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The basic problems of the theory of homogeneous difference schemes for 
linear, quasi-linear aud non-linear equations of parabolic type have 
been studied in a number of works ([ll- 151). The stability, convergence, 
and also estimates of the rate of convergence (order of accuracy) of 
several families of homogeneous difference schemes in the classes of 
continuous aud ~s~tinu~ coefficients of the differential equation 
have been established. In [sl attention was paid to the fact that on an 
arbitrary sequence of non-uniform nets difference schemes which have 
second order approximation on uniform nets have only first order approxi- 
mation. For this reason the problem of the order of accuracy on non-uui- 
form nets requires special study. A family of homogeneous difference 
schemes on non-uniform nets for the equation 

L’k. 90 0, - iz (w$)-!?(5)U+m =o (14 

was given in Es]. The definition of this family was the sBme as in the 
case of uniform nets with h~ogeneous difference schemes, studied in [?I. 
It was shown that the order of accuracy of these schemes on non-uniform 
nets is equal to the order of their accuracy on uniform nets both in the 
case of continuous coefficients in the differential equation and in the 
case of discontinuous coefficients. It is interesting to note that this 
result is obtained if we use a priori estimates of the ssme type as in 
the case of discontinuous coefficients [71 end a uniform net. l%e 
effective characteristic of the net is the mean square step 
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so that the estimate 11~0 ilo = 0 (ha) on a uniform net corresponds to the 

estimate Ii.2 ilo = 0 Q I$) on a non-~iform net. 

In this article we study homogeneous difference schemes for parabolic 
type equations with one space variable. In Section 1 we consider a new 
family of homogeneous differences for the equation (l.B). On special 
sequences of nets e,,(k) which depend on the choice of the coefficients 
k, q, f this family has second order accuracy (11 y - u&, = 0(/j @)) in 
the class of continuous coefficients. 

In Section 2 we consider homogeneous difference schemes for the linear 
and quasi-Iinear equations 

c (2, t) g = & (k (5, t) 2) +I” (5, t) 2 - q (5, t) u + f (5, t), (2.B) 

(3-B) 

and calculate the approximation error of these schemes on non-uniform 
nets. 

Section 3 is devoted to a priori estimates, Among the estimates ob- 
tained in this section Theorem 5 should be noted, for even in the case of 
uniform nets it essentially strengthens the results obtained in [13 and 
f33. Using the special representation of the approximation error of the 
schemes found in Section 2 and the a priori estimates of Section 3 we 
prove, in Section 4, a number of theorems about the order of accuracy of 
homogeneous difference schemes for (2.U) and (3.P) on a sequence of non- 
uniform nets. The results of Section 4 lead to the conclusion that the 
order of accuracy of the given schemes remains banged on transferring 
to non-uniform nets (by analogy with c61). 

In Point 5 of Section 4 we examine a homogeneous difference scheme 
for a system of parabolic equations which is n economicaln with respect 
to the number of operations. 

Sach section has its own numbering for formulae; when referring to 
the formulae of another section we use a dual system. For example (2.3) 
is formula (3) of Section 2. 

1. A stationary equation 

1. hmgeneous difference schemes on a non-uniform net. In [61 we 
studied homogeneous difference schemes on a non-uniform net for the 
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stationary heat-conduction equation 

~(k’q’f)~=~(k(~)~)-q((s)u+~(~)=o, o<l:<l, 

J-4 (0) = 4, u (I) = us, 
k (4 > Cl > 0, Q(Z) >o (Cl = COIlSL). 

(1) 

Let Oh = {zi E 10, 11, 0 < i < N} be an arbitrary difference net on 

the segment 0 < 5 < 1, where x0 = 0, zN = 1. The step of the net 

hi = 5i - S&__l > 0 (0 < i < N) satisfies only the natural nonnal- 

isation condition 

&_ 1, (2) 
i=l 

and is otherwise an arbitrary net function. We shall use a notation with- 
out suffixes (cf. M): 

h = &, h, = hi+l, fi = 0.5 (h + h,), y = y (z) = yi, 

Y(+l) = Y (z + h+) = yi+l9 yc-1) = y (z - h) = y&l, y;; = (y - ?p’)/h, 

Yr = (Y(+‘) - Y)lh +, Y; =(Y(+l)--- y)/A = % y,, y-, = ; y;. 

