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In [l] an economical scheme is put forward for the heat conduction equa- 
tion 

with accuracy O(h” + TV), where h is the step of the space net, and T 
the time step. It is a three-layer scheme. 

In this paper (Section 2-4) we examine two-layer schemes of 0th” + -r2) 
(i.e. of order (4,2)) which are suitable for p <3. ** They are put into 
effect with the aid of a number of splitting algorithms or alternating 
direction algorithms which involve practically the same number of oper- 
ations as the corresponding algorithms of 0(h2 + -r2) (see [21- [Sl). It 
is shown that these schemes are absolutely stable and that for any values 
of y = T/h2 they converge in the mean at a rate O(h4 + TV). In Section 5 
we consider a three-layer scheme of order (4,2) which is more economical 
than the scheme of [II end is suitable for p \<4. This scheme is abso- 
lutely stable and converges for any y (the scheme of [ll converges for 

y>yo = con&. > 0). 

l Zh. vych. mat., 3..No. 5, 812-840, 1963. 

l * Note added at proof stage. After sending this paper to the printer we 
succeeded in proving that our scheme is absolutely stable 

verges in Ly(o,J at a rate 0 (l!Q4 + ry). The corresponding 

be published separately. 
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A scheme of order (4,2) for the equation 

is given in Section 6. 

asp = const. 

In Section 7 we examine two-layer schemes of the same order of accu- 
racy for the equation with variable coefficients, 

1. A scheme of high-order accuracy for the 
one-dimensional heat conduction 

equation 

1. Let the problem 

&i 
- = Lu + f, 

at 
Ll$=$, f = f (x7 t), (1) 

u (0, 0 = u1 V), u (I, t) = us (A; u (2, 0) = ug (5). 

be given in the rectangle r= (0 < 2 < I, 0 < t \( 2'). 

(2) 

Let us introduce the difference net H = Gh X 0, = {(ri, tj) ET}, 

where &h= {q= ih, O\< i<N, h = UN), & = {ti, 0 < i-<K,t, = 0, 

TV = 2'). The net & is uniform, and & is an arbitrary non-uniform time 

net with step zj+l = t++r - tj. We shall use the notation of [71 putting 

y = yP1 = y (Q, fj+l)r 5 = Yj, Y(*l) = Y (xi f h, tj+l), TT = rj+l, 

Y; = (Y - y’-“)lh, Yx = (y(+l) - Y)lh, Yi = (Y - w, Ay = y,. 

To write down the high accuracy scheme we use the asymptotic expansion 

1Zu=urr=L~+~~+O(~4)=Lu+~L(~ -f)+o(hy, 

where u is a solution of equation (1). It follows that 

0.511(7.4 + ii) = (Lu)j+‘la + ;A (ur - f) + 0 (h4) + 0 (+), 

where z&‘/n = u (5, tj+a/,), tj+l/, = 0.5 (tj f tj+l), i.e. the scheme 
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Yr =0.54 + &> -gAYi_ +cp, 

(p = (f + g Af)j”” = I$ (f”1’ + f’-1’) + 

has fourth order approximation w.r. t. h and second 

w.r.t. T. 

The scheme (3) is usually written in the form 

!/I = o& + (1 - o) A$ + cp; yo = ui, YN = u,: 

(3) 

order approximation 

2/ (r, 0) = uo (r), (4) 

u = 0.5 (1 - $) = 0.5 (1 - &), y = zlh2. (5) 

To find y = yj+’ we have the problem: 

zoAy - y = - F, yo = %, YN = u,; F = c + z (1 - a) Ajl+ zcy, 

or 

TY i-1 - (1 - 20~) yi + oYyi+, = - Fi, YO = %, YN = u2’ (‘j) 

The solution of this problem for any values of y, i.e. for - co<o< 
0.5, can be found with the known formulae of successive substitution [81, 
[91: 

ai+1 = --y- 
37. 

1 1- ST + or (1 - ai) ’ 
a1 = 0, i=l, 2,. . .,N-1, 

pi+1 = 
aTPi + Fi 

1 + ST + s-r (1 - q ’ 
PI = Ul, i=l,2 ,..., N-l, 

Yi = ai+iYi+l + Pi+l~ YN = u23 i=l,2,...,N=l 

Computation with these formulae is always stable, since 

:liote. In the book [91 the schemes 6 and 
on PP. 108 and 109. It is not difficult to 
are algebraically identical to scheme (4). 

12 are considered separately 
see that both these schemes 

7. In order to discover the order of accuracy of the scheme (4) we 
have to iinr! estimates for the solution of the problem 

zi = 0.42 + (1 - CT) .\i + $, z. = Z‘V = 0, 2 (5, 0) = 0, (7) 

where z = y - u, u is a solution of the problem (l)-(2), y is a solution 
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of the problem (4)) $I = du -j- (1 - a) A6 + q - uF is the approxima- 

tion error of the scheme (4). 

We have not succeeded in discovering any published proof of the uni- 
form convergence at a rate O(h4 t r2) of scheme (4). We therefore 
thought it desirable to give this proof here, despite its elementary 
naturgtMoreover we use a similar method in Section 4 when studying the 
convergence of multidimensional schemes of the same order of accuracy. 
In [lo], where an attempt was made to obtain the corresponding estimate, 
there is an error which was pointed out to us by V.B. Andreyev (the con- 
dition 27~ - 1 > 0 in Theorem 5 should be 2~ - 1 < 0 or cr > 0.5 since 

rl =l - u). 

3. Let us consider the more general problem 

- qAz7 + qJ, 20 = ZN = 0, 2 (z, 0) = z” (z), (8) 

where q is an arbitrary parameter, and let us find the conditions for 
which the scheme (8) is absolutely stable w.r. t. to the initial data and 
the right-hand side. Inserting 

q=l- u = 0.5(1 +&), (9) 

in (8) we obtain the scheme (4). 

We need the notation of [Al: 

N-l 

(y, v) = ~YYi~fh II Y Ilo.= max IYi 19 
i=l i=l oh 

II VII = I+, VI, II v-,/J = vlq 

(y, V are arbitrary functions given on &,) together with Green’s differ- 
ence formula 

k/t VA = - (V, Y,l? if y. = y,v = 0. 

Lemma 1. 

where v is an arbitrary net function, given on oh, V. = UN = 0. 

For ha II % 11” = (V - v(-l), v - d-1)] < 2 (v" + (v(-'q2, 11. 

Let us write down the energy identity for (8). Multiplying equation 
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(8) scalarly by zz,- and using the relation 

we obtain 

Z II27 (12 + 0.52 (11 zJj”)T = (11 - 0a5) zII 47 /I2 + z ($7 zi)* 

If q < 0.5 (a > 0.5), then q - 0.5 < 0 and the corresponding term 
can be omitted if we replace the sign = by \<. This case has been ex- 
tensively studied. Let us therefore consider the case ~j > 0.5 or (3 < 9.5. 
Inserting v = zF in Lemma 1 we find 

Z 11 - 4 (r) - 0.5) yl 11 zr lj2 + 0.52 (11 zzlj2)r < z ($9 27). (12) 

‘Theorem 1. If the condition 

q < 0.5 + $ (1 - s), E = con&.> 0, (13) 

is satisfied, then scheme (8) is absolutely stable for any h and T: 

where 

-+ II zj+lllo < II ii1 II < ll 2; (5, 0) II + (14) 

If 

then 

rl < 0.5 + + , 

II zgl II < II +_ (59 0) IJ + J!f (II$j+l II - t rll)l (17) 

where M is a constant which depends only on T and 1. 

