SCHEMES OF HIGH-ORDER ACCURACY FOR THE
MULTI-DIMENSIONAL HEAT CONDUCTION
EQUATION*

A. A, SAMARSKII

(Moscow)

(Recetved 21 June 1963)

In [1] an economical scheme is put forward for the heat conduction equa-
tion
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with accuracy O(h* + 12), where h is the step of the space net, and T
the time step. It is a three-layer scheme.

In this paper (Section 2-4) we examine two-layer schemes of O(h* + 12)
(i.e. of order (4,2)) which are suitable for p <3.** They are put into
effect with the aid of a number of splitting algorithms or alternating
direction algorithms which involve practically the same number of oper-
ations as the corresponding algorithms of O(h? + 12) (see [2]-[6]). 1t
is shown that these schemes are absolutely stable and that for any values
of y = 1/h? they converge in the mean at a rate O(h* + 12). In Section 5
we consider a three-layer scheme of order (4,2) which is more economical
than the scheme of [1] and is suitable for p <(4. This scheme is abso-
lutely stable and converges for any y (the scheme of (1] converges for
Y >Yo = const. > 0).

* Zh. vych. mat., 3,.No. 5, 812-840, 1963,

** Note added at proof stage. After sending this paper to the printer we
succeeded in proving that our scheme is absolutely stable and con-
verges in L,(w,) at a rate O(lh))*--7%. The corresponding proof will
be published separately.
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A scheme of order (4,2) for the equation

2 2 2
du %u 2
T X W X el > Nka e = const.
a, B=1 * "R a, B=1 a=1
is given in Section 6.

In Section 7 we examine two-layer schemes of the same order of accu-
racy for the equation with variable coefficients,

N
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1. A scheme of high-order accuracy for the
one-dimensional heat conduction

equation
1. Let the problem
u -7 Lu — 0%u . 1
'E—_' u+f’ u"_w’ f—f(x’t)y ()
u (0, t) = u, (¥), u(l, t) = uy (t); u (z, 0) = u, (2). (2)

be given in the rectangle D = (0 C z <, 0 <<t <<T).

Let us introduce the difference net Q@ = @p X @, = {(z:, 1) =D},
where op={z;=1ih, 0<CiKN, h=IUN}, 0. ={t; 0K, L, =0,
tg = T). The net Eh is uniform, and GT is an arbitrary non-uniform time
net with step tj, = f;; — f;. We shall use the notation of (7] putting

y= ?/gﬂ = ¥ (Zi, tja)s i’/ =y, y*» =y (2; L h, tj), T = Tjs
=W —yNh, oy =G —yh, oy =G—y/r, Ay=y;.

To write down the high accuracy scheme we use the asymptotic expansion

h? 6%
12 9zt

ou

Au=u_ =Lu+ +0(h4)=Lu+1i22L(-—67—f)+0(h4),

where u is a solution of equation (1). It follows that
0.5A (u + &) = (Lu)i*s + 42 A (uz — ) + O (%) + O (1),

where u/t'h = u (zx, tjs,), vy, = 0.5 (¢ + tj4), i.e. the scheme
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v h?
yr =0.5A(y + ) —z Ayr + o, (3)
h? +s i _ 5 +Va
o= (f + M ={ ¢+ + 5 1}
has fourth order approximation w.r.t. h and second order approximation

w.r.t. T.

The scheme (3) is usually written in the form

yy=0Ay + (1 —0)Ay+0; yo=u;, yn=1uy y(z, 0) = uy(z), (4)

h2 1 .
o =05 (1 — F) = 0.5 (1 — G—T), 1 = /R (5)
To find y = yJ*! we have the problem:
WAy —y = — F, Yo == Uy, YN = Uy} F=y+1t(1—o0)Ay+ 19,
or
ory,, — (1 —207)y, +ovy,,, = —Fi,  yo=uy, Yy =uy (6)

The solution of this problem for any values of y, i.e. for — oo <(0 <
0.5, can be found with the known formulae of successive substitution [8],

[9]:

SY

ai+1: 1+5T+GT(1_a1) ’ 0L1=0, i=1,2,...,1V——1,
_ o8 + F; _ . N

Bin = Tortor(—ay > B =% i=12...,N-t

Yy = %Y, + B Yy = U i=1,2,... ,N=1

Computation with these formulae is always stable, since
_ 1 1
ay = 0.57_E>—U.

Note. In the book [9] the schemes 6 and 12 are considered separately
on pp. 108 and 109. It is not difficult to see that both these schemes
are algebraically identical to scheme (4).

2. In order to discover the order of accuracy of the scheme (4) we
have to find estimates for the solution of the problem

z; = 0Az + (1 — o) Az -, 2o = zy = (0, z(zx,0 =0, (7)

\

where z =y — u, u is a solution of the problem (1)-(2), y is a solution
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of the problem (4), ¢ = dAu+ (1 — 0) Az + ¢ —u; is the approxima-
tion error of the scheme (4).

We have not succeeded in discovering any published proof of the uni-
form convergence at a rate O(h* + +2) of scheme (4). We therefore
thought it desirable to give this proof here, despite its elementary
naturg< Moreover we use a similar method in Section 4 when studying the
convergence of multidimensional schemes of the same order of accuracy.
In [10], where an attempt was made to obtain the corresponding estimate,
there is an error which was pointed out to us by V.B. Andreyev (the con-
dition 2n - 1 > 0 in Theorem 5 should be 2r - 1 < 0 or ¢ > 0.5 since
n=1-o0).

3. Let us consider the more general problem
zr = Az — tAz; + v, z, = zy = 0, z (z, 0) = 2° (z), (8)

where n is an arbitrary parameter, and let us find the conditions for
which the scheme (8) is absolutely stable w.r.t. to the initial data and
the right-hand side. Inserting

n=1—0=0.5(1—|———), 9)
in (8) we obtain the scheme (4).

We need the notation of [7]:

N-1 N
2 = dyiwh, (@ 0]l = wwk,  |ylo-= max |y,
i=1

i=1 @h

ll=V@ D lozl= VT 2]

(y, v are arbitrary functions given on Gh) together with Green’s differ-
ence formula

(¥ v2) = — (v yz],  if yo=yy=0.
Lemma 1.
Izl <5l 0P, (10)
where v is an arbitrary net function, given on @p, vy = vy = 0.

For R [ugff = (2 — o0, v — o] < 2 (2 + (o0)2, 1],

Let us write down the energy identity for (8). Multiplying equation
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(8) scalarly by Tz and using the relation

vvy = 0.5 (¥P)y + 0.51:1;2? (v% = (), (11)
we obtain
Tz P 4 0.57 (| 2z [); = (0 — 0.5) Tz [ + 7 (¥, 7).
If <05 (6>05), then n — 0.5 0 and the corresponding term
can be omitted if we replace the sign = by §§. This case has been ex-

tensively studied. Let us therefore consider the case n>0.5 or o< 9.5.
Inserting v = z;y 1in Lemma 1 we find

Tl — 4 —05) Y|z + 05t (2P <T@ z) (12
Theorem 1. If the condition
1 <05+ ‘%T (1 — &), e = const.> 0, (13)

is satisfied, then scheme (8) is absolutely stable for any h and T:

el <I < 5 @ O+ 55 1V, (14)
where
W= (3 wive)" (15)
If
n <05+ 4, (16)
then
122 <) 2z (2, 0) | + M (9™ | + [9F), (17)

where M is a constant which depends only on T and [.

The estimates (14) and (17) follow from inequality (12). To prove
(14) we must use the estimate

TP z) < etz B+ I

and (13). In the case of (16) we have

Ti2

T, z7) = T, )y — T (P, B) KT (W 2)p 6T |2 * + —4?0”\17,-”2,
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since
VT
lzo < 5l 2 |- (18)
The subsequent argument is similar to that of [7].