In [61 we considered canonical schemes.of the form 

Liks Psf)y = (ay;); - dy + ‘p = 0, Yo = %9 yN = 4. (3) 

The coefficients a, d, ‘p were calculated with the help of the same 

pattern functionals A IT (~$1 (-4 < s < 0), B Lij (s)l (-0.5 < s < 0.5), 

F lj @)I (- 0.5 S s < 0.5), as in the case of uniform nets (cf. [Al), 
from the formulae 

a = A Ik (z + &)I, 

d = D [q (r + (s + A) fi)l, ‘P = F [f (x + (s + A) h)l, 

A = (h+ - h)/4ti. 

(4) 

(5) 

The family of homogeneous schemes (3) is defined when the class of 
the pattern functionals A, D, F is given by the law (4)-(s) for calculat- 
ing the coefficients of the scheme, a, d, q~ on an arbitrary non-uniform 
net. 

In this article we shall consider another family of homogeneous 
schemes (3) which differs from the family of [61 in that it has another 
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law for calculating a, d, ‘p on a non-uniform net. We shall assume that 
A, n, F satisfy the following conditions (cf. [el): 

1) A [k (s)l is a non-decreasing homogeneous functional of the first 
degree having a second differential, 

2) D [i(s)1 and F 11 (s)] are linear non-negative functionals 

(F If1 > 0 when f Z 0) 9 

3) A [11 = 1, A, [sl = -0.5, D [II = F [II = 1, D [sl = F [s] = 0 (6) 

Knecessary conditions of the second order approximation on a uSform 
net). 

Moreover, we assume that D and F satisfy the additional requirements: 

41 F b-q, @)I = f , F In, @)I = 0, 

D [q;(s)1 =+, D in, @)I = 0. 
(7) 

We have used here the following notation (cf. [71, SeCtiOn 1, Point 11): 

r1i (s) = 
{ 

1 for s<O, 

0 for s > 8; 

ne(s) = 

{ 

1, s=e* 
0, s#0, 

where 0 is an arbitrary number. Introducing the function 

s;: (4 = 
0 for s < 6, 

1 for s > 0, 

we ‘shall, have 

11; (4 + ‘1; (4 + %j (4 = 1. (8) 

The condition F [a,, (s)] = 0 means that F [f(s)1 does not depend on 

7 (0) (the functional F is regular at the point s = 0, cf. [71, Section 

1, Point 11). 

We shall calculate the coefficient q~ from the formula 

cp = F [f’ (s)l, 

f’ (s) = +r (5 + sq q; (4 + $r (5 + q ‘I; (4 + f (5) n, (4, -0.5 <s < 0.5. 

Due to the linearity of F and the condition F ho (s)l = 0 

cp = cp (z) = +F If (5 + sh) q;(s)1 + $ F r(f (5 + sh+) qo+ (41. (9) 
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The coefficient d is defined similarly: 

62 = d (5) = fD [q (z + a) .$ (s)l + 2 D [g (5 + Sk+) T$(s)l. 

From (6) and (7) we have 

P kjo+ @)I = $, P I& @)I = - F fsq; (s)l. 

For, using (8), we find 

F [q;(s)1 = F [I - q;(s) - n, (s)l = F HI - F Iq;(s)l = + y 

F [q;: (+I = F is1 - F Iq;(s)l - F bm,~(s)l = - F tq;(s)l, 

since F Is1 = 0, F [s-z, (s)] = F fOl = 0. 

If the net & is uniform, i. e. h = II+ = ?i, then formulae (5) and 
have the same form: 

q = F If (s + sh)l. 

In fact, in this case it follows from (9) that 

v = F If (i + sh) (q;(s) + q;(s))1 = F if (5 + sh) (1 - n, @))I = 

= F If (x + shjl, 

(9) 

since F [f (z + sh) 3to (s)l = F [f (5) 3to ($)I = f (2) F Ino (s)l = 0. If 

F In, (s)] # 0, then formula (8) gives 

cp = F If (z + sh)l - f (4 F fn, (s)l. 

For the special case 

0.6 

* F = F’ [pl = 
s 

p (s) ds 
-4.6 

schemes (5) and (9) are the same on an arbitrary net oh: 

9’ = F’ [f (x + (s + A) &)I= + 
r+Mh+ 

‘j f (E) dE = 
x-a.s?l 



356 

i.e. 

A.A. Sararskii 

cp’ = + F’ [f ( ’ 5 + sh) 7; (s)l -I k JF’ if (5 + sh+) qof (s)l. 