(15) 

(16) 

The estimates (14) and (17) follow from inequality (12). To prove 
(14) we must use the estimate 

and (13). In the case of (16) we have 
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since 

The subsequent argument is similar to that of [71. 

4. Let us turn to problem (6). Comparing (6) and (8) we can see that 
‘I = 0.5 + l/12 y for the scheme (6). i.e. condition (13) is satisfied. 
Theorem 1 (for E = 2/3) gives 

(1% 

We have proved the following theorem. 

Theorem 2. If the solution u = u(x, t) of the problem (l)-(2) satis- 

fies the conditions for which the scheme (4) has maximum order of appro- 
ximat ion 

II 9 II =G M (h’ + ~‘1, 
then scheme (3) converges uniformly at a rate 0(h4 + -r2), so that on an 
arbitrary sequence of nets R we have the estimate 

where <M is a positive constant not depending on the net, and 

2. Schemes of high-order accuracy for the heat 
conduction equation with several space 

variables 

1. Let us consider the heat conduction equation with constant coeffi- 
cients: 

where x = (xl, . . . . np) is a point of p-dimensional Euclidean space, 
Without loss of generality we can take X, 7 1, since this can always 

be arranged by introducing the new variables z; : x~‘\“K:. 15’~ 



Schemes of high-order accuracy 1113 

G = (0 6 z, < Z,, a = 1, 2, . . ., p} be a p-dimensional parallelepiped 

and r its boundary, so that c = G -k r. We put QT = G x (0 < t < 2’1, 
QT = c X [O < t < T]. In the cylinder QT we look 
the first boundary-value problem: 

8U 
- = Lu + f (5, t), 
dt Lu = 5 Lu, L&=$7 

a=1 a 

for a solution of 

Let us introduce difference nets. Let oh = {ZiEG} be a space net; 

here xi = (i,h,, . . .,i,h,), i,=o, I,...) Nor, a=1 (...) p, 

h, = l,lN,. The net &, is uniform only w.r. t. each of the space vari- 
ables, the steps h, and hp in general being different when a # p. Let 

oh = {riE G} be the set of internal nodes, T = {ziEr} the set of 

boundary nodes, T, the set of nodes of the boundary y for which xa = 0 

and yi the set of nodes of y for which x0( = 1,. 

The net 0, = {tjEIO < t < Tl, t, = 0, tK = T, 0 < j < K} is non- 

uniform, its step zj+l = tj+l - tj>O only satisfying the normalisation 
condition 

i z,, = T. 
f=l 

We put CI& = {tj E(O e t < T]}, a = oh X0., 52 = oh X w+. Following 

[III, [121 we use the notation V z V (Xi, tj+l) z V (5, t) = Vj+l, ; = V3, 

r = Tj,l, 
+ = Tjr v(+lLz) - - v (Pa', t), PQ = (i,h,, . . . ( La_lh,_l, 

(i, f 1) h,, ia+ &+I, . . .) i, hp), “;, = (v - v(-qlh,, V”= = (v(+la) - vp,, 

VT = (v - 5)/z; jhj =Vy+...+h;. 

2. Let us go on to derive schemes which have fourth order anproxima- 
tion w. r. t. IhI and second order approximation w. r. t. T (schemes of 
order (4,2)). By analogy with Section 1, Para. I we have 

A& = U;& = L,u + s L&u + 0 (h4,). 

Inserting 

Lu = g - 2 Lpu - f, 
$#a 
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from (1) we find 

It follows that the operator 

0.5 A (u + ii) - 4 5 h: A+- + -&- 5 hi 2 &z&ii -- &f 
a=1 a=1 PW 

has approximation error 0 (1 h I4 + 9) in the class of sufficiently 
smooth solutions u = u(x, t) of equation (1) w. r. t. the operator (Lu)l+‘l~. 
Therefore the difference scheme 

yT = 0.511 (y + i, - & i h2,AayT + & f_ h2, gA,h& + cp, (3) 

cp = (f + & i; h:A,f )j+“‘, A = i A,, (4) 

for the solution 

We introduce the 

‘X=1 a=1 

u = u(x, t) has approximation error 

I# = 0 (I h I4 + 9). 

notation 

ua = + (1 - h:Kt) (5) 

and use the relation hill2z = 0.5 - CT,. Then we can write the scheme 
(3) in the form 

!I? = 5 [a,A,y + (1 - a,) .I,$1 + zR,G 
;I==-1 

Y=p for rEY, tEZ,; Y (G 0) = uo (4 

where 

t (P, 

for a:EGhr 

(6) 

(7) 

Rpy = 2 KJ ‘i:,+rh; A\,A, y = i i (1 - u, - flp) &A,y, (8) 
a=1 P>a a=1 @=a+1 

R?1/ (1 - 0, - a,) .\,A,y, R, Y = (1 - cl1 - (T2) _\& ‘- (9) 

-f- (1 - cr, - us) ‘I,&// + (1 - 5, - c7.J .I,.I,y. 

Inserting a, = 0.5 formally, from (6) we obtain a symmetric second order 

scheme, and for aa = 1 a purely implicit scheme. 

Below we call (6) the mitial scheme. 
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3. Following [21- [61 we form a scheme with a split operator on the top 
row which has the same order of approximation as the scheme (6). We call 
this scheme the generating scheme. When p = 2 the generating scheme 
obviously has the form 

where E is the unit operator, or 

yt = i baAa y + (1 - u,) A& 1 + zR2jl - ~%~a,A,h,y~+ cp. (10) 
U.=l 

Comparing (6) and (10) we see that the generating and the initial 
schemes have the same order of approximation in the class of sufficiently 
smooth solutions of equation (1). 

When p = 3 we choose the generating scheme 

2 

fl (E - %A,) y = [E + $ (1 - CT,) A, + .t2R, + r2 Q3 - 
cl=1 CC=1 

- T~~J,G,A,A,AJ Q 

where 113 is given by formula (9) and 

Let us rewrite (11) in the form 

It is not difficult to see that its maximum order of 
the class of solutions of equation (1) is 0 (IhI 4 + 
(13) we shall consider the simpler generating scheme 

(11) 

(12) 

(13) 

approximation in 
9). Together with 

Thus we have put the initial problem (l)-(z) in correspondence with the 
difference grGiJie!fl 

2, [yl = 0 for (z, t)EQ, (15) 

y == IL (x, 1) for 5 E’{, t EWg; 2/ (5, 0) = uO (z) for z E Ghr (16) 

where ,J$Y2 [g] = 0 is equation (I@), Y, Iyl = 0 is equation (13) or 

(14). 
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3. Conputational alternating direction algorithm 

1. The solution of the multidimensional problem (2. 15)-(2.16) can be 
reduced to the successive solution of one-dimensional algebraic problems 
w.r. t. the directions xl, . . . , xp (see hl- [cl, b51). This reduction is 
usually called the splitting (factorisation) of a multidimensional oper- 
ator into one-dimensional operators, or simply splitting, Several com- 
putational alternating direction algorithms correspond to one generating 
scheme. Thus, for instance, it is not difficult to see that the algo- 
rithms of [31 and [51 correspond to the one generating scheme which is 
a special case of scheme (2.13) for a, = 0.5 and, therefore, R, = 0. Let 
us find another algorithm for this scheme. Putting y =$ -j- ‘cyr, we 
write this generating scheme in the form 

bayi. =&Ii+ 9p, A, = E - 0.5&. 
a=1 

(1) 

From this we have the algorithm 

lY. &r(i) = A$ -I- cp, A+) = ~(a+), u>l, V(D) = Yr9 (2) 

y = j; + TV(,). 