4, Let us turn to problem (6). Comparing (6) and (8) we can see that
n =0.5 + 1/12 y for the scheme (6), i.e. condition (13) is satisfied.
Theorem 1 (for &€ = 2/3) gives

|54y < L[4, (19)

We have proved the following theorem.

Theorem 2. If the solution u = u(x, t) of the problem (1)-(2) satis-
fies the conditions for which the scheme (4) has maximum order of appro-
ximation

(o] < M (B + 7%,

then scheme (3) converges ugiformly at a rate O(h* + 12), so that on an
arbitrary sequence of nets Q we have the estimate

7 ’ _l
19 (@ ) — (2 ) lo < M7 (B4 + | @), M =3y,

{3

where ¥ is a positive constant not depending on the net, and

b= (3 e w)”

i'=1

‘

2. Schemes of high-order accuracy for the heat
conduction equation with several space
variables

1. Let us consider the heat conduction equation with constant coeffi-
cients:

A N 4y
R O]
x=1 x
where x = (x1, ..., xp) is a point of p-dimensional Euclidean space.
Without loss of generality we can take x, =1, since this can always

be arranged by introducing the new variables x - - 2V n,. Tet



Schemes of high-order accuracy 1113

G={0< 2, <l a=1,2,..., p} be ap-dimensional parallelepiped
and I its boundary, so that G = G + I'. We put Qr = G X (0 <t < T1,

Qr= Gx [0 <t < T]. In the cylinder Q_T_ we look for a solution of
the first boundary-value problem:

du P Au
s=lut @y, Lu= NLwu Leu=—=, (9€Q, O
a=1 a
ulp =p(z,t), o<e<sT; u(z0)=1u(2), =& (2)

Let us introduce difference nets. Let ®; = {xiea} be a space net;
here z; = (iyhy, . . ., iphyp), w=0,1,.. ., Nogy a=1,..., p,

hy = l4/N,. The net Gh is uniform only w.r.t. each of the space vari-
ables, the steps hy and hﬁ in general being different when o # P. Let

on, = {r; & G} be the set of internal nodes, 7 = {r; I} the set of

boundary nodes, T, the set of nodes of the boundary y for which x4 =0
and y; the set of nodes of y for which x4 = lg.

The net . = {L =0 <<t T, 6, =0, tx =T, 0<j<K} is non-
uniform, its step T = fj, — £ >0 only satisfying the normalisation
condition

Zr,' = T.

i=1

We put .= {t;=(0 <t < Tl}, Q = opXw., Q=0op X, Following
(11], [12] we use the notation v = v (x; tjs) =0 (z, t) = vi*, b = 27,

Yo (t1g) __ +1g) +1g) .
T=Tjyy, T=7T; v ¥ =0 (x( ), 2 =(ih, ..., tacg Pacys
. , . -1 1
(la + 1) ha, lat1 ha+1, o« o ey lphp), v;a = (ZJ‘— v( a.))/ha, vxa == (U(+ a) U)/haw

ve = (v—8)/v;, |h|=VE+ - Fh

2. Let us go on to derive schemes which have fourth order approxima-
tion w.r.t. |h| and second order approximation w.r.t. T (schemes of
order (4,2)). By analogy with Section 1, Para. 1 we have

h2
Aju = u=  =L,u + 1—°‘L,Lau 4+ O (h).

XqXq 2

Inserting
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from (1) we find

ou kg
T 2 LoLpu — ~- Laf + O (3).

h2
Agu = Lou + T;— a
B>a

It follows that the operator

P P
0.5A (u + &) — 45 SR Ay + 5 3 hilZ AxAgit ——Aaf}
=]

a=1 B#a

has approximation error O (|2 |* 4 1% in the class of sufficiently
smooth solutions u = u(x, t) of equation (1) w.r.t. the operator (Lu)*%,
Therefore the difference scheme

1 & - .
hi Aayt‘ + 1 ! hi Z AaABy + o, (3)

INAE

1

a=1 =1 B#a
— LS RALF P A= S1A 4
@-(f’*“fZaaf) , *Z o ()
a=1 a=1

for the solution u = u(x, t) has approximation error
Y =0(ht+ ).
We introduce the notation
0, = 1?(1 — KE/6T) )

and use the relation h2/12t = 0.5 — 0,. Then we can write the scheme
(3) in the form

7
Yr = 2 0aAgy + (1 — 0y) Aﬂ?j/] + TRp?) + @, (6)
y=Uu for 2EY, t€0s Yy (2,0) =u,(2) for TS wp, (7)
where
I Il
Z A Aﬁ Yy = Z Z 1 — 0y — ()',r;) AaAﬁy, (8)
B>a a=1p=a+t1
Roy -~ (1 — o0, — 05) \Agy, Ryy = (1 — o, —0y) MAy - (9)

-l — g, —og) AMAy (1 — 5, — 05) Ay

Inserting ¢4 = 0.5 formally, from (6) we obtain a symmetric second order
scheme, and for o, = 1 a purely implicit scheme.

Below we call (6) the initial scheme.
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3. Following (2]-[6lwe form a scheme with a split operator on the top
row which has the same order of approximation as the scheme (6). We call
this scheme the generating scheme. When p = 2 the generating scheme
obviously has the form

(E — 10, A) (E — t0,A0) y = (E + (1 — 0y) TAD)(E+ t(1 —03) Ay)§ + 1o,

where E is the unit operator, or

2
yt_ = 2 [GaAa Yy + (1 - Ga) Aag] + TR2§ - 120'102A1A2yt—+ . (10)

a=1

Comparing (6) and (10) we see that the generating and the initial
schemes have the same order of approximation in the class of sufficiently
smooth solutions of equation (1).

When p = 3 we choose the generating scheme

3

3
[ (B — w.A)y = [E + 12 (1 —0a) Ax + 2R3+ 12Q; —
a=1 a=} (11)
— 7%0,0,05MA:A4] § -+ 19,

where K3 is given by formula (9) and

3
Q3 = 610,017, + 0105043 + 0,050,8;5 = D) D) 0,05A.Ag. (12)

a=1B>a
Let us rewrite (11) in the form

3
y; = 2 [0:Aay + (1 — 0a) Auy] + TR3Y — v Quyp+- (13)

a=1

+ 1%0,0,03A AoAgy; + 9.

It is not difficult to see that its maximum order of approximation in
the class of solutions of equation (1) is O (|k|* 4+ 1%). Together with
(13) we shall consider the simpler generating scheme

3
Y. = 2 0. Ay + (1 —a) Ayl TRy — 2 Qsy;+ 7°0,0:0501 A5y + ¢. (14)

a=1

Thus we nave rut the initial problem (1)-(2) in correspondence with the
difference prcblen

Zolyl =0 for (z, 1)e=Q, (15)
y=p(z,t) for zy, to; y(x, 0) = u,(x) forr=wn (16)

where Z, [yl = 0 is equation (10), ZL5lyl = 0 is equation (13) or
(14).
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3. Computational alternating direction algorithms

1. The solution of the multidimensional problem (2.15)-(2.16) can be
reduced to the successive solution of one-dimensional algebraic problems
Ww.r.t. the directions x, ..., z, (see [2]-[6], [15]). This reduction is
usually called the splitting (factorisation) of a multidimensional oper-
ator into one-dimensional operators, or simply splitting. Several com-
putational alternating direction algorithms correspond to one generating
scheme. Thus, for instance, it is not difficult to see that the algo-
rithms of [3] and (5] correspond to the one generating scheme which is
a special case of scheme (2.13) for o, = 0.5 and, therefore, Rp =0, Let
us find another algorithm for this scheme. Putting y =y + g, we
write this generating scheme in the form

)
Ay, =85+, 4. =E — 0514, (1)

a=1
From this we have the algorithm

B’ Ay =AY + @, AcV@ = Va1, 2>t Up = ¥p 2
y =7+ to.