But in the general case formulae (5) and (9) give different results. It 
is sufficient to give the example 

F [f(S)1 =qq-+j+/($)j * 

Formula (5) gives at once 

cp = f If (r - 0.54 + f (x + 0.5h+)l. (12) 

Using formula (9) we find 

ql = g/ (5 -0.54 +& (5 _t0.5h,). (13) 

Expressions (12) and (13) are equal only on a uniform net (f is an 
arbitrary function). 

Thus, the initial family of schemes whose coefficients are defined 
by formulae (4). (9) and (10) is different from the family of schemes 
considered in [Sl. 

2. Approximation error. Let us find an expression for the approxima- 
tion error of the scheme 

I$‘, q9 /) y = (NJ;); - dr_/ f cp = 0, Yo = u17 YN = us, (19 

where a, d, 9 are coefficients defined by formulae (4), (9) and (10). 

Let u(x) be an arbitrary function satisfying the requirements 

u E cc'), (ku')' EC?' and k, q, f EC(““. Then, by analogy with [Al, we 
find 

(au;); = W’) + (CL,); + s:7 

pL,, Y== au; - a + $ h2 (v’)“, S: = 0 (h2) + 0 (h:), (15) 

where i = k(x - 0.5 h) etc. kt us expand q~ in powers of h and h+: 

cp = ; F [(f (5) + SW’ (r)) r~; (s)] + (16) 

+ 2 F [(f (x) + sh+f’ (x)) rl,: (41 + 0 (h2) + 0 (hz,). 

From this, and from (6). (ll), it follows that 
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cp = f (4 - (y - h2) f’ (5) F Iq;p)llh + 0 (h2) + 0 (hy, 

or 

cp - f = - (h2f’); F I q; (s)l + 0 (h2) + 0 (Q. (1’7) 

In [sI we obtained for the scheme (5) the expression 

I$ - f == $ (Vj’); + 0 (h2) + 0 (hz,). 

We note that F [ST& ($1 = - $ , for example in the 
0.6 

case 

F = F’ Ip] = \ p (s) ds or F [p] == +[p [-- t) 
-0.6 

By analogy with (17) we find 

(d - q) u == - (h2G); D [mj;(s)l + 0 (h2) + 0 VW 

Using (15), (17), (18) we obtain for the approximation 
scheme (14) 

error of the 

(18) 

the expression 

4” = 0 (h2) + 0 (h:), 
(20) 

p = au--Z 
x 

$ $ h2 0” + ha g’uD [mj; (s)l - h2f’F [sq; (s)l. 

If A has a second differential, then, from conditions (6) 

a = & + 0 (h2) and p - O(h2). 

If u = u(x) is the solution of the differential equation (1) then 
(ku’)” = 7~)’ - f’ and 

(21) 
p = au- _ b> + h2 x {( 

___ + i D Lq,(s)l)& -($- + F lq; (s)l)f’ + $3) 

3. The case of discontinuous coefficients. Let us now assume that k, 
q and f have a discontinuity of the first kind at the node x E ah. mr 
simplicity we shall assume for the time being that there is only one 
point of discontinuity. Put fl = f(z - 0), f, = f(x + 0). Let u(x) 
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satisfy the coupling conditions [ul = ur - ul = 0, [ku’] = 0, at the 
point x E o,, and suppose that to the left and to the right of this 
point the conditions of point 2 are satisfied. 

We show that at the Point of discontinuity x E a), the representation 
(20) is valid if the approximation error y is defined as 

J, = ,Q. ‘1. tju _-,u, (22) 

where 

If u = u(x) is the solution of equation (l), then LDu = 0. When 

(L 
W. Q. iQ1 = (L’k 9s 1Q t the expression (19) for v follows from (22). 

It is easy to see that the definition (22) is suitable by finding 
the expansion of (au;;);, cl, 9 in powers of h and h+ in the neighbour- 

hood of the point of discontinuity of the coefficients of the equation, 
x E @),’ l%r 

----i- (ku ) = (kU’)l - 0.5h (ku$ + $” (kd)I; + 0 (ha), 

(ku’)‘+” = (ku’), If 0.5h+ (ku’): + + h”, (ku’); + O(h$. 

It follows from this and from the condition Iku’l = (ku’), - (ku’),~ = 0 
that 

(@jq&q;- (+ h* 0”); -i 0 (ha) + Q VC), 

(au;); = G + (tzu;- iii2 + f”” 0’); + 0 (P) + 0 (I&:). 