In accordance with [51 to find v(,) for z.xZT~, 1 < CL < p, we must use 
the formulae 

u(U) = A a-+-l ’ ’ ’ A&Y yT = @+l- ?/Vf = (pa) y*, 

pa = p for “EY,. (3) 

This algorithm is more economical that those of f21, [151. In particular, 
it is suitable for the solution of the stationary equation 

by the iterative method, since in this case yr z=: 0 for ‘z E y and we 
always obtain the homogeneous boundary condition q,) = 0 for v(~) for 
SESya, a = 1, . . . . p. 

2. For the generating scheme (2.15) we use the algorithms given in 
[23 - [61. 

Let us first consider the two-dimensional problem (p = 2). We intro- 

duce the fractional step tj+a,, and put y(,,=yj+‘/z the corresponding 

value of the unknown function y. Let us construct three one-dimensional 
algorithms (see [21, [31, k511. 
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A. Y, = 
Y(i) - 5 ~ = 01 A,y,,, + 8’ [$ I, Yr, = 

Y(2) - Y(1) 
z z - - U2&?/(2)? (4 

F [c 1 = 2 (1 - a,) A,i + (1 - ul) (1 - a,) zA,A,~ . (5) 
a=1 

The boundary conditions (2.16) are given only for y’ and y. According to 

[51 we can find the boundary values for y( 1) from the formula 

Y(i) = A,y for xi = 0, z1 = 1,. (6) 

The order of the computation is as follows: we find y(I) for x E y1 

from (6), calculate F [cl from (51 and then, using the one-dimensional 

successive substitution formulae (see Section 11, solve SuccessivelY 

equations (4). 

B. 
yy, = qA,yf,, + (1 - (~1) A,C + ?A& + cp, (7) 

Yr, = %bY(2) - 
(1 - a11 (I - ““‘A2&, 

ym 
= y = yj+i 

yw 
= A,y -k (I - “)(* ” “I &$ for q = 0 x1 = l: 

(8) 

7 (z E TI). 
01 

(9) 

The order of the computation is the ssme as for A. We can see from (‘I)- 

(9) that the scheme has no meaning for al = 0. Unlike in A, when finding 

y two layers (i and y( 1)) must be used. Inserting cl = u2 = 0.5 formally 

in (7)-(9) we obtain a scheme of 0 (jh I2 + IY~), and for al = a2 = 1 a 

scheme 0 (Ih I2 + Z) (see h!, [31). 

Let us suppose that u G 0 for x1 = 0, x1 = 11. This can always be 

arranged by subtracting a function which is linear in xl and equal to 

U(X, t) for xl = 0, xl = 11 from u(n, t). In this case when p = 2 the 
problem (15)- (16) is equivalent to the problem 

C. yt, = %h/(,) + (1 - %)~% Y(l) 
= 0 forz, = 0, x1 = I,, (IO) 

Yi, = o‘z &Y(g) + (1 - 52) &Y,,, + @3 Y(2) = 
pLj+1 (11) 

for 52 = 0, 2, = 12, 

Tile equation (11) can he solved in the region (0 < x1 < L,, 0 _i 

r G l,), the value of y( 1) found for x2 = 0, x2 = /2 being used to 
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solve problem (26). The order of the computation 

on the whole net &, -, problem (12) on the net 

is as follows: problem (10) 

wh -, problem (II) on oh. 

Eliminating y( 1). it is not difficult to see that all the algorithms 
A, B and C are equivalent to the generating scheme (2.15)-(2.16) for 
p = 2. Putting u1 = u2 = 0.5 we obtain known algorithms for schemes of 

accuracy 0 (I h Iz + r2). In our case era = 0.5 (1 - hz/6t). The amount 

of computation for schemes of order 0 (I h 1’ + 9) and 0 (I/L I4 + 9) is 
practically the same. The increased order of accuracy is achieved purely 
by a corresponding choice of the parameters u1 and oz. 

3. One-dimensional alternating direction algorithms for a three- 
dimensional generating scheme (p = 3) are constructed similarly. Let us 

write down algorithms A and B only. We introduce two fractional steps 

ti i-‘/s and tj+l:, and the corresponding values of y(1) and y(2), putting 

Y(3) 
= y = Yi+ll, $ = Yj. 

A. 
Yt, = %AlY(,)f F m Ytcl = 

Y(aj -Y(--I) 
z 

=~ A 

a aY(u)) a>19 (13) 
3 

F 1 id = F, [ $1 = 2 (I- %)&jr + r (R, + Q3) j/ +(p t;;,;Ee (2.14), (14) 
a=1 . I 

F [ $1 = F, [ $1 = F, Lb1 - z~~~~~cT~A,A~A& for the scheme (2,13j, (15) 

B’. 

1 

Y(1) - - A,Agg i’or z1 = 

Y(2) = A~J for x2 = 0, 

Al’>(1) = Ai f r&ii 

U+.I) or up = wLv~mj, a 

y = j, + QJ(3). 

0, Xl = 11, 
x2 = 1,; 

(16) 

t (P7 (17) 

r = 2,3; V(3) = yt, (18) 

(19) 

The boundary conditions (16) must be added to these formulae. Eliminat- 

ing ~(1) and u(p) from (l?)-(18) we obtain the scheme 

A,A2Aayy = A4 + t&ii + cp, A, = E - toaha, 

for v(3) = yT , This is the same as the generating scheme (2.13), as we 
can see by making obvious transformations. 

Algorithm B’ is a three-layer algorithm. When finding z’(,) we have 
to use not only o(~_~J, but also the values of ;. However algorithm (17)- 

(19) is more economical in its number of operations than the three-layer 
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scheme obtained in [II for o1 = o2 = U, = o. For ocr = 0.5, a = 1, 2,3 

(ES = 0) we obtain from (1.7)-(19) an algorithm which gives an accuracy 

0 (lh\2 + 2%) (see [21, C151, [121). 

4. Stability and convergence 

1. Let us show that all the algorithms given in Section 3 are abso- 
lutely stable on an arbitrary net E and in fact have accuracy 

0 (IliI’ + 22). To do this we must turn to the generating scheme (2.15)- 
(2.16). We note that stability and convergence were considered in [II 
for the initial scheme. This is not sufficient to justify the method. 
Let y be a solution of the nroblem (2.15)-(2.16), and let u = u(x, t) 
be a solution of the problem (2.1)-(2.2). Putting y = z + u in (2.15)- 
(2.16) we obtain conditions for the net function z = y - u: 

21 = 5 [a&z + (l- 0,) A,i 1 + zR, i-x2 Q,z~+6p,3~3~~u2u.9h~h2h3~T--;-Y, 
cl=1 

(1) 

2 =i 0 for J: E 7, t E 0,; 2 (no) = 0 for 2 E oh, 63 

P 

R,= 2 2 (l--a,-uop)~,hp, (3) 
a=1P>a 

P 

QP= 2 2 w,Anp (4) 
a=1P>a 

where &,J is the Kroneker symbol, and 7 the approximation error of the 
generating scheme, 

‘P = q - 7” Qpur + &,,3 T” u,u,u,h,A,A,u,, (5) 

where q~ is the approximation error of the initial scheme. 

Let c$ be the class of functions having derivatives w.r. t. X.X, 

a = 1, . . . . p UP to and including the-m-th order and w.r. t. t up to and 
including the n-th order, bounded in Qt. 

If u = U (z, t) E cg, then the generating scheme (2.1.5) has order 
(4,2) of approximation 

Y = 0 (1 h j4 + .G2) (6) 
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for the solution u = u(x, t) of equation (2. I]. 