In accordance with (5] to find v, for &Y., 1 <Ca<(p, we must use
the formulae

Py = Apgr -+ - Ag¥n ¥r =@ =)= I,

B, =W for zey,. (3)

This algorithm is more economical that those of [2}, (15]. In particular,
it is suitable for the solution of the stationary equation

Ay +9 =0,

by the iterative method, since in this case yp = 0 for ze=+y and we
always obtain the homogeneous boundary condition vy = 0 for v for
xEYa) ‘I:‘, A D

2. For the generating scheme (2.15) we use the algorithms given in

(2]-[6].

Let us first consider the two-dimensional problem (p = 2), We intro-
duce the fractional step £j35, and put yu)==y5+vt the corresponding

value of the unknown function y. Let us construct three one-dimensional
algorithms (see [2], [3], [5]).
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v Yy —Y
W =0y Ay, F P, =2 = oy, (4)

2
FIil=D (1 —0) Ay + (1 —0) (1 — o)) TA A (5)
a=1

The boundary conditions (2.16) are given only for ; and y. According to
(5) we can find the boundary values for y(j) from the formula

y(” = A2y for X, = O, Ty = ll' (6)

The order of the computation is as follows: we find y(1) for x & y;
from (6), calculate F [#] from (5) and then, using the one-dimensional
successive substitution formulae (see Section 1), solve successively
equations (4).

B.

¥ = 0lAly(i) + (1 —o0) Ay -+ — Ay + o, @

1
o1

11— cl)cfi — GZ)Az?},

¥, = 52A2y(2) - y(z) =Yy = yj—H s (8)

(1 —o1) (1 — 02)
6

" Ay for 2, =0, x, =14 EEM. (9)

Yoy = Ay -+

The order of the computation is the same as for A. We can see from (7)-
(9) that the scheme has no meaning for o; = 0. Unlike in A, when finding
y two layers (y and y(i)) must be used. Inserting o; = g = 0.5 formally

in (7)-(9) we obtain a scheme of O (|k> + 7?), and for o) =03 =1a
scieme O (Jh[* + 1) (see [2], [3]).

Let us suppose that u = 0 for x; =0, x; = l). This can always be
arranged by subtracting a function which is linear in x; and equal to
u(x, t) for x;y =0, x; = 1] from u(x, t). In this case when p = 2 the
problem (15)-(16) is equivalent to the problem

C.  yp = 6y, + (1 — o)A, Yy = Oforz; =0, =1, (10)

yg_, - 02 A2y(2) + (1 - 52) Az?/(” + (D, y(z) = p‘j+l (11)
for Xy — 0, Ty = 12’

AD = ® —stAD =9, @ =0 for z, =0, z,=1. (12)

The equation (11) can be solved in the region (0<7xz, <[, 0 <
x < L), the value of y(;1) found for x3 =0, xg = ls being used to
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solve problem (26). The order of the computation is as follows: problem (10)
on the whole net wj, - problem (12) on the net wj - problem (11) on wh.

Eliminating y(1), it is not difficult to see that all the algorithms
A, B and C are equivalent to the generating scheme (2.15)-(2.16) for
p = 2. Putting o) = g9 = 0.5 we obtain known algorithms for schemes of

accuracy O (|hF + 1%). In our case 0, = 0.5 (1 — h3/67). The amount
of computation for schemes of order O (2> + 1) and O ((A]* + %) is

practically the same. The increased order of accuracy is achieved purely
by a corresponding choice of the parameters oy and oj.

3. One-dimensional alternating direction algorithms for a three-
dimensional generating scheme (p = 3) are constructed similarly. Let us
write down algorithms A and B only. We introduce two fractional steps
tipy, and Q+4% and the corresponding values of y(;) and y(2), putting

Yy =y =¥ty =y

A, v Yay — Yia—
¥, = Myt F Lyl Y ZL—T—(—“_ =0alaY (o) a>1, (13)

3

FUl=F 1= 2 (1 =0 Ay +1(Re+ Q) F o ©F P8 014, (14)

a1 scheme
F (y] = F, [yl = F;[§] — 1 0,0,034,A,A4y for the scheme (2.13), (15)
Yoy = Asdgy ior =z = 0, z, =1, (16)
Yoy = Agy for 2, =0, =z, =1
B,. v v
Alz”(n = Ay —'_ TRa?/ + (Pv (17)
AgVy = V(g OT U, = Oalalin), a=23; Vg = Y (18)
y = ¥ + . (19)

The boundary conditions (16) must be added to these formulae. Eliminat-
ing v(1) and v(g) from (17)-(18) we obtain the scheme

AdAgy: = A + TRy + ¢, Aq = E — 10,4,

for v(3y = y; . This is the same as the generating scheme (2.13), as we
can see by making obvious transformations.

Algorithm B’ is a three-layer algorithm. When finding v, we have
to use not only ¢y, but also the values of ;. However algorithm (17)-

(19) is more economical in its number of operations than the three-layer
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scheme obtained in [1] for ¢, = ¢, = 04 = 0. For a, = 0.5, & = 1, 2,3
(R3 = 0) we obtain from (17)-(19) an algorithm which gives an accuracy
O (h2 + 2 (see [2], [15], [12]).

4. Stability and convergence

1. Let us show that all the algorithms given in Section 3 are abso-
lutely stable on an arbitrary net Q and in fact have accuracy
O (|kI* + 7?). To do this we must turn to the generating scheme (2.15)-
(2.16). We note that stability and convergence were considered in [1]
for the initial scheme. This is not sufficient to justify the method.
Let y be a solution of the problem (2.15)-(2.16), and let u = u(x, t)
be a solution of the problem (2.1)-(2.2). Putting y = z + u in (2.15)-
(2.16) we obtain conditions for the net function z =y - u:

P
Iy = 2 [0aAoz - (1 — Ga) A,z] + TR,) z—1? QpZt-+6p’3’t30'10'203A1A2A3z,—+\F,

a==1
(1)
z2=0 for &7, !0 2 (2,0) =0 tor z & @, (2)
P
Ry = D) D (1 — 0, — 65) AsAg, (3)
a=]1 fi>a
Y4
Qp= 2 X 0u0sRalrg (4)
a=1B8>a

where 0,3 is the Kroneker symbol, and V¥ the approximation error of the
generating scheme,

¥ =19 — 7 Qpu; + Op3 T° 0,0,03AAAu;, (5)
where y is the approximation error of the initial scheme.

Let C{y be the class of functions having derivatives w.r.t. Za,

a=1, ..., pup to and including the m-th order and w.r.t. ¢ up to and
including the n-th order, bounded in 9,.

If u=ul(zxt)es c&&, then the generating scheme (2.15) has order
(4,2) of approximation

¥ =0(hr"+ % (6)
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for the solution u = u(x, t) of equation (2.1).

In fact, for any h and T we have Y = O (JA* + 1%). 1f 0 <o < Y/s,
then Qupu; and 0,0,03A,A,A5 ( — &) are bounded; therefore ‘I’ =P +
O (1%). Suppose, for example, that 0, >0, 0,>0, and o,<70, i.e.
(k% /61) > 1 and, therefore, loy| << hF /12v. In this case

Th?
P00 Aty | < 5 AN | KM (2 + R),  a=23,

and so on. It is easy to see that ¥ = ¢ 4 O (|2}), if all o, < 0.
This proves the validity of the estimate (8). We mention only that for

0.<0,a=1,2,3, the derivative 6“u/6x36x§6x§ must satisfy the
Lipschitz condition w.r.t. t, since T7%0,0,05< 427 %hik3k3, and A% > 6.

Below we shall always assume that the conditions for which the gener-
ating scheme (2.15) has maximum order of approximation (6) are satisfied.

