the region of definition of p(a, b) together with the point (a, b) 
also contains the points (a, a), (b, b) and conversely, on the basis of 
(36) we can state that max p (a, b) is attained when a = b. Let us 

nrb.buI 
ersmine the behaviour of the function 

6 4 (1 -a) >0 for u>i, 
Z “-3(1 +O)‘= <() for a<l. (37) 

It follows from (37) that max p(a) is attained either when a = a or when 
a = M, which the following 1-a proves. 

Lcnuna 2. If 0 < n < H < M and 

where 

p (u, b, c) = i - +e (a, b, c), cw 

8 (a, b, c) = a+b+c 
(If 4 (1 + 6) (1 + 4 ’ 

The leama will be proved if we can show that the minimum of the func- 
tion %(a, b, cl is attained either when a = b = c = I, or when a = b = 
c = M. Let us fix a and examine the behaviour of %(a, b, cl depending on 
the change in b snd c. BY a direct check we see that 
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ea (6 b, 4 > 8 (a, b, b) 8 (a, c, c>* WJ) 

Noting that 

~(%@,C) = 2 i--o--b > 0 for b < 1 - a, 
ab (i+a)(i+@' = <O for b> 1 -a, (41) 

and using (40) we obtain 

R4 =_yp$ (a, b, 4 =mine (a,b,b)= 
* 

= min [ (1 +Yl&i”+ m)’ ’ 
a+2iU _ 

(1 + 4 (1 + W 1 . 
Further, 

w 

(43) 

On the basis of (42) and (43) we conclude: 

min 8 (UT= min 8 (a, b, c) = min 
m(aaf m(a.b.cGH ( 

6. Now let us choose the sequence {A,,) so that it satisfies the con- 
ditions 

Ant(n) = m, &,E@+‘)= M, cw 

and the number of iterations n = no so that 

E’“‘< 1, p+l) > 1. 

It follows that 

WV 

LB= 
Jch 

mq-1 sin+ - 
2 ’ 

E(n) = q-m+1 &p $! , 

2 In sin ~.ln-1q<n,~21nsin~In-1q+ 1, 

where q = II@. 

(47) 

W) 

Lemma 3. If a cycle of no iterations using the method (17) is carried 
out with the set of parameters {A,,) defined in (47) then 
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where pP is given by formulae (35) and (38). 

Thus when 

and the intervals [En, t*l] cover the whole region of values of go for 
each value of co, there exists in consequence at least one value of n 
for which 

pktn) < f+ 

The inequality (43) and Theorem 2 prove the lemma. 

(52) 

Note 3. Bearing (37) and (41) in mind it is easy to see that max(ti//m) 
(or min no, which is equivalent) is attained for fixed p, when the first 
and second terms on the right-hand side of (35) and (39) are equal: 

4m 4M A4 
1-3(i+m)r=i-3((i+M)~; ‘-(i+mm)~Si-(i+~~’ (53) 

Then when p = 2 

when p = 3 

i 
M=5;;-, (54) 

M= 
V(3 + m)’ -L 4/m - (3 + m) 

2 . (55) 

Theorem 3. In order to reduce Lt. the norm of the error ]~?a , I/E 
times using method (77) it is sufficient to carry out ka cycles of no 
iterations with the set of parameters {A,) given by (47), where no is 
defined by (48) and ke by (56): 

‘Lo>)*’ (58) 

The proof of the theorem follows from Lemma 3. 

Note 4. It follows from Theorem 3 that the total number of iterations 
required to reduce the error lz”I l/~ times is 

2 In sin 
VX 

+1n c 

ln Q In P, * (57) 

Using Note 3 and optimising v w.r. t. m we obtain: 
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for p = 2 

i t 
%pt= 3*00 in ain (fi/2)ln _ t 

mopt== 0.24, ?;topt= 0.79, q = j+ = 0.058; 

for p = 3 

2. 

3. 

4. 

5. 

8. 

7. 

8. 

9. 

#Rapt= 0.13, pa,,t=o.9i, q = 2 = o.oSD* 

(58) 

(50) 

m 

W) 
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