In fact, for any h and v we have 9 = 0 (lhj* + 3). If 0 < oa < 1/2, 

then Qpur and a,a,a,A,A,R, (u - s) are bounded; therefore Y! = II, j- 

t? (ra). Suppose, for example, that (7% > 0, ua > 0, and u, < 0, i.e. 

(h? /SZ) > 1 and, therefore, /CT, 1 < hf /12~. In this case 

a = 2:3, 

and so on. It is easy to see that ‘4 = $) + 0 (Iiz I”), if all oLI < 0. 
This proves the validity of the estimate (6). We mention only that for 

u.a<O, CL = 1, 2, 3, th e d erivative ~~u/~~~~~~~x~ must satisfy the 

Lipschitz condition w. r. t. t, since z%~(J~c& 12-3hfh~h~, and ht > 6%. 

Below we shall always assume that the conditions for which the gener- 
ating scheme (2.15) has maximum order of approximation (6) are satisfied. 

2. By analogy with the case p = 1 of Section I we examine 
bility and accuracy by the method of energy inequalities. We 
the scalar products 

the sta- 
introduce 

where op =wh + r*,, and the associated norm 

Lemma 2. Let v be a net function defined on Wh and equal to zero on 

the boundary y of the net oh (u = 0 for x E y). Then we have the rela- 
tions 

As the proof of the lemma is elementary, we omit it here. 

Lemma 3. Let z be a net function defined on 3, with z IY = 0. Then 
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The identity (9) follows from (8) and from the formula %v, = (v”),- - 

TV;. From Lemma 1 we have ht 11 v;~ If < 4 11 v I$. Putting v = z;&, we 

obtain (10). Applying Lemma 1 twice we obtain h:hE /I v;,~ Ip < 48 II v I$, 

where v = z~. 

3. Let us nbw derive a priori estimates for the solution of equation 
(1) with zero boundary conditions 

7 = 0 for, 2 E T. (42) 

We rewrite equation (1) in the form 

P 

z,- = 0.5 A (z +’ t) - & x h&z, + zR,t - I? Qpzl + 
a=1 (13) 

Multiplying (13) scalarly by 2Zi, using Green’s formula and remembering 
that z I,,= 0, we obtain the basic energy identity 

22 (I Zi II” + 1 + 229 (Qpziv zr) + 26p, 3z4u1u*uS 11 Z~&.$ Ip = 

P (14) 
= ’ + p 2 ht 11 z,,i lr + 2~’ (Rp~y 27) + 2% (Y’, 2;). 

a=1 

From Lemma 3 we have 

(16) 

Then using the relation 

I-ua-uq + 2u,up=0.5 [i+(l-2u,) (I-2u,)l>0.5, since U, GO.5, (17) 
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2Ta (Q,Zi, ZT) - 222 (R& zi_) = 0.5+ i 2 [I + 
a=1 F>a 

Substituting (18) in (14) we obtain 

P P 

(18) 

Lemma 1 gives 

(20) 

4. Let us examine the cases p = 2 and p = 3 separately. Let p = 2. 

Using the estimate 

22 (y9 +) < $ IT /I Zi 112 + $r 1 Y Iv, 

from (19) and (20) we obtain the energy inequality 

I j’+l + ().54+1 11 q?? 112 < Ii’ + h;” ; ht ___ Zj*+l ([I Zglz lr)i_ + + Zf+l 11 Y’+l /12. 

Let us sum w.r. t. j ’ = 0, 1, . . . , j: 

Ij+l < IO + F 11 zg 112 + $ ( pg2, 
where 

Ipq =( lil’ zj, 11 y’ I’)“*. 
j’=l 

(21) 

(22) 

We now use Lemma 1, which gives 

(h:! + @ II %,;, II” < u. 

It follows from this, and from (21) that 

Jj+l <$I” + $ ( (Ilyj+l(12. 
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Using Lemma 2 we find 

1123 

where 

!I!, =+ ; + ( ) 
-1 

12 12 12 

a=1 a = 4(1;+1;) * 

This proves the following theorem. 

Theorem 3. For p = 2 the generating scheme (1) is always stable w. r.t. 
the initial data and w.r.t. the right-hand side on any sequence of nets 

n, so that the solution of equation (1) with boundary conditions zly = 0 

satisfies estimate (23). For p = 2 the solution of problem (l)-(2) always 
satisfies the estimate 

/I zj+l (I < $ -vMo I/ yj+’ /I. (24) 

5, Let p = 3. In this case the term 22 (Y, .zi-) can be estimated in 
another way (see Section 1): 

(25) 
2T (UT, zi_) = 22 (Y, Z)c - 22 (Y’,, f) Q 22 (Y, z)i_ + c,zi + ‘? z 11 Yt 112, 

where CO is an arbitrary positive constant, Y (2, 0) = Y (2, zJ. We 
shall use the obvious estimates: 

We rewrite (19) in the form 

wnere 

Q = 0.5 i ; 
a-=1 p=z+1 

[I + (1 - 20,) (1 - 2cgl Il~~,,~ll~ > 0. 
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The coefficient oa = 0.5 (1 - h36z) can be positive or negative. In 

particular, we can have ocr < 0, which corresponds to the condition 

x/k: < ‘lo or hE/r > 6. Therefore the product O,U,U, can have any sign 
ahd the third term on the left-hand side of (27) cannot be omitted with- 
out invalidating the inequality. Let us transform this term. Consider 
the factor 

where 

We find an estimate 

Applying Lemma 1 we 

for the expressions 

DI, = 0: 11 Z;~~;JS 112, k= 1,2. 

obtain 

Thus for any u,u,u, 

and therefore the inequality 

j+l 
Ij+l N \ c0 2 q,$‘-1 + 10 + 2 [(yr, z)j+l - (Y, z)Ol + $Ij+l + 

jL1 (29) 

+!$ (@qP, 

which is obtained from (271, (28) and (29) is always satisfied. Writing 

2(X, 0) = 0, using the estimate 

cb = const.> 0, 
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and choosing c,-, = 1/6tj+I, ci = l/6, we find 

j+1 

P+l < & z ZjP + 12Mo [ max 1) Y’j’ 11’ + tj+l (m/)‘]. (30) 
3+1 j’=z i<f<j+l 

_ _ 
Now applying Lemma 4 of L’71 we obtain 

P+l Q 12M,e [ 1~~+111 yj’ II2 + fj+l (*I()“] \ 
and therefore 

11 2j+l [I < liil ( max 
l<j’<j+l 

II F’ II + VG IFyH9. (31) 

where 

MO=+ +)‘, Ml=2)f3iMo. 
a=1 a 

Theorem 4. On any sequence of nets n the generating scheme (1) is 

absolutely stable w.r.t. to the initial data and the right-hand side. 
The a priori estimate (31) applies to the solution of problem (l)-(2) 
for p = 3. The solution of the homogeneous equation (1) (Y = 0) with 
boundary conditions z = 0 for n E y satisfies the estimate 

The a priori estimate (32) follows from (26) and 

which gives I’+’ ,(31°. Thus, the scheme (2.13) is 
w. r. t. the initial data in the norm 11 zG II. 

from inequality (29) 

absolutely stable 

‘q’ote. For the second generating scheme (2.14) we have only succeeded 

in Proving estimate (31) with the additional condition 015203 > 0, for 

the quasi-uniform net 0, (1 ~rl< m*z, (see [Al). 

6. After the a priori estimates (23) and (31) have been established 
it is not difficult to show that the generating scheme and, therefore, 
all the algorithms of Section 3, have fourth order of accuracy w. r. t. 

Ihl and second order accuracy w.r. t. T. 