2. By analogy with the case p = 1 of Section 1 we examine the sta-
bility and accuracy by the method of energy inequalities. We introduce
the scalar products

(y,v) = QuoH, (3,7 = Z yvH, H=h...h,
wp
where wi' =@, + T}, and the associated norm

lell=V@v), Do 1=V, ol

Lemma 2. Let v be a net function defined on 5;, and equal to zero on

the boundary y of the net @, (v = 0 for x & y). Then we have the rela-
tions

R T R S A
n -1
M, —’-(é -%) : ™
Ao = —loF, @A) = — 05, Asvg =o' akB )

As the proof of the lemma is elementary, we omit it here.

Lemma 3. Let z be & net function defined on wj, with z|, = 0. Then
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we have the relation

2 (MabpZ, z) = (255,107 — wlzg 2, B a8, )
Bl oz g5 <4lzzl® (10)
WeRlzm o P > 1610200 % (11)

The identity (9) follows from (8) and from the formula 2%v; = (v?); —
vw}. From Lemma 1 we have hj | v; P<C4&|vP. Putting v =z, we

obtain (10). Applying Lemma 1 twice we obtain h3hj | v P <& o,

where v = 2.
3. Let us now derive a priori estimates for the solution of equation

(1) with zero boundary conditions

»=0 forzeT. (12)

We rewrite equation (1) in the form

P
zr=05A(z+2) — 15 ) KAazp + TRz — ©Q,z + )
a=1

P
+ 85,570 00,0 A AAgzr + ¥, A= D) A..

a=1

Multiplying (13) scalarly by 27':" using Green’'s formula and remembering
that z |Y.= 0, we obtain the basic energy identity

)z + 1+ 2 (Q p20 ) + 205, 510010405 | 2.2 25 P = (14)

=1+ & Z he| 25 7 P 4 27 (Ro2, 2) + 27 (¥, 22).

a=]1

From Lemma 3 we have

2 (Ry2, 7;) = 2 2 (1 — 0 —0p) [?* (| 25,5, P — @l 55,57 F1. (19)

a=1 B>a

P
20 (Qppy 2) = 27 2 2 0u0p | 2 5 I (16)

a=1 f>a
Then using the relation

1—0.—05 + 20,05=0.5 [1+(1—20.) (1—205)] > 0.5, since 0.<0.5, (17)
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we find

»
2 (Q % 7r) — 2% (Ryt, z;) = 0.5¢° ) D) [1 +
a=1 [3>‘1 (18)

(1 —200) (1 = 209 | 255 [ — > NEE, =P

a=t B>a
Substituting (18) in (14) we obtain

)z P+ T +05% 2 D [+ (1 —20.) (1 — 200)] | 2= =+ P +

a=1 f=a+1 *a gt
P
+ 28y, 510,040, | zx,x,x,t = Z ha | z; T P+ (19)
2
+ v Z Z B (fan o By + 20 (¥, 2p).
atf
a=1 B=a+tl
Lemma 1 gives
b
2
+ 2 Ml P <5 prla P <2t|zp for p<3. (20)
a=1

4. Let us examine the cases p = 2 and p = 3 separately. Let p = 2.
Using the estimate

2v (¥, z) < —'c lzz P+ =< ¥,

from (19) and (20) we obtain the energy inequality

P05l P < B 22 e+
Let us sum w.r.t. j' =0, 1, ..., j:
[t < o i1 , 3 (—IFJTFY 9
S0+ 2P+ =\ I, (21)
where
. i+l . 2
7] = (3 w1w ) @)
i'=1

We now use Lemma 1, which gives
(hy + 29 | 225, P << 4.
It follows from this, and from (21) that
. ———1\2
]'J+1 \<—2'10 + %(”qfﬂ'l”).
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Using Lemma 2 we find

1 <Y T M, (175, (2, 0|+ 25, (2, O D) + S VML, (23)
where
2 -1
1 R
MO_T(‘Z‘ll—i) IRACENTS

This proves the following theorem.

Theorem 3. For p = 2 the generating scheme (1) is always stable w.r.t.
the initial data and w.r.t. the right-hand side on any sequence of nets

5, so that the solution of equation (1) with boundary conditions z|Y = (

satisfies estimate (23). For p = 2 the solution of problem (1)-(2) always
satisfies the estimate

|2 | <2V M, | Y. (24)

5. Let p = 3. In this case the term 2t (¥, z;) can be estimated in
another way (see Section 1):

(25)
27 (¥, 27) = 2v (¥, 2y — 2¢ (Y7, 2) <20 (¥, 2) + eorf + oo w

where co is an arbitrary positive constant, W (z,0) = ¥ (z, 1;). Ve
shall use the obvious estimates:

... + h2 _ 1 ]
S 3 s B I |
a=] f=a+1 } (2())
o |
29 jg' o L2tz P (el (20, J
We rewrite (19) in the form
I]H + TJHQ] s + 2133 41010504 ” Z;?\t “‘2 < (1 + COTJ"H) IJ" -+ (27)
3 T gy "
-+ 2 2 x 12_5 Tt ( ” T 3“2)I+1 c_oo T "(P'J+l “2 e 21] ™ (‘F Z)]+I’
a=1 f=2z2+1
wnere

Q=052 D [+ {1—20)1— 20|z >0

a=1 fB=z1+1
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The coefficient &, = 0.5 (1 — A3/67) can be positive or negative. In
particular, we can have o, <0, which corresponds to the condition

t/hh < /s or h3/t > 6. Therefore the product 0,0,03 can have any sign
and the third term on the left-hand side of (27) cannot be omitted with-
out invalidating the inequality. Let us transform this term. Consider
the factor

7 n 2R3 - R2hE - RZRD

0 0 0 0
2010'203174:—4— m *— D1 — Dy > — Dy — Dy,

where
Ta
D(l): ﬂ(h%“i'hg_l‘h:z})’ (2)—4216 h2l2
We find an estimate for the expressions
Dy = D] 7555 B k=12
Applying Lemma 1 we obtain
13 1:3
DI<TZ Z 235z P <5 @,
a=1 B=a+1
272 2
Dy <=3 4. 216 3 {hzh (hS " 2 “2) + Mk (ke U L “2) +
3 3 2 2
2,9 2 T 36 h h
hehs (1 |l 22257 P <5153 § 3 g | 2z, P =

_‘_SZJ Z (1 — 20a) (1 — 200) | 2 27 I < e

Thus for any 0,0,0,

©Q + 2t'0,0,0, | 23 >TQ—D1—D, >4 Q>0 (28)

x,x,x,t "2 9

and therefore the inequality

j+1
PP oo R ™ 4 I+ 2 (Y, 9 — (¥, 21+ = Pt 9)
j'=1

P
+52 (1F ),

which is obtained from (27), (28) and (29) is always satisfied. Writing
z(x, 0) =0, using the estimate

2, ) <cd +Mowp, ¢ =comst.>0,
[

0
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and choosing ¢ = 1/6t;,,, c; = 1/6, we find

j+1

. . " -—\2
M LS G g taMy | max ¥R + 1 ((FF) ] 30)
1<+

j+1 j'=2
Now applying Lemma 4 of (7] we obtain
P 12Me [ max [P + 5, () 7))

1< <i+1

and therefore
2 | < My max |9+ VEal ¥, (1)
K17

where

m=(2 %

a=1

). M=2Vem,

Theorem 4. On any sequence of nets Q the generating scheme (1) is
absolutely stable w.r.t. to the initial data and the right-hand side.
The a priori estimate (3i) applies to the solution of problem (1)-(2)
for p = 3. The solution of the homogeneous equation (1) (Y = 0) with
boundary conditions z =0 for x & y satisfies the estimate

3
Sl ST IS V@ 0L Inzl= Dl 6D

The a priori estimate (32) follows from (26) and from inequality (29)

which gives I < 3I°. Thus, the scheme (2.13) is absolutely stable
w.r.t. the initial data in the norm | zz|.

Note. For the second generating scheme (2.14) we have only succeeded
in proving estimate (31) with the additional condition ojoe0; >0, for

the quasi-uniform net o, ((v7i<<m*'t, (see (7]y.