Then expanding f in powers of h and h+ in the neighbourhood of the point 

x E oh: f(x + sh) = fl + shf; + O(h*), s < o; f(x + sh,) = f, + sh+f; + 

O(h$, s > 0, we find 

cp = $fiF hl + hf;F [qo(s)l} + 

+ +- If2 [dl + h+fiF bqo+ (41) + 0 (h2) + 0 (h:). 

After substituting (7) and (11) in here we obtain 

q = 7- (ha?); F [q,(s)1 + 0 (ha) + 0 (h:), (23) 
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7= fr1+ &f.. 

similarly we find 

(d - ;ji U = - (V&j; D bq,(s)l + 0 (it”) + 0 (a. (24) 

We can see as a result that the formula 

J, = LF. a. f$& _ mu 

is valid, where I.I is defined according to 

= p;z + $1 (25) 

formula (20) and v = O(h*) + 

W:). 
When studying difference schemes for parabolic equations we shall 

make use of another representation: 

p; = fw + f (ku’)” + q’uD [s$j (s)l - f’F h$j ($1, (26) 

where 

g = %(A, I91 - $) + q-h2 [sl. 

These formulae have been obtained on the assumption that k E oc *@ ’ ) and 

the functional A&(s)] has a third differential. Since it is elementary 
we shall not spend time on the derivation of these formulae. 

In the case of the schemes of M, generally speaking, the representa- 
tion (25) does not apply if x =a,, is a point of discontinuity of the 
coefficients k, q, f of the differential equation. In this connection 
Note 2 on p. 829 of the article [61 needs to be made more precise. 

4. 0n the order of accuracy on non-uniform nets. Since all the 
a priori estimates obtained in [ll are still in force snd the expressions 
for v in [61 are of the same type as here, the theorems of 161 concem- 
ing the order of accuracy on non-uniform nets are valid also for the 
family of schemes (14). defined by the formulae (4), (9), (10) and con- 
ditions (7). Suppose that we are given coefficients k, q, f with a finite 
number of discontinuities at the points-x = Ev, v = 1, 2, ..,, vu. We 
can alWayS construct a non-uniform net Oh such that the Points c,, E (0.1) 

are its nodes, i.e. c,, = x,, (6, = 0), 0 < nv < N. We denote the sequence 

of nets i,, depending on tbeVchoice of the coefficients k, q, f and 
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constructed in this way by o,,(k). Using the methods of kl and the re- 

presentation (25) on the sequence of nets ;h(k) it is not difficult 
derive the following theorem. 

Theorem I. If k, 7, f E ?“* ‘) then any scheme (14) of the-initial 
family n. 1 has second order accuracy on the sequence of nets oh(k) such 
that 

where y is the solution of problem (14), u is the solution of problem 
(l), A! is a positive constant which is independent of the net and jjlt//p 
is the mean square step 

To Prove the theorem we need the a priori estimate 

I( 2 no = II Y - I.4 no Q M {II If II 1 + IN’ II.4 

obtained in [61 and the representation (25) which is valid at all nodes 
of the net oh(k). 

It must be emphasised that the only characteristic of the net is the 
mean square step II h/I,. 

2. Parabolic equations 

Let us now study homogeneous difference schemes for parabolic equa- 
tions. 

I. Linear heat coduction equation. We begin with the homogeneous 
difference schemes for the linear heat-conduction equation. bet us pose 

the initial problem. Suppose that the region z = (0 < CC < 1, 

0 < t < T) is given. It is required to find in z the solution of 
the problem 

c (z, t) $ = Lfk* ** f)zJ = & (k (2, t) &) - q (z, t) u + f (5, t), (1) 

I.4 (0, t) = Ul (0, u (1, t) = k3 (0, (2) 

u k 0) = uo (4, (3) 

0 < cl < k (5, 0, 0 < c2 < c (G 0, 0 < 9 (5, 0. (4 
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where c I# c2 are positive constants. Let r,(s = %,,(t) (‘I\< Y\<v~)) be 
a finite number of differentiable, non-intersecting curves. The coeffi- 
cients k, q, f can have discontinuities of the first kind only on the 
curves rvp = <v(t), v = 1, 2, .+., vo). If k(x, t) has a discontinuity 
for x = c,(t) then the coupling conditions 

lulv = u (EV (t) + 0, t) - u (E” (t) - 0, t) = 0, [k g]” = 0, 5 = E, (t) 

(51 

are satisfied. 