Theorem 5. Let the conditions for r!hich the scheme (2.15) has maximum 

order approximation be satisfied: /i \Y 1; = 0 (1 k I4 -j- 2’) for p = 2, 3 
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and, in addition /I YY, /I = 0 (I’h I4 + r2) for p = 3. Then the scheme 

(2.15) converges in the mean on any sequence of nets at a rate 

0 (I h I4 + T2> I so that for any h, and T we have the estimates 

/l p _ uj-11 II < M (I h I4 + II 9 lIj+J for p = 2, 

II Y j+l - zd+l IJ < M (I h I4 + /I r It, j+l) for p = 3, 

where 11 f (1 0, j+~ =l<~:jl vy u is a solution of the problem (2. l)-(2.2), 

y is a solution of the difference problem (2.15)-(2.16) and J!! are posi- 
tive constants which do not depend on the choice of nets. 

In order to prove the theorem it is sufficient to use the a priori 

estimates (24), (31) and the conditions of the theorem for I/ Y jl and 

II vy, II- 

Note. Theorem 5 still holds for scheme (2.14) if QQQ > 0, and the 
net U, is quasi-uniform. 

5. Three-layer schemes of high-order accuracy 

1. We have only succeeded in justifying the two-layer high-order 
schemes (proving their unconditional stability and convergence) for 
p<3. In this section we consider a three-layer scheme (connecting the 

values of yj+l, yj and ~7-1 on three time layers) which, for p <4, is 

unconditionally stable and has accuracy 0 (I h I4 f z2). 

Let us consider the problem 

(1) 

in the cube 0 Q xa < 1, a = 1, 2, . . . , p. Let &, be a square net, i.e. 

h, = hp = h = const., a, p = 1, 2, . , . , p and let the net &, be uni- 

form. 

In [II the initial schemes 

y;= +A(y+j;+J-g ii _ Y f-g- i 2 bG, P d 4, (2) 
a=1 P>a 
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were proposed for this problem, where 

Y = $+I, j, = #, g = yj-l, ?Jf = (y - b)/2t = 0.5 (YF + jl,). (4) 

It was shown that the initial scheme (3) has the necessary accuracy 

II y - n (I = 0 (h’ + +? with the supplementary condition 

T > To = const.> 0. 

The alternating direction algorithm for the scheme (2) has the form 

(E - A,) ytl) = {&E + + (A - 2Rl) + ‘$ 5 x A& } j, + 
I 

a=1 P>a + [(I -&)E + $A] 2, I 
} (5) 

(E' - Aa) Y@, = Y(a-l) - A,,k> cx > 17 Y(P) 
= y = yj+l, 

A, =+A1 -GE, A,= $Ay., cl> 1. 
I 
j 

The generating scheme was not given, the authors undertaking to prove 
its convergence later. The question of the boundary conditions for a < p 
(see [51) was not discussed. 

2. Our aim is to construct a three-layer scheme for equation (1) 

which is unconditionally stable and convergent at a rate 0 (h4 i- T") 
(foranyy)forp .<4 Ry analogy with Section 2 we introduce the para- . . 
meter 

0.5 

Q =1+1/127* (6) 

If we put u = 0.5 formally in the scheme described below it becomes a 

two-layer scheme of 0 (h2 + 't"). 

Thus, let us consider problem (1) on the same net as in We put 
P 

h, = h and replace 2 h,yT = AYT by the expression Yii in the 
CC=l 

scheme (2.3). Then we obtain the following initial scheme*: 

* We can also consider the scheme (7) as a two-layer scheme if we assume that 

it is given on the previous layer (for t = tj ) as well as ;. 
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(7) 

It is easy to see that it has approximation error 0 (h4 + z"). 

We must fix initial data for the scheme (7) not only for t = 0 but 
also for t = -r. To find y(x, T) we need a two-layer scheme of accuracy 

0 (h’ j- za) (see Paragraph 4). We shall start from (‘7). Using the rela- 

a2u ii% 

tion ats 
( 1 

= ~ (Ui - ii-1 -b 0 (z), we replace !$ (2, T) by the ex- 

pression 

f Yi- f $ (5, 0) + f ijj (2, 0) = f Yi - fLu, (2) + $ LL UO (5). 

As a result we obtain the initial scheme 

Yr = 0.5 fi (Y + ii) - &YF + CPI Y I, = IL, Y (G 0) = uo (49 t = T, 

(8) 

h2 
[” Luo - $LL& + 2 i 

‘p=,, 7 a=1 p=ct+1 

for y(x, T). 

3. We rewrite (7) and (8) in the form 

(E - arh) yi = al r& 

CD [& = F [?jl = 2&j + (1 

+2 (I- 2a) z i 
a=* 

Y I., = PL, y (z, 0) = uo (4, (9) 

- 20) & + \ 

x A&jr, 1> T, 

j (IO) 

P’ i+ 
I 

@ [;I = F, [u,,] = 2a [Au, j-91 for t = t. I 

After substituting for the operator fi - (T~A the product of one- 
dimensional operators Al, . . . , A, = \ we obtain the generating scheme 

A?& = l? A,yi- = (1> 151, 9 I.{ .z- 11, 1/ (.I., 0) = %I (x)9 (11) 
CL=* 

where 

dl = I:’ - UT.\,. (I”) 
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We obtain at once the alternating direction 
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computing algorithm 

Y = i + TV(P), t > r, 

(13) 
u(a) = &+I, . . . A, (pa)pl for x E ra. 

where @ [ij is given by the formulae (IO). 

(z?& = 0, xa = 1) (14) 

4. Let u be a solution of problem (l), y 8 solution of problem (II). 
For the error z = y - u we obtain 

Azi- = F [tl + 2oY for t> IT, AZ, = 209 for t = 7, 

21, = 0 for tE 0,; 2 (2, 0) =o, 2 E WI, 1 
(15) 

where Y and u, are the approximation error of the scheme for t > T and, 
correspondingly, for t = T for the solution u = u(x, t) of equation (1). 
It is clear from the construction of the scheme that 

Y = 0 (It* + x2), 9 = 0 (h* + q, 

if the solution u = u(z, t) of equation (1) is sufficiently smooth. 

Let us go on to derive a priori estimates from which the stability 
and convergence of our scheme will follow. The argument is similar to 
that of Section 4. It must be borne in mind here that u > 0 always. 
Multiplying (15) scalarly by zzi- and using the relation 

x(Aq, xi-) = +;-I? foxa 5 IIx;Jp + 
a=1 

(Jar8 a$1 Bz~n %,&T- IP + * *. 
: 

f . . + @@+I 11 z_ _ r, xz...;Epi- 112* 

z I 13 q Ii” - (1 - 26) (+ zj-11 = 243z 11 .q p + (0.5 - c) 9 (/I q /i”)i -j- 
+ (0.5 - a) T* II zfi Ii”, 

2aTT (At, zi_) = - (TzIi- + a+ 5 11 ZJ;DJ 112, 
a=1 

1 = Ii Ilk,;, I$, 
a=1 

2r (q;9 zi_) = -c (II q I& + 9 II zii IIS, 2% (Yv q-) < z II q IP + -T II y IF”* 

we obtain an energy inequality and solving this, after the usual reason- 
ing, we arrive at the following estimates: 
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(17) 

It follows from (16), (17), (4.26) and the condition z(x, 0) = 0 that 

j+l 

2 z 11 zf (12 + g I/ $1 112 + q Ij+l < 11 ?p 112 + (pq)? (18) 
3'=1 

For the estimate of [I .zj+l 11 for p = 4 we need the following obvious 

1 emma. 