6. After the a priori estimates (23) and (31) have been established
it is not difficult to show that the generating scheme and, therefore,
all the algorithms of Section 3, have fourth order of accuracy w.r.t.
|h’ and second order accuracy w.r.t. T.

Theorem 5. Let the conditions for which the scheme (2.15) has maximum
order approximation be satisfied: [¥ =0 (h"* 4+ 1) for p =2, 3
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and, in addition |¥;|= O (Ih[* + v®) for p = 3. Then the scheme
(2.15) converges in the mean on any sequence of nets at a rate

O (h|*+ 7)), so that for any hy and T we have the estimates

Iyt —uwt | <M ((R]* 4| 22],,) forp=2,
Jyitt — aitl | <M (| R 4—|jr[%’j+1) tor p = 3,
where [T|o 41 = max Ty, u is a solution of the problem (2.1)-(2.2),

1<J' <+
y is a solution of the difference problem (2.15)-(2.16) and M are posi-
tive constants which do not depend on the choice of nets.

In order to prove the theorem it is sufficient to use the a priori

estimates (24), (31) and the conditions of the theorem for | ¥ | and
| ¥z

Ngte. Theorem 5 still holds for scheme (2.14) if ogo03 > 0, and the
net w; is quasi-uniform.

5. Three-layer schemes of high-order accuracy

1. We have only succeeded in justifying the two-layer high-order
schemes (proving their unconditional stability and convergence) for
p < 3. In this section we consider a three-layer scheme (connecting the

values of ¥, ¥’ and %’ on three time layers) which, for p <(4, is
unconditionally stable and has accuracy O (| & |* + 7?).

Let us consider the problem

D
du d%u . .
:97:25;5’ ulp—Pq u (z, 0) = u, (2) (1)
a=1 a
in the cube 0 <z, <1, a=1, 2, ..., p. Let o, be a square net, i.e.
he = hg = h = const., o P =1, 2, ..., p and let the net Sh be uni-

form.

In [1) the initial schemes

»
. ¥ B2 X .
= 7A@ +I+Y — ¥t 2 2 My, PSE ()

0
¢ a=1 B>a
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v

{ v v h2 h? v
n=gA@+yty) —gAn+s 2 2 Adey,  P<3 Q)
>

a=1 B>a

were proposed for this problem, where

v
v . M

y=y", y=y, y=g, y=(—y)2t=05F +y) &

It was shown that the initial scheme (3) has the necessary accuracy
ly — n{ = O (h* + +?) with the supplementary condition

T > 7o = const. > 0.

The alternating direction algorithm for the scheme (2) has the form

(E— 4)y, ={&E+ 5@ o)+ Y 2 Aas |3+

a=1 B>a
+{(1 =5 E + FA]w, 6)
(B — Aa) Y0y = Yoy — a~1y’ a>1, Yy = Y = Y,
2 1 5 2t
AIZTTAI_@Ei Aaz TAa, Cl>1, J

The generating scheme was not given, the authors undertaking to prove
its convergence later. The question of the boundary conditions for a < p
(see [5]) was not discussed.

2, Our aim is to construct a three-layer scheme for equation (1)
which is uncond1t1ona11y stable and convergent at a rate O (h* + 1%)
(for any y) for p\\\\ 4. By analogy with Section 2 we introduce the para-
meter

V.o

If we put o = 0.5 formally in the scheme described below it becomes a
two-layer scheme of O (k% + 7).

Thus, let us consider problem (1) on the same net as in [1]. we put
14
h, = h and replace Z Azy; = Ay; by the expression Y;; 1in the
a=1

scheme (2.3). Then we obtain the following initial scheme®*:

* We can also consider the scheme (7) as a two-layer scheme if we assume that

%}t_ is given on the previous layer (for t=t; ) as well as ;
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P
v h2 h2 v
yr=05A0+y) —Fun+5 2 2 Adgy. (7)

a=1 A>a

It is easy to see that it has approximation error O (k* + 7%).

We must fix initial data for the scheme (7) not only for t = 0 but
also for t = 1, To find y(x, 7) we need a two-layer scheme of accuracy

© (h* + 1®) (see Paragraph 4). We shall start from (7). Using the rela-

a2u)j+l/2

v 2
&) = %(ur — u;) + O (1), we replace sz (z, T) by the ex-

tion (
pression

1 1 Ju 1 0% 1 1 1

¥~ v @0+ 5 (@ 0)=—yr — Lug (@) + 5 LL u, (2).
As a result we obtain the initial scheme

v h‘z
r=05A0U+y) —myr+9 yl,=wy@0)=u/(@, =1

8
R A 1 AR
¢ = E[—; Lug — 5 LLug +2 2 X LaLBuo]
a=1 f=a+t1
for y(x, 1.
3. We rewrite (7) and (8) in the form
(E—oth)y; =D lyl, yl, =p yl(z 0 =u(), (9)
@ [y] = F [y] = 20Ay + (1 — 20) y; + ]
, | (o)
+2(1—=20)T1 Q2 X Audgy, 1>, ‘.
a=1 B> a
o [?/V] = F, [u,] = 20 [Au, + ¢l for t = . J
After substituting for the operator K — oTtA the product of one-
dimensional operators A;, ..., AP = 1 we obtain the generating scheme

P
ayr =1l dgr =010, w1, o @O =uw@, Ay
a=1

where
Ay, = F — o1\, (12)
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We obtain at once the alternating direction computing algorithm

Alvm = @ [?}], Aav(a) = V(a-1) for a > ‘i, Yy = :I; + TV(p) 5 > T,
(13)
v(a) == Aa+1, oo Ap (p'a)?l for T E:_: Ya (x(z:(). za= 1) (14)

where @ [g}} is given by the formulae (10).

4. Let u be a solution of problem (1), y a solution of problem (11).
For the error z = y - u we obtain

Azp = F [2] 4 20 for t > 71, Az = 20¢ for t = 7,
2, =0 for te g  z(z0)=0, & on } (15)

where Y and y are the approximation error of the scheme for t > 7 and,
correspondingly, for t = 1 for the solution u = u(x, t) of equation (1).
It is clear from the construction of the scheme that

¥ = @ (W + 17), P = O (h* 4 1?),
if the solution u = u(x, t) of equation (1) is sufficiently smooth.

Let us go on to derive a priori estimates from which the stability
and convergence of our scheme will follow. The argument is similar to
that of Section 4. It must be borne in mind here that o > 0 always.
Multiplying (15) scalarly by Tz and using the relation

T4 ) =T 5P o X 5P Aot X Dlg P+

a=1 a=1 B>a
e + O-DTIHI “ z;x ;2

u-Ep?[Fs
il — (1 —20) (&, 7)) = 20t| 5 + (0.5 —0) * (2 Py +
-+ (0.5 -_ 0') 13 H %5 l?,

E " Z;a "29

a=1

P
20t (A2, zp) = —otlp + ot X |5 P I =
a==1
22 (zp z) =t (P + 5B 20 (W) <tz P+ | YP

we obtain an energy inequality and solving this, after the usual reason-
ing, we arrive at the following estimates:

@ OPF + il @Ol + 7 2l OP<ivP,  (16)

a=1] -*a
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i+1

e e A e P L
+ 2 B i PO a7

© @0 =1 for z(z0 =0

It follows from (18), (17), (4.26) and the condition z2(x, 0) = 0 that
i+1 " K2 . 4 — . e
R B e ol ¥ SN ) e S (1 SV (L)

=1

For the estimate of [ z/*1| for p = 4 we need the following obvious
lemma.