As usual (cf. f.53 f we Put 

A, = (EY (0 < 5 < Ev+1 a 0 < t < Th v = 0, 1, 2, . . . . vo, 

Eo (4 = 0, I;“,+1 (0 = 19 

i7 = $* L7 xv = (EY @) < 5 < Ey+l (t), 0 < t < q. 

If <G(t) 1 0 then x = t,(t) is a straight line parallel to the t-axis in 
the (x, t) plane (“8 fixed discontinuiW). 

We shall assume everwhere that the problem (l)-(5) has a unique solu- 

tion u = u(x, t), which is continuous in z and possesses whatever de- 
rivatives we need in the course of our work. Similar assumptions are 
made with respect to the other problems considered below. 

2. Ilomogeneous difference schemes. Let & = {Xi, 0 < i<N} be an 

arbitrary difference net on the segment 0 <x < 1, let 0, = (tj, 0 < 

j < K) be the net on the segment 0 ;\< t <7’, where to = 0, tK = R 

6)h = (xi, 0 < i <IV), Wf = {tjy 0 <i Q K}, Let 6 = Wh X O, = 

{(xi, tj)EEz} be the space-time net, and Q = oh X t& the Set of 

internal nodes of the net B. The steps ki = zi - Zi-1 >O, 0 < i < N 

Zj = tj - tj-1 >o, o<i<li_‘, of the nets Gh and & are arbitrary and 
satisfy only the normalization conditions 

i hi = 1, fJ Zj = T. (6) 
i-1 j=l 

If 2j - zj-._1 = 0 (TjZj-1) or Zj - Zj-.1 = 0 (ztf), then we shall call 

the net i.,, a quasi-uniform net. 
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Fbr net functions we shall, as a rule, make use of notation without 
indices, putting 

h = hi, h, = hi+19 h = 0.5 (IA + h,), 
* 

lr = Zj+l, Z = Zjy 

y = y (z, q = &+I = $+I = yi, ys = (y - yi/t. 

The notation y,-, y,, y;, y; was introduced in Point 1, Section 1. 

We shall introduce any other notation as it is needed. 

We put the problem (l)-(5) in correspondence with the six-point homo- 
geneous difference scheme (cf. [21): 

pyT = (Q’ 4. f)y)'"', 
O<a<l, (& 4 E Q2, 

Yo = Y (0, 0 = Ul (0, Y, = Y (1, 4 = u2 (0, t E 07; 1 (7) 

Y (G 0) = uo (4, zE %, 

where p’a’=ap$(~-cz)~ and L(lk_,g’f)~=(ay;-);-&!+cp isthe 

scheme defined in Section 1. 

The coefficients a, d, 9, p are given by the formulae 

a = a (5, t) = A [k (5 + sh, t)l, 

d = d (5, t) = $D [q (5 + sh, t) q,(s)1 + 40 [q (z + sh,, t) q,+(s)], 

cp = cp (5, t) = fF if (z + sh, 0 q; (41 + + F If (5 + sh,, t) qo’ (41, 

p = p (5, t) = $R [c (z + sh, t) q; (s)l + +-R [c (z + sh+, t) q; (s)l. 

The pattern functionals A, D, F and R satisfy all the requirements 
(l)-(4) given in Point 1 of Section 1, and R possesses the same proper- 
ties as D and F, so that 

R [iI = 1, R Is1 = 0, R [q,(s)1 = f , R kc, (s)l = 0. 

In addition we shall assume everywhere that Ark(s)] has a third differ- 
eqtial. 

Prom (4) and the properties of the pattern functionals it follows 
that 

0 < Cl< 6, o<c,,< PI 0 \< a. (8) 

3. Approximation error on a non-uniform net. Let u = u(n, t) be the 
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solution of the problem (l)-(5), and y the solution of the problem (7). 
me net function 2 = y - u is determined by the conditions: 

+a$ zz (Az)f=) + Y 

;I 

AZ = (a~,-); - dz, 

20 = ZN = ) 2 (x, 0) = 0, 

v = (Q* IL f),)@) _ fpUT, 

(9) 

where P is the approximation error of the scheme (7) in the class of 
solutions u = u(x, t) of the differential equation (1). 

‘We shall assume everywhere that the conditions ensuring the maximum 
order of approximation of the scheme (7) on a uniform net (conditions A) 

are satisfied. These conditions are satisfied either in the whole region 

a or ineach of the regions 3; (conditions 4) if the coefficients of 
the differential equation are discontinuous (cf. [41). 