Lemma 4. If z(x, 0) = 0, then 

(1% 

5. Using (17), 

Theorem 6. The 
so that for any h 

inequality 

(18) and Lemma 3 we obtain the following theorem. 

generating scheme (15) is absolutely stable for p \<4, 

and T the solution of the problem (15) satisfies the 

Theorem 7. If the conditions for which scheme (11) has maximum order 

of approximation for the solution u = u(n, t) of the problem (I) are 
satisfied, i.e. 

/j Y !j = 0 (h” -1 t’), ii $ ,I = 0 (h4 + 27, PI) 

then it converges at a rate 0 (IL“ -t t”) : 

for any values of y for p SG 1. 

The proof of Theorem 7 follows immediately from Theorem 6 and condi- 
tions (21). 
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/Vote. In [ll an estimate of the form 

II z j+l II < C(r) II 2 ($9 @ 111 ~23) 

where C(y) is a constant which does not depend on y = -r/h2, was obtained 

for the initial scheme (2). 

6. For simplicity and convenience in our comparison with [II we have 
considered the scheme on the 
2, so that h, $1 he, instead 

y- = 0 5 A (y + y*) - lh12 Y-- 
f * 12 tt 

square net oh. If oh is the net of Section 
of (‘7) we have the scheme 

+ 5 2 hy*,hpy, Ih12 = h;+ .** +h;. 
a=1 P>a 

It is not difficult to construct the generating scheme 

A 1.. . A,yr = F &I, A, = E - T(T&, 

(24) 

(25) 

and we can see that Theorems 6 and 7 remain valid in this case also, for 

P<4. 

The scheme for a non-homogeneous equation (1) is written by analogy 
with Section 2. The problem of finding schemes of accuracy O( 1 hl 4 + 7') 
which are absolutely stable for p > 4 is of interest. 

6. A scheme of high-order accuracy for an equation 
with mixed derivatives 

1. Economical schemes of accuracy 0(1~’ + T) were described in [I41, 

[cl, [II] for the parabolic equation 

Let us show that we can construct a scheme of accuracy 0 (h4 + .t”) 
for the case p = 2, when a,p = const. 

Without loss of generality we can take a,, = az2 = i, aI2 = azl+ so 



1132 A.A. Samarskii 

that 

b1aI < 1 - Cl. (2) 

Thus in the region 0 < xa < 1, (a = 1, 2), 0 < t < T we consider 
the problem 

a4 
- = Lu, at u Ir = CL (29 G, u (x, 0) = ug (x), 

LU = (L, + L, + ~+&L,J a1 a = 1, 2; Ll,U= as, 
(3) 

2. Let Oh be a square net with step !I, 4 a uniform net with step T. 
To approximate to L,,u we use two difference operators: 

A& = 0.5 (up& + u,z), a;*u = 0.5 (us;; -I- z&J. 

After calculation we ‘have 

A& = L,u - 2 Lfdz + ;L1s (L, + L&J + 0 (h’), 

Putting 

we find 

Ay = (A1 + A, + 2ar,AZ) y, AaY = Y;;,,a? 

Au = Lu + $ [Lf + Li + 4aI& & + L,) ‘F 6a,&J u + 0 (h’). 

Using equation (2), after a number of calculations we obtain 

0.5 (A, + &) (u -I- L) + 2a,&; - g uii i- F(i -k 2aT, f 3a,,) hIA,; = 

= Liz + 0 (h’ + .G~). 

The operator AZ is chosen depending on the sign of a12: 

A,, = A,, 

A,, = A:2, 

if a12<0, 

if au>O. 
(5) 

3. Now let us write down the initial scheme of order (4,2) of approxi- 

mat ion: 
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y; = 0.5 (A, + A,) (y + ;) + 2a,,& - ; yTil + ; b&A& 

where 

b = 1 + 2& - 3 1 aI, 1, yp = (y - ?&22 = 0.5 (y7 + &). 

The generating scheme will clearly have the form 

Ayy = A&y,- = F Ii, &I, &IT = p for t>z, 

Ayi- = F, [q,l, Y IY = P (% $9 y (5, 0) = 7x0 (2) fort = T, 1 

where 

A, = E - azAa, a = l/(1+&), 

F [i, iI = (1 - 2a) & + LS A (i + G) + 4m,,Alz~ + 2 (1 - a) zbA,A.$. 

We shall not write out the expression for F, [u,] (see Section 5). 
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(6) 

(7) 

(8) 

(9) 

(IO) 

The alternating direction algorithm is written by analogy with Section 
5. Let u be a solution of problem (3) and y a solution of problem (8); 
for their difference we have 

AZ, = F [i, :I + 2aY, t>z; Az,=2a$, t=r, 

I 
(11) 

21, = 0, 2 (2.0) = 0, 

where Y = 0 (h4 + r2), II, = 0 (h4 + TV), if u = u (z, t) E Cp’. 

4. Multiplying (11) scalarly by 2 (zF f zi) we obtain the energy 
identity 

T I: 2~ + iF 11” + z (I + & + 0.5 at4 (11 z;;,;~ lj2)T- + 0.5 az3 11 zG;r;i + &--jr - 

_- 4Q.i.2 (AlzvZ, 2 - r) = -p z (11 Zi112)i- + ~ bZ (z~, Z;,~)r + 2~ (Y, Zi + ~~). 

It is not difficult to see that 

(A& Z - i) = - 0.5 Z (QL2)p 9i2 = (i;,, Z;,) + (Z;,, Z;,), 

(A:$, Z - i, = - 0.5 z (Q&, Q:2 = (ix,, z;,) + (Z&, i;,,. 
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Following Section 5, we find 

We use the identity (v, ~)=0.5(11~1~-j-112, r)-0.5r21/ u#, v=G,;;. Let 

b > 0. Then the term - 0.5 t2~bI/z~~T/l can be ignored, and Lemma 1 

can be used to estimate h2j zGGj/“. A s a result on the left we obtain the 

expression (I- $b) (I’+’ + Ii) = [I al2 I + $ (1 - ai2)] (I’+’ $- I’) on the 

left. For definiteness let us consider the case AI2 = A,, i.e. al2 CO. 

Writing & = 2;:, ka = zj;., we find [I cl2 I + + (1 - &I C.“,+ %J + 

2a,,& > $(I - d2) (G + 83 > + 8 (Et + k.3, since 1 - 42 > 6. 

As a result, inequality (12) takes the form 

By analogy with Section 5 we find 

and therefore 

I’+l + I’ < j$j [//$[I2 + (I(Yj+l)‘] for any T = j$ (15) 
1 

Since b > 0 for / ~12) < 0.5 estimate (15) is valid for cl = 0.5. 

Let b < 0. Then we can ignore the term 

0.5 ; b (II 2;;: II2 + 1 zix, l12), 

in (12) and take the term with I/ z$$/12 to the left-hand side. Then on 
I 

the left we obtain the expression 
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The coefficient 0.50 - h2 ) b 1/6z > 0, if the condition 

r>Tro= ;[++1/1+6] for b= 1 +&&--3~Ua,,I<0 (16) 

(i.e. for I aI2 I > 0.5) holds. 

Since max 16 1 = $ , max To = [I + 1/fil/48. Using (16) we again 

arrive at (15). 

5. We have thus proved the following theorem. 

Theorem 8. The solution of problem (11) satisfies the a priori esti- 
mate 

if condition (16) is satisfied. If la1,1<0.5 then the estimate (17) is 

true for any y = T/h2. 

Theorem 9. If condition (16) holds and 

jl$ II = 0 w + r2), /I y II = 0 @’ + T2), (18) 

then the scheme (8) converges at a rate 0 (h* + r2), so that 

II Y - u II < M @’ + r2), 

where M is a positive constant which does not depend on h and T. 