Lemma 4. If 2(x, 0) =0, then
| <t 2 T)E R (19)

i'=1

5. Using (17), (18) and Lemma 3 we obtain the following theorem.

Theorem 6. The generating scheme (15) is absolutely stable for p <(4,
so that for any h and T the solution of the problem (15) satisfies the
inequality

2 < Vi (e ]+ 17 ). (20)

Theorem 7. If the conditions for which scheme (11) has maximum order

of approximation for the solution u = u(x, t) of the problem (1) are
satisfied, i.e.

(WL =0+, e =004+ ), (21)
then it converges at a rate O (h* -+ %) :
y —wi=0@ + ) (22)
for any values of y for p < 4.

The proof of Theorem 7 follows immediately from Theorem 6 and condi-
tions (21).
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Note. In [1] an estimate of the form
I <emlz@ v, (23)

where C(y) is a constant which does not depend on y = T/hz, was obtained
for the initial scheme (2).

6. For simplicity and convenience in our comparison with (1] we have
considered the scheme on the square net wp. If v, is the net of Section
2, so that h, == hg, instead of (7) we have the scheme

=05A (y + ?/) 12 y“ 12 Z (|h|2 - h )Aayt (24)
a=1
P 2 + R v
+ 3 D ANy, |RP =R+ e B
a=1f>a

It is not difficult to construct the generating scheme

Ay ... Awy; =Flyl, As=E — 10.A4,
)

and we can see that Theorems 6 and 7 remain valid in this case also, for

p< 4.

The scheme for a non-homogeneous equation (1) is written by analogy
with Section 2. The problem of finding schemes of accuracy O(\h]‘ + 1)
which are absolutely stable for p > 4 is of interest.

6. A scheme of high-order accuracy for an equatien
with mixed derivatives

1. Economical schemes of accuracy O(h% + 1) were described in [14],
[61, [11] for the parabolic equation
Ou 0%u L L
- Z Qup—— ae,ir, 2 Aapkaln > \ 3 ¢y = const.> 0, (1)

a,B=1 o fs=1 a:1

Let us show that we can construct a scheme of accuracy O (k* + 1%)
for the case p = 2, when a,3 = const.

Without loss of generality we can take a;, = ag3 = 1, a3 = ay, s0



1132 A.A. Samarskii

2

that
layp| <1 — 6.

Thus in the region 0 C z. <L la (@ =1,2), 0t T we consider

the problem

% Lu,  wl=p(0, w5 0) = u ),
o o 3
Lu = (L, + Ly + 2ay,Ly5) u, L.u= Ec%: o= Luw=gy ;wa'

2. Let @, be a square net with step h, o, a uniform net with step T.

To approximate to L,,u we use two difference operators:
Apu =05 (u, +u.z), Apz =05 (a5 + )

After calculation we have

- h? .2 h? "
Apu = Ly — Z Lyu + '6‘[412 (Ly + Ly)u + O (A9,

Ajpu.= Ly, +}‘Z'Lizu + %Lm (Ly +Ly) u+ 0 (AY).

Putting
Aay = y’—"axa’

Ay = (A, + Ay + ZamAfz) Y,

we find

Au = Lu + l;—% [L} + L} + 4aygLlia (Ly + Lo) F6ay,Li] u + O (h%).

Using equation (2), after a number of calculations we obtain
v v h? h2 v
0.5 (Al + Az) (u + u) + zalaA.]:_‘;u - ‘1'2 u?t‘ + F(1 + 2032 i 3(112) AIA,u =
=Lu + O (B* + ).
The operator Alq; is chosen depending on the sign of ajs:
if a12<0,
6))

if am> 0.

Am = Afz,
Ay = Afz»

3. Now let us write down the initial scheme of order (4,2) of approxi-

mation:
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¥ v hﬂ h2 v
¥; = 0.5 Ay + Ay) (¥ + 9) + 2apM 1y — Y5 + 5 0AAY, (6)

where
b=1+42a—3|an, yu=G—y2t=05@G +y) (O

The generating scheme will clearly have the form

Ayt‘ = AlAzyt- =F [?;’ ?;], le =p for t>n, } (8)
Ayr = Fy[u), yh=p(,7), y(x,0) =uy(z) fort=r,
where

Ao = E — othAq, a=1/(1+g—:.), 9)

F iy, yl = (1—20) yr+ oA (7 + y) + 4sa,A10y +2(1 —0) A Ay. (10)
We shall not write out the expression for F; [u,] (see Section 5).

The alternating direction algorithm is written by analogy with Section
5. Let u be a solution of problem (3) and y a solution of problem (8);
for their difference we have

Az = F (7, 21 + 20%, 1>v Az =20, 'ZT'} (11)

zly =0, z (z,0) = 0,
where ¥ = O (h* + 1%, v =0 (h* + %), if u = u (z, t) =CY.

4, Multiplying (11) scalarly by 2 (ZT -+ é;) we obtain the energy
identity
vt P+ v (L + Dr 4 0.5 07 (2553 P + 0.5 07 2555 + 2553 P —

"%y %t X, X5l

v v h2? h2 v v
— 4(1'12 (A12Z, z — Z) = — F T (” zﬁiz)r + T bt (Z;x—,, Z;‘r—’)t— + 27 (q’, Z'— + Z't‘).
It is not difficult to see that

(Anz, 2 —2) = —0.5T(Q)p  OQn = (%, %) + (25 %),

(N2, 2 — 2) = — 0.5 T (Qh);, Qo= (2un 23) + (250 25).
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Following Section 5, we find

1’ﬂW+P“+JW4WWWf“W+2mwmmﬂ%<%Mﬂ@ﬂF+

Xy xgd

- ‘ (12)
+I(t)4+1(0 (|| it n) b (£, 22 ) + 0.507% | 2525 (z, ¥) P

We use the identity (v,L)==O.5mvf—kuvuﬁ——0.51ﬂ]v;w, v=rzz5. Let

b > 0. Then the term — 0.5 rzg;b”zggﬁnz can be ignored, and Lemma 1
can be used to estimate hzuz—-—m As a result on the left we obtain the
expression (1——0) (I + Iy = [|ap| + 2 2 (1 —aly)] ('™ 4- I) on the
left. For definiteness let us consider the case Aj, = Aj, i.e. ajg <0,
Writing &, = Zj;j:, £ = Z'Z‘C”a we find [|ay,| +'§“ (1 — a3yl (Ej‘f‘ég) +
2a1,5,8, > 2 (1 — aby) (B + B) > 2l (& + E), since 1 — o}y >l

As a result, inequality (12) takes the form

2 2.pit i b2 . ( pEm )’

2T+ D<)+ gz (@0 + ). (13)
By analogy with Section 5 we find

0.5 0% | 2251 &, DF + 7 () + 5] 27 (z, ) [P <IPP (14)

x,%5
and therefore

1 PO + (PP for any v=7% (1)
1

Since b > 0 for '012' < 0.5 estimate (15) is valid for c¢; = 0.5,

Let b < 0. Then we can ignore the term

+1
055 b (EL I + 12z ),
in (12) and take the term with Hﬁfﬂ|F to the left-hand side. Then on

the left we obtain the expression

h2
(0.56 — 510 |) il P

X005 ¢
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The coefficient 0.50¢ — h%|b|/6% > 0, if the condition

T>T°:%|b|[1+1/1+l_§l] for b=1 + 2als — 3|a,|<<0  (16)

(i.e. for |a;p| > 0.5) holds.

Since max |b | =L8, max 71, = [1 + l/ﬁ]/48. Using (16) we again
arrive at (15).

5. We have thus proved the following theorem.

Theorem 8. The solution of problem (11) satisfies the a priori esti-
mate

It <Myl ), M=o, 7

if condition (16) is satisfied. If [a;,[<(0.5 then the estimate (17) is

true for any y = 1/hZ.
Theorem 9. If condition (16) holds and
b =0 @**+ %, ¥ =0 @ + 13, (18)
then the scheme (8) converges at a rate O (h* 4+ t?), so that
ly —ul|< MG+ ), (19)
where M is a positive constant which does not depend on h and .