Let us consider some node (x, t) E Q. Suppose that in the neighbour- 
hood of this node conditions A are satisfied. Using equation (1) we can 
write 

On the uniform net Q(T = T/K = const., 
conditions A, we have 

h = I/N = const. ), because of 

Y = 0 (P) + 0 (Pa), 
1 

2, a = 0.5, 
ma = 

1, a#O.5. 

We put Y in the form 

$;i;= - up UT - g ( - (1 - a) ; (247 -g,. 

Using the representation (1.25) we find 

where $ is given by formula (1.26). 
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It is not difficult to see that $ = 0 (zma). Thus we have proved the 
following lemma. 

~mna 1. The approximation error of the scheme (7) can be put in the 
form 

Y = p!’ + $, 9’ ’ = 0 (Pa) + 0 (h2) + 0 (h:), 

p = $2, $j = po (r - 0.5h, t), PO = w S+o” + (10) 

+ q’uD [q,(s)1 - f’F [sq;(s)l+ c’ 

B = $ (A, [s2J -+) + +i2 [sf. 

(The dash denotes differentiation with respect to x.) 

Note 1. It follows from conditions A and equation (1) that &fit 
satisfies the Lipschitz condition in X. 

Note 2. It is clear from (10) that on a non-~ifo~ net the scheme 
(7) has first order approx$mation with respect to x whatever the order 
of smoothness of the function u = u(x, t) and the coefficients of equa- 
tion (I) may be. 

Consider the case when k, q, f, c have a finite number of discontinu- 
ities on the straight lines x = & = cons& (t) (v = 1, 2, . , *, wo) 
parallel to the t-axis in the (x, t) plane (fixed discontinuities). Since 
the lines of discontinuity are fixed, it is always possible to change 
the net oh in the neighbourhood of the points x = cv E (0, 1) so that 
the points n = & will be nodes of the net oh, i. e. cv = nn , 0 < nv < N 

(riv does not depend on t). The sequence of nets oh ~onst~~~ed in this 
way, depending on the choice of the coefficients k, q, f, c, is denoted 

by oh(k), and the corresponding sequence of space-time nets by G(k) = 

oh(k) x iiT. 

Let 5 = xn be one of the points of dis~ntinuity at which k, f kr, 
41 + $1 fl + f,, Cl t’ cr. At this point we have the coupling conditions 

b.Ll = u, - Ul = 0, 
[ 1 
k a’ ar =0 for X=~ECO~, (11) 

Eky analogy with Section 1 we define the approximation error of the 
scheme (7) at the point c E mh as: 
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Since the discontinuity is fixed, [&/at] = 0 when x = c. 

Using the results of Point 3, Section 1 together with the argument 
used in the proof of Lemma 1 we can see that formulae (10) remain in 
force at the point of discontinuity of the coefficients of equation (l), 

< = a,,, and we therefore have the following lemma. 

Lemon 2. If the coefficients k, 7, f, c have a finite number of fixed 

discontinuities and in each of the regions iv (v = 0, 1, . , . , vo) condi- 

tions A are satisfied, then on the sequence of nets n(k) the approxima- 
tion error of any of the schemes (7) is given by formulae (10) at all 
nodes (n, t) E Q(k). 

If k, q, f and. c have discontinuities 

s=L(t) = %” + %&l”+l, O<fl”<i, 

nodes (a,, 0 and (~~+lr 0. 

4. A linear equation of general form. 

parabolic equation of general form 

of the first kind on the curves 
then (10) is not valid at the 

Let us now consider a linear 

(13) 

qo, t) = u,(t), u(1, t) = u*(t), U(Z, 0) = U,(X). 

In order to write down a homogeneous difference scheme on a non-uniform 
net for this equation we must find a suitable difference approximation 

dU 
for the term r ax, which is also appropriate for the case of discon- 

tinuous coefficients, and, in particular, on the sequence of nets Lb(k). 

We shall use one of the following approximations: 

r+ h(y) = 
b-y; + b+y; = ;b-y; + -$- b+y,, 

b (a(‘-‘%,+ ay;), 
(14) 

where 

h 
Y; =?;y,v Y; = fi LY,, 

b- = $B [r (z + sh, t) q,(s)], b+ = +B [r (5 + sh,, t) q,+(s)], 

b = +B [;(r + sh, t) q,(s)] ;%B [;:(r + sh+, t) q,‘(s)], ;T=r/Zk. 