(19) 

Theorem 9 follows from (1’7) and (181. 

ivote 1. If the new variables X: =x,/G, are introduced, in equa- 
-- 

tion (1) we obtain CZ&~ = 1, nip = a+/ J/u,,app. The square net & which 

we have used corresponds to the variable xi. Since Ax’, = Ax=z/I/c, 

in the old variables the steps h, must satisfy the condition ha/ )fc= 

h = const. All the results of this section still apply if the steps h, 

are so chosen that 

Vote 2. If cl = 0, i.e. )ai$ < 1 then besides (18) and (19) we obtain 
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the estimates 

II zjsl + zJll < v tj+l(VTll Q II + 2 II yj+l II). 

II(yj+l+yj) -((uj+l+.j)(IgM(h4+22). 

(W 
(19’) 

When deriving (18’) in Paragraph 4 we must use the estimate 

22 (Y, ZT +*z,) < 0.57 11 ZI +“q 112 + 22 11 Y j/a 

for 2t(Y, 2; + lZT) . 

7. Schemes of high-order accuracy for equations 
with variable coefficients 

1. Let us begin by constructing a scheme of order (4.2) for the heat 
conduction equation for one space variable. Let it be required to solve 
the problem 

s = Lu + f (2, 2), Lu = g (k (z, t) 2) , at O<x<l, o<t<T, (1) 

u (0, t) = Ul@), U (1, t) = U2 (t), O<t<T; 

u (x,0) = uo(2), r;>c,>o 
(2) 

inT=(O<s<l, O<t<T). 

We consider the homogeneous difference scheme (see [131) 

(3) 

AY = (K/;),, a = a (2, t) = l/A[p (z + sh, t>l, -Ifs<O, p= + , 

approximating to the operator Lu. Here A [p (s)] is a linear pattern 
functional satisfying the conditions 

A [lI=l, A [sl = - 0.5, A Is21 = $, A IfI > 0 for f>o. (4) 

The scheme (3) has second order approximation w. r. t. h. After a number 
of calculations-u;e find 

i,.ZL = (au-) = .\ s IA21 -f- 1; L (pLu) + 0 (It”), p (17 t) = &j. (5) 

If u = u(x, t) is a solution of equation (l), then we can express Lu 
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from (1): Lu = du/dt - f and substitute in (5): 

Au = Lu+ 2 L (p g - pf) + 0 (h4). 

It follows that the scheme (for the notation see Section 1) 

YF = OS* (Y + ii> -; A 0%) + 9; Yo = Ul, yN = u,; y (2, O)=u,(z), 

(6) 
where 

Cp = [f + LA @f)li+“. Ay = (U (2, tj+l/,) g;;>,, (7) 
_A 

has fourth order approximation w.r. t. h and second order approximation 
w.r.t. -r for the solution u = u(x, t) of equation (1). 

We can write equation (6) in the form 

Ys = Roy + fi (I - 4 y + ‘PI u = $(I-kp). (8) 

To find y on the new row t = tj+l we obtain the problem: 

AMY,_, - Ciyi + &yi+r = - Fi, Yo = u19 YN = ua 

where 

(9) 

Ai = U~TU+~ = Os5Ui ‘r- ‘q p t ) Bi = 0.5ai+, 

Ci = 1 + 0.5 (ai + ai+J(y-:j, 7~ T/h2. 

It is clear from this that Ci = Ai f Bi + Diy Di = 1 -k (~i+lp,,~ -I- 

aip;J >0, if h <ho is sufficiently small, or, more precisely 

h 1 ;‘Jp I< c’ < 6. W e can use successive substitution formulae for the 
solution of problem (9). 

2. For the error z = y - u where u is the solution of problem (1) 
and y the solution of problem (6) we obtain the conditions 

Zt = 0.5h (z + k) - ;A (PZT) + 9, zo = - - 0, b.N - 

2 (z, 0) = 0, 

(10) 

(11) 



where y is the approjrimation error of the scheme (6): 

9 = 0 (h4 + z”). (12) 

We investigate the stability of scheme (10). By analogy with Section 

1 we write down the basic energy identit? 

cc&,-* q--l + z (9, 2;). (13) 

We transform the sum 
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((p'i_)T, az;;il = (aP, zzi] + (aal-7 z~ll&]* 04) 

We shall assume that the conditions 

0 < c; < P < Cl7 
8P 

II 
& G 59 

aP 

I I 
aj \(GJ, (15) 

are satisfied, where c;, cl, c,, e, are positive constants. We shall then 
have 

o<c;<+<c1, 
I( 

1 
a ; \<c2, 1 I 

2 

I( )I 
-a r \<c3. UfO 

Using the relation 

+zi-19 ’ ac, < C&l, p\<I+Mh, M = IIf (cz, c;> > 0, 

and Lemma 1 we obtain 

T II zi_ I$ + 0.5 1 < 0.5-t* + wc;> 1 + (c* + MIT) II 21 II" + &[I$ Ii", 

(17) 

I = (a, $1, a (5, t-l,,) = a (z,O), M, = M(c', c2, cs), 

where CO is an arbitrary positive constant. We have used the estimate 

fz (a&, z;-l)z;jl< 7 1127 j]“. 

If h is sufficiently small: 

h =G h,, where ho = ho (c,, c;, c2, CJ > 0, 

from (1’7) we have 

(18) 
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From this we find (for z(x, 0) = 0) 

1 < M' w llj29 11 zi+1 110 < M pp+q, M = M <c;, c2, c3, c3) 

By analogy with Section 1 we can use the estimate 

r (97 3r) = r ($7 317 - a (*, H) < r NJ1 3)T + 0.5%r + &~ilo,-k 

for < ($, q). Then, instead of (19), we shall have 

1 < (1 + (c* + c0) z) i + 22 ($9 317 + &I r II Q,i- II2 
with the condition 

h < ho, h, = h, (c;, ~2, ~3). 

As usual from (22) we find 

I/ zitl iI0 \( M ( I~~~~+llVll + llWi$Ti) for 2 by 0) = 0, \\ 

li z;+’ II < Ml1 2, (G 0) II for d, = 0. 

This proves the following theorem. 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Theorem 10. If conditions (15) are satisfied, then for sufficiently 
small h \(:to and any T the scheme (10) is absolutely stable w. r. t. the 
initial data and w. r. t. the right-hand side q~, so that estimates (201, 
(24). (25) hold. 

Theorem 11. Let the conditions for which the scheme (6) has maximum 
order of approximation (12) be satisfied. Then the scheme (6) is uni- 

formly convergent as h and I/ T /i. = max ‘tj tend independently to zero, 
0: 

so that for sufficiently small h <ilo we have the estimate 

Ii y - u $,’ ’ < M (h4 + II ‘t I]$, (26) 

where J! is a positive constant which does not depend on the net. 

4. Up to now we have been assuming that the functional A [CL (s)] 
satisfies conditions (4) only. and is otherwise completely arbitrary. It 
is not difficult to see that the pattern functional 

(27) 
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satisfies conditions (4). However, this functional is not always suitable 
for practical purposes. The most suitable functionals in calculations 
are the “discrete” functionals [131 which depend on the values of the 
function at a finite number of points. In particular, the functional 

-4 [p (s)l = $ [v (- 1) + P @)I + f I4 - 0.5) (28) 

satisfies conditions (4). In this case the coefficient l/a is equal to 

1 
- = $ (Pi-1 + Pi) + + Pi-l/*, ai Pi-l/, = P (Xi-1\2, t)t (29) 

where X+J, = xi - 0.5 h. Theorems 10 and 11 are valid for the scheme 

(6) in which the coefficient a is calculated from formula (29). 