Theorem 9 follows from (17) and (18).

Note 1. If the new variables =z, =z,/}/ a,,, are introduced, in equa-

tion (1) we obtain a,, =1, a,,=a,,/ V a.as,. The square net w, which
we have used corresponds to the variable z,. Since Az, = Az} a_,
in the old variables the steps k, must satisfy the condition "/ Ja,, =

= const. All the results of this section still apply if the steps ha
are so chosen that

h2 h2

=t (1+0(8)).

%a 4pp

Note 2. If ¢; =0, i.e. |ayg| <1 then besides (18) and (19) we obtain
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the estimates

12 <Y T (VI 2 1. (18)
Il @+ y) — @ L) <M ), (19)

When deriving (18') in Paragraph ¢ we must use the estimate

2 (¥, 2 +72) <O5¢ | o7 + 27 |2+ 20 | W |12

for 2t(¥, z; + Z’r)'

7. Schemes of high-order accuracy for equations
vith variable coefficients

1. Let us begin by constructing a scheme of order (4,2) for the heat

conduction equation for one space variable. Let it be required to solve
the problem

=Lu + f(z, 1), Lu ——(k (x, t)a—) o<z, o<t<T, (1)
t) =

u(0,t) = uy(t), u(, uy (), 0<t<T;
u (2, 0) = uy(2), k>e;>0 @)

inJ=0<zs<1, 0<<t<<T).

We consider the homogeneous difference scheme (see (13

3)
Ay = (ay;)x, a=a(x,t) = 1/Alp {x + sh, ?)], —1<s<<0, p= .lic—’
approximating to the operator Lu. Here A [p (s)] is a linear pattern
functional satisfying the conditions
All=1, Alsl=—05  All=5, AIf1>0 forf>0. (4

The scheme (3) has second order approximation w.r.t. h. After a number
of calculations-uwe find

h* 1
L = (aug), = Lu - EL(/}Lu) +0¢*, p(x,t)= e 5)

If u = u(x, t) is a solution of equation (1), then we can express Lu
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from (1): Lu = 0u/dt — f and substitute in (5):
Au—Lu+£1( S pf)+ 0@
= 2 \Pg —P .
It follows that the scheme (for the notation see Section 1)

yr = 0.5A (y + 3) ——%A (Py7) T+ @ Yo = U Yy = Uy ¥ (2, 0)=1ue(2),
(6)

where
‘|:H-'/a'

o =[/+HAEN]T" Ay = (a (o i) 3. 0

has fourth order approximation w.r.t. h and second order approximation
w.r.t. T for the solution u = u(x, t) of equation (1).

We can write equation (6) in the form
) 1 h?
yp=Asy+A(l—0oy+e, o=5(1—gp) )

To find y on the new row ¢ = %;;, we obtain the problem:

Aiyi_l - Ciyi + Biyi_H = — Fy, Yo = Uy Yy = Ug (9)
where

!

Pi_ pP;
Av = arory = 050 (1—252),  Bi = 050, (71— 2),

Ci=1+4+0.5 (a; + aiy) (T_%’.) ) T = T/h.

It is clear from this that C; = A; + B; -+ D;, Di= 1_1%(ai+1px,i +

¢npgj)::>0, if h <Chg is sufficiently small, or, more precisely

h|p'/p|<<c" < 6. We can use successive substitution formulae for the
solution of problem (9).

2. For the error z =y — u where u is the solution of problem (1)
and y the solution of problem (6) we obtain the conditions

= 05A (s 4+ 2) — A (pz) +9  z =2y =0, (10)
z(z,0) = 0, (11)
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where y is the approximation error of the scheme (6):

P =0 (h* + 12). (12)

We investigate the stability of scheme (10). By analogy with Section
1 we write down the basic energy identity

u Z RZ + 0 5 (a, Z“] - 0 5 (a, Zx] + 12 ((pz;);, GZ&;] + T ('\P, ZE-) (13)

We transform the sum

(P25, azg] = (ap, 251 + (app, 25 V23] (14)
We shall assume that the conditions
d a
O<Cl clv 5’5 <\:cﬂa !é?p <CB, (15)

are satisfied, where ¢, ¢y, €5, €3 are positive constants. We shall then
have

0< e << S <o, I (_Z'); } < ¢s, (%)F ] < s (16)

Using the relation
Slapl<aes<egler,  p<A+Mh M =M (e c) >0,

and Lemma 1 we obtain

Tl P+ 0571 <051 + teg/e) I + (e + M) | 2 P+ -V P,
(17
I = (a, zf—c], a(z,ty) =a(z,0), M,=M (c1s Ca1 C3)s

where c¢p is an arbitrary positive constant. We have used the estimate

- 2
h(apr, Z% nZ;z] < "‘?‘“ z |
1

If h is sufficiently small:
h < ko, where hy = hq (¢q, c11 €0 c3) >0, (18)

from (17) we have

ISU+enl+otlbf, ¢ =ce. (19)
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From this we find (for z(x, 0) = 0)
I<M @9l |0 e <MW, M =M, ee0). (20)
By analogy with Section 1 we can use the estimate
(9, 2) = T 2 — T (b D) < T 2+ 0.5%] ot b (1)
for v (Y, z;). Then, instead of (19), we shall have
IT<(U+ (@ +e) DT+ 200 2 + o TP (22)
with the condition
R hyy ko= hy ey cy cq) (23)

As usual from (22) we find

jzlo <M ( max 97| + W) for 2 (2,0) =0, (24)
1<+
| 2P < M|z (2 0)] for ¥ =0. (29)

This proves the following theorem.

Theorem 10, If conditions (15) are satisfied, then for sufficiently
small h<(hy and any T the scheme (10) is absolutely stable w.r.t. the
initial data and w.r.t. the right-hand side y, so that estimates (20),
(24), (25) hold.

Theorem 11. Let the conditions for which the scheme (6) has maximum
order of approximation (12) be satisfied. Then the scheme (6) is uni-

formly convergent as h and || 7|, = max t; tend independently to zero,

w..

so that for sufficiently small h <(h, we have the estimate

ly — uli' <M (0 + 7], (26)
where M is a positive constant which does not depend on the net.

4, Up to now we have been assuming that the functional A [p (s)]
satisfies conditions (4) only, and is otherwise completely arbitrary. It
is not difficult to see that the pattern functional

Q O.'5
ATl = \p (o) ds = | ns—0.5)ds 27)

.
-1 -0.5
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satisfies conditions (4). However, this functional is not always suitable
for practical purposes. The most suitable functionals in calculations

are the "discrete" functionals [13] which depend on the values of the
function at a finite number of points. In particular, the functional

ApG)) =2 p(—1) +p©O)]+ > p(—0.5) (28)

satisfies conditions (4). In this case the coefficient 1/a is equal to

1 1 2
+ = 5 P+ p) + 3 iy Picyy = P (Ticsy, T), (29)
1

where Zz;vy, = z; — 0.5 k. Theorems 10 and 11 are valid for the scheme
(6) in which the coefficient a is calculated from formula (29).

We have restricted our attention to a scheme of order (4,2) for the
simplest equation (1). Using (5), it is not difficult to show that the
scheme of high order accuracy for the equation

cot) =gk (@ 055) —a (@ e+ (30)

has the form
y h2 .
¢z, ti) yr =05 A (y +9) — A pyr + pay) — ¢ y+ o, (31)

where ¢ and Ay are given by formulae (7). With corresponding conditions
Theorems 10 and 11 remain true for this scheme.

5. Similarly, we can construct a high accuracy scheme for the heat
conduction equation with several space variables. Here we shall restrict
our attention to the case of two dimensions (p = 2), see Section 2.