Here ~lIcl(s)l is a linear non-decreasing functional satisfying the condi- 
tions 

B [II = 1, B [sl = 0, B [q;(s)1 = +, B kc, (s)] = 0. 
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Let us find the approximation error for each of the expressions for 
h(y). Let x E ah be a point of dis~ntinuity of r(x, t) and k(x, t). 
Taking kr(u) = (hb’z$ + h, b+u,)/ti, simple calculations give 

h, (U) = & (rlu’lh + r&J + (LJ; + 0 (W + 0 (A% 

or 

where 

1, (u) - 2 = ($2 + 0 W) + 0 081, (15) 

& = pt (z - O.Sh, t), pr = (ru” - r’u’B hq; ($1) P. (461 

If [ru’] = 0, then %’ = r~‘. If r(n, t) and k(n, t) have discontinu- 

ities at the point F, = rn -I- O&+-r (0 <0 < I), then (X1 (u) - 

ru’)-xn = 0 (1) (for 8 < 0.5) and at the point x = xn, ‘t’ = O(1) even for 
the scheme 

A’ [pl = [ \ &]-’ + 

0.6 
B’ Ipl = LI* Q.4 = P IpI = R’ Ip.1 = 

\ P (4 c&L 
-1 d.6 

In this case in order to increase the order of accuracy we must use the 
second expression for h(y) (cf. [43, t51). 

We now write, by analogy with [41. the difference scheme for (13): 

If conditions A, which guarantee the maxima order of ~p~ximation 
of the scheme (l?), are satisfied, then formulae of the form (10) are 
valid for the approximation error ‘f’ of the scheme (1’7): 

Besides the scheme (17), schemes of the form 

(19) 

are of interest. The coefficients p, a, 4 q, b-, bt (or b) can be ex- 
pressed in terms of the corresponding coefficients of the differential 
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equation (1) taken at time T = t - 0.5 T. The scheme (19) is equivalent 
to scheme (17) with respect to the order of approximation. 

In practice it is sometimes advisable to use the schemes 

PY,- = (a!/&? + (M,,, 7 oga<i, o<p,<i, (20) 

where ly = - dy + 9 + A(Y) and (~YQ, is given by one of the formulae: 

~Z~)(~) = Bk + (1 - B) ii = (Z~)(~), 

tl~)($) = - d (I, i) y@’ f q, (5, fi + b- (X,2) y$’ + b+ (5, z!j $$, i= t - 0.5s. 

In particular, the scheme corresponding to p = 0, in which all the 
earlier terms are taken on the preceding row, is very convenient in 
practice. In this case the successive substitution formulae may be used 
on any net oh, whatever the sign of d and b* mav be (cf. [41, Section 2, 
Point 4). 

5. A rpasi- linear equation. In (51 we studied homogeneous difference 
schemes on uniform nets for the quasi-linear equations 

$z& = 2 (k (5, t, u) +) - c (5, t) $ + f (r, t, U, $) = 0 

(k(% t, a)>cy>% C(% tf>Cs>oft 
i 

(21) 

28 (0, t) =+(t), u(kt)=u,(t), 2.8 (z, 0) = ug (X}. 

We shall assume that the derivatives of the functions k(x, t, u) and 
f(n, t, u, p) with respect to the arguments u and p satisfy the same 
conditions as in [51. When the “heat conduction coefficient” k =k(x, t,u) 
depends on a special difficulties arise. We succeeded in proving uniform 
convergence in [51 only for four-point implicit schemes, the estimate of 
their order of accuracy being considerably cruder than in the case k = 
k(x, t). In this article we extend the class of converging schemes and 
obtain new estimates of the rate of convergence which are, in particular, 
more exact than those of [51 in the case of uniform nets. 

We shall consider the following class of schemes: 

where a(,) 
and ‘p(p) 

are found from one of the corresponding formulae: 

a(a) = aa (5, t, y*) + (1 - a) a (5, t: 2) = a@) (5, t, y’), 
y’ = 0.5 (y + y’-q, i = t - 7, 

54 = a (5, t(=‘), (~*)(a)}, (y*)(@ = cry* + (1 - a) ;’ . I 
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v(p) = Bcp (I, t, Y9 h (!I)) + (1 -B) cp (5, t: ii i 6)) = P(t, t, Y9 h (!I))9 

‘p(P) = ql (5, t(P), y(P), UP) (g)), h (y) = 0.5 (y; + y;) = y; = (y(+‘) - y’-“)p, 

a (5, t, u) = A [k (z + sh, t, u)l, -l<sfO, 

q (5, t, u, P) = -$ [f (z + sh, t, u, P) q; (41 + 

+ + F [f (5 + sh,, t, U,P) ‘1; (41, 

p = P (5, t) = + F [c (z + sh, t) q; (s)l + % F [c (z + da+, t) q; (s)l. 