We have restricted our attention to a scheme of order (4.2) for the 
simplest equation (1). Using (5)) it is not difficult to show that the 
scheme of high order accuracy for the equation 

c (x, t) 2 = -& (k ( x, t) ;+) - q ($7 t) u + f (x7 t) (30) 

has the form 

c (x7 Q+l/*) yr = 0.5 A (y + ii) - ;A (cp yc + pqy) - 4j+‘l’!/+ cp, (31) 

where cp and Ay are given by formulae (7). With corresponding conditions 
Theorems 10 and 11 remain true for this scheme. 

5. Similarly, we can construct a high accuracy scheme for the heat 
conduction .equation with several space variables. Here we shall restrict 
our attention to the case of two dimensions (p = 2). see Section 2. 

We shall consider the problem 

(32) 
8’1 

~=~L.uff(r,t), L&=a& j7&J’ 
i O<x, <I,* O<ldT, 

Cr=l 

u (x, t) = p (x, t) for za = 0, xa = Z,, a = 4,~; ZJ (x, 0) = &J (5). (33) 

To simplify the argument we can without loss of generality take the 

net ah = {(i,h,; i.Jz2) E G} to be square, i.e. h, = 1,/N, = h = const., 

a = I.. 2. The net 4 is arbitrary. Let us define the net functions aa 

with the help of the functional A [p (s)] from Para. 1, putting 
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a, = a, (zJ=l/A [p1 (xl+ sh, x2, t>l, t= t - 0,52, 

a2 = u2 (s,t)=l/A [pz (21,22 + Sk $1, 

&?I =%W& A = $)A~. 
a=1 

By the argument of Paragraph 1 we can see that the initial scheme of 
order (4,2) of approximation has the form 

yr = 0.5A (y + 5) - ;$ Aa (P& +; [A, (p,A&) + A, (~,A,$)lt cpv 
a=1 

(34) 

cp = fj+'lr + g 5 (A,p,f)j+'l~. (35) 
a==1 

6. Let us find the generating scheme. Introducing the notation 

6, = ; (1 - g pa) (36) 

2 

and replacing E - z x A,Q~ by the product A,A,, where A, = E - 
a=1 

7ba, we obtain tne generating scheme 

y = p for 5 E 7, t E Or; y (CT-, 0) = u. (2) for 5 E Oh+ (35) 

The reduction of the generating scheme to one-dimensional alternating 
direction algorithms is achieved by analogy with the case of constant 
coefficients. Here we shall just give algorithm ‘4 (see Section 3): 

” 

Y(,) - Y 
-- = ‘2ps&) + 0, Y(2) - !/Cl) 

-_ 
z t 

=A+y(2), yj+l = Y(2), (39) 

CD = i A, (1 - a,) c + z [A, (0.5 - 01)A2?j + A, (0.5 - a,)&~] + cp. 
a z-1 

7. Vow let us discuss the basic problem, that of the stability and 
convergence of the generating scheme. Let u be a solution of the initial 
problem (32)-(33). y a solution of the difference problem (37)-(38). For 
the difference z = y - u we have 
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ZT - 0.5 AZ + T2A,6,A2G2Zt = 0.5 hr - ~a$l*L7 (p,z,-> + 
(40) 

+ zAl (0.5 - a,) A,t + zA, (0.5 - 02) A,s + Y, b, 4 E QT, 

z=o for z E 7, t &IL z(x,O> =o for XEOh. (41) 

Multiplying (40) scalarly by 22z,-, we obtain the basic energy identity 

22 II 27 II2 + &b* “:,]a + 23 (A,qbw,, zi) = i,(~, fz;olla + 

+ g r ~UP&,~ 

(42) 

a,~~~~]~+ ~(AlplA,~ + Ati,,@, q) + 2% Vu, zi-). 

We shall assume that 

Constants which depend only on c;, cl, c2, cs, c4, are denoted by .J!. 

8. As in the one-dimensional case we find 

(44) 

Now let us estimate the other terms in (42). 

Consider the expression 

A2 = ‘;(&p,A,% q) = -T ((plA2z),, a,~;,~). (45) 

Lemma 5. If conditions (43) are satisfied, then 

Estimate (46) follows from the expression 
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which is obtained from (45) after the use of Green’s formula for the 
variable x2. 

9. Lemma 6. For any a,, a = 1, 2 we have the estimate 

where 

Using Green’s formula for x1 and x2 after a number of transformations 
we find 

The underlined expression is maximised as follows: 

a) < M,z (I + i) for u= > 0, a = 1,2; (49) 

b) < Mi dz /I zt Ija for o, < 0. (50) 

To estimate the last two terms in (48) we must examine separately: 

(a) 0 Q CL < 0.5, 6) ua < 0 and, therefore, Ij.ucr [I,, < NcJl22. 

We also need the estimates 

2@‘)o, + 1 - o;-11’ - &l”)= 0.5 (1 + (I--2cp’) (I-2u,)] + (u,-up))> 
> 0.5 - M,h3/z, (51) 

Mh3x2 /I z;;,;~ lr” Q ~4;’ 12 II z;,,~ II II 2; II < w3 II z,,;;,? Ii” + Md2 I/ q/12. (52) 

10. Now, collecting together all the estimates (441, (46). (47), (51), 
(52) and choosing CO we obtain from (42) for sufficiently small h and T, 

h < &I, r < To, (53) 

the energy identity: 

(1 - M9zj+I) I’+‘< Mloj&.li~*l + ; (ala2 (pi-“’ + P;-~~)), z:~;)~+‘+ 

+ (1 + M,otJ I(O) + Mu (II)‘)“. 
(54) 
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(-1,) 
For sufficiently small h < h, we have a,p, < 1 + Mlah. We use the 

inequality 

We arrive at the following inequality: 

11 i+l II < M,, II 2; (5, 0) II + &+lij for h -< hot f < ~0, 

where M12, .M,, are positive constants which depend only on ci, cl, . . . . 

c4, 11, 12. 

11. We have thus proved the following theorems. 

Theorem 12. If conditions (45) are satisfied, then the generating 
scheme (34) is unconditionally stable w.r.t. the right-hand side ‘f’ and 
the initial data, so that for sufficiently small h and T we have the 
estimate 

II zj+’ II + II 2; If+’ < M II Z;(G 0) II + M’ r-1, h < ho, II t IJo < ~0, (55) 

where ho, TO, M and V’ are positive constants which depend only on ci. 

Cl, c2r c3, C4r ll, 12. 

7’heorem 13. If the conditions for which 

Ii Y /I = 0 ( 1 h r + r2), (56) 

and conditions (43) are satisfied, then scheme (34) converges as h and T 
tend independently to zero so that, for sufficiently small h and T we 
have the estimate 

IIyj+l - uj+l II < M ( I h I4 + [I t2 /I j+l) for h < ho, z < r. 

where ,\I are positive constants which 
net. For a hyperbolic equation 

also we can write down economical high accuracy schemes. 

Using the above methods we can show that the generating schemes 

rl = ii&, rl, = E - uzzz2ilz, Ay = 3$ - (,? + 0.5 T2)& 

do not depend on the choice of the 



Schemes uf high-order accuracy 1145 

a=1 

Ayi- = (E - 0.5 TEA) ii- + zA$ 

are absolutely stable and converge in the mean at a rate 0 (X2 j- Ih I’). 
We shall examine the question of economical schemes for multidimensional 
hyperbolic equations separately. 

Translated by R. Feinstein 
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