We shall consider the problem

32

du 2 g ;/ 1 du ¢ )

3 = > Lau +f(x, ), Lauzaz(m&_za)' 0w, <1, 0<tKT,
a=1

u(z,t) =p(x,t) for 1. =0, za =k, a=1,2 u (z, 0) = u, (z). (33)

To simplify the argument we can without loss of generality take the
net wp = {{i;,; ixh;) & G} to be square, i.e. hy = /Ny = h = const.,
a =1, 2. The net ET is arbitrary. Let us define the net functions agy
with the help of the functional A [u (s)] from Para. 1, putting
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a, = a, (2, t)=1/4 [p, (2, sk, x, Z)], t=1t-—0,51,
ay = a, (z, )=1/4 [p; (21,2, + sh, 11,

P
Aoy ="aayz)er A= Nha

a==]

By the argument of Paragraph 1 we can see that the initial scheme of
order (4,2) of approximation has the form

2 2 2 v \
yr = 05A (¢ + ) — B 3 Aa () + 13 14 (i) + A (o) + 0,
a=1

(3%)
-, 2 -
@ = /415 N (Aapal)ith. (35)
o==]
6. Let us find the generating scheme. Introducing the notation
1 h?
Ga= 5 (1 — g-tpa) (36)

2
and replacing F — 172 AyG, by the product A;A,, where A, = E —

a=1

TAs64, we obtain the generating scheme

2
v 1 v
Yr = 2 [Awoay + Aa (1 —6a) 5] — T2A,01A,0,yr + T, (7 - 51) Agy +
*=1 ’ (37)
1 v
+ TA2 (7 —_ 62> ‘)\ly + P,

y=p for 7, t Sa-; y(r,0)=u,(z) for 2 E an  (38)

The reduction of the generating scheme to one-dimensional alternating
direction algorithms is achieved by analogy with the case of constant
coefficients. Here we shall just give algorithm A4 (see Section 3):

Yoy —Y
T

2
D =DA (1 —06)75 + 1A (05— 6)) Ay -+ Ay (0.5 — 6,) Ayl -+ .
a=1

Yo — Y
= Moy + D, —

= AeGay(2), Y = Yo, (39)

7. Now let us discuss the basic problem, that of the stability and
convergence of the generating scheme. Let u pe a solution of the initial
problem (32)-(33), y a solution of the difference problem (37)-(38). For
the difference z = y - u we have



1142 A.A. Samarskii

2
2 — 0.5 Az + PAGAGz =0.5A2 — & 3 A (pazp) +
a=1 (40)

+ 1A (0.5 — 0,) Az + TA, (0.5 — 0,) Az + V¥, (z, ) & Qr,
z=0 for zET7, tE(;‘u z(z,0) =0 foerJh- (41)

Multiplying (40) scalarly by 2rz— we obtain the basic energy identity

2t z [ + 2 (aa’ z— ]a + 27% (Ay0,A,002;, 77) = Z (@as 5 ]a
(42)

T 2 ((Paz )z L GaZz, 7l + = & (AlplAZZ + Aopo\iZ, z7) + 27 (Y, 7).

We shall assume that

p,
Bzaﬁxﬂ

op,
0 C1 <6, a—xﬁ' < G < ¢, <ets o, B=12.(43)

ot

Constants which depend only on cll, Cy; Coy Cgy C4, are denoted by M.

8. As in the one-dimensional case we find
h?t 2 9
= 5 (Pazp)z, @az; 7], < 3 T(L 4 Mk [z (44)
Now let us estimate the other terms in (42).

Consider the expression
Th? . Th?
Ay = 5 (MpiAo?, 5) = —% ((p1feB)zs 125 7)- (45)

Lemma 5. If conditions (43) are satisfied, then

2
A2 12 [(a1a2p( 11)7 zx-;‘ '—T(alagp( 1:), Z;IJ_CZT)] B Mz't’hz " f;JHI ZE,EJ“’

2 (46)

4M v v
Moth?| 2] | 25 0 IS AMoT| 2 2p | < etz P+ =7 T (e, 23]

x,x,t “
Estimate (46) follows from the expression

(-11) 1) , (-1 719
A2 o {(azzx Xy + 2x|i X3 " a1l ;;zr + (alp l) Zx,t )+

. ( -1,)
+ (a2z§.’ pli,alz§15,7+ (alplx, %, Zxit )}
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which is obtained from (45) after the use of Green's formula for the
variable xj.

9. Lemma 6. For any o4, « =1, 2 we have the estimate

1
Ay = 27 (A0, A40,2;, 27) > 27° (a,0565 W6y, 22 1) —

x3Xql . (47)

- COT?’ (alaz, Z;l;’?) - Mg":h ” Zr”z - M‘T (I + I),

where
2

I = 2 (aa, Z%a ]a'

a=1

Using Green’s formula for x1 and x5 after a number of transiormations
we find

-1)
As = 2’1’3{(02 (520);‘, (0«15151);'1];‘) + (a2 (sz)a_c , (a].cl;)( 2 ;;2) +
+ (@005, + 430,20 77); , a0 Moz + (a0l )z 0EY) >

> 21° (a,8,01 oy, vE1) — Myt® Joxloloalelvz ozl — “)

X1 Xy

— M2 ([orfo +{0efo) lvgz | (Noz | + log ) — vah4 [l vz 0
The underlined expression is maximised as follows:

a) <My (I +1I)fore. >0, a=1,2 (49)
b) < Myth|z-|P for g, < 0. (50)

To estimate the last two terms in (48) we must examine separately:

(8) 0<<0.<<0.5, 6) 0, <0 and, therefore, |0z o << h%,/127.

We also need the estimates

( 1) 0, + 1 — i-ll) '—lz) = 0.5[1 + (1_ 20-( 1:)) (1_20,2) + (0.2 ( lz))>
> 0.5 — Mh¥/x, (51)

ME® | 2ooo B <MY Rzl 2] < oot | 2553 P + Moth?| 2. (52)

Xy %5t

10. Now, collecting together all the estimates (44), (46), (47), (51),
(52) and choosing cy we obtain from (42) for sufficiently small h and T,

h< by T< T (53)
the energy identity:

i+1

- h? -
(1 — Myti) I < My, 2 Ty 7Ehe + 5 (018, (™ + P, z xlxz)lﬂ

_— (54)
+ (1 + Movy) 1(0) + My (] L 4 2.
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-1q)
For sufficiently small h <Ch, we have aap‘(; * <1 4+ Myh. Ve use the
inequality

Wz P< S

xnxz €1

We arrive at the following inequality:
17N < Ml 25 (2, 0) + My ¥ for << by T < o

where M5, M3 are positive constants which depend only on ci, c1, ...,
Cy, ll: 12.

11, We have thus proved the following theorems.

Theorem 12. If conditions (45) are satisfied, then the generating
scheme (34) is unconditionally stable w.r.t. the right-hand side Y and
the initial data, so that for sufficiently small h and T we have the
estimate

|+ 12 < Mlzg(z, O]+ M T, R <ho ¥l < 7, (55)

where hg, Tg, M and ¥’ are positive constants which depend only on cj,
¢y, ¢z, c3, ¢4, L1, lg.

Theorem 13. If the conditions for which
¥ =0(h]*+ 1%, (56)

and conditions (43) are satisfied, then scheme (34) converges as h and T
tend independently to zero so that, for sufficiently small h and T we
have the estimate

g — wt | <M (R + [ 50) for h<ho, T <

where ¥ are positive constants which do not depend on the choice of the
net. For a hyperbolic equation
P .
U u
Lu, Lju=-—"F
a%'ll 0 * Jx*

a

also we can write down economical high accuracy schemes.

Using the above methods we can show that the generating schemes

¥l
Ay =2 —(E+051)Ay, A=][4s,, As=FE— 0,1,
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a=1

Ay; = (E — 0.5 v?A) y; + TAY

are absolutely stable and converge in the mean at a rate O (12 + |k [Y).
We shall examine the question of economical schemes for multidimensional
hyperbolic equations separately.

10.

11.

Translated by R. Feinstein
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