The properties of the functionals A and F are given in Point 1, 
Section 1; i” addition, (as in Point 2, Section 2) we make the require- 
ment that Ark(s)] shall have a third differential. It was shown in [51 
that the pattern functionals 

A’[p(s)l =[s’$]-‘, F’[p(s)l = rp(s)ds 
-1 -0.6 

ensure a higher order of accuracy in the class of discontinuous coeffi- 
cients of equation (21). The function f in (21) must be transformed to 
the form 

f=f( z,t,u,2k$ . ) 
We then have 

cp = ‘p (4 t, Y9 h (Y)), h (g) = a(+‘$; + q/v 
x’ 

a (ix, t, u) = A’ [k (z + sh, t, u)l, 

cp (I, t, u, P) = F’ [f (z + (s + A) fi, t, u, P)], 

p (r, t) = F’ [c (z + (s + A) fi, t)l, A = (h, - h)/M. 

As usual, u = u(x, t) is the solution of the initial problem (21), 

Y = Y(X) t) is the solution of problem (22). For the net function 
z=y- u we obtain the conditions 

Pq = (a(=) 2;); + Q (4 + $9 20 = 0, xN = 0, z (r, 0) = 0, (23) 

a(,) >, Cl > 0, F>Cz>O, 

where o(z) is given by an expression of the form 

Q (z) = d,z -i- d,i + b,,z; + b,,i; + b,,z; +‘b,,z’; + (guz); + (24) 

+ bw); + hw); + (&A; 
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for some special values of the boundary coefficients ds, bsk, gsk, s, 

k = I, 2. 

Reasoning by analogy with Point 2 we find the following expression 
for the approximation error: 

4 = lA; t- $‘, $,’ = 0 W) + 0 (hf) + 0 (T) 1 p = 0 (V). (25) 

We shall not write out an explicit expression for W. 

3. A priori estimates 

To find the order of accuracy of the difference schemes examined in 
Section 2 we need various o priori estimates establishing the stability 
of the linear equations (2.9) and (2.23) with respect to the right-hand 
side. Estimates of this kind were obtained in [l:, 121, [41, [51; it was 
shown how these estimates are modified on non-uniform nets. Par the six- 
point schemes (2.9) we use the estimates of [II, [21 and [31 without any 
essential alteration. Be shall only show that the scheme (2.9) is stable 
with respect to its right-hand sid.e of any I/Z/,, = max ‘cj, while its 
stability when T < TV is proved in [21. 

We shall concentrate on the derivation of a uniform n pFiOFi estimate 
for the elluation (2.23), special cases of which were studied in [II and 
[5!. Yith the help of an o. priori estimate in the mean we substantially 
strengthen Theorem 4 of 151. 

1. Tntroduction. We shall distinguish between two cases: 

a) k(x, t) bounded: 

and satisfies the Lipschitz condition in t: 

(c; = con&. > 0); 

(1) 

(2) 

b) 4x, t) or I!?(x, t, u) is bounded only. 

!,ernma 3. If conditions (1) and (2) are satisfied and the pattern 
functional .i[K(s)l has a first differential, then for the coefficient 
n(n, t) = .2[%(x + s/i, t)l we have the inequality 

I 

I a,-\ \(c4, 
5 

where C4 = C’ - - 
4 Cl (31 

We recall that ‘?[kl is a non-decreasing homogeneous functional of the 
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first degree satisfying the normalisation condition ,j[ll = 1. 

Let R,[k, ~1 be the first differential of the functional Ark]. We 
show first that 

?,A, k, 11&. 
Cl (4) 

To do this we use the identity A, [k, Jc~ = A PC] (see [71, Section 1) 
and the inequalities 

4, [h-, 1 I = A, [k, cIl < A, [k, kl = A [ii1 < c;, 

~1 <A, k k] .<A, [k, c;l = c;A, [k, 11. 

Prom the ,theorem about the mean value we know that the difference n - n’ 

is equal to 

a-;=A [k(x+sh,t)l-A [k(z+da,$= 

= A tk] - A LiEI = A, [ic + Chk,, zkJ, o<e<1. 

It follows from this and from (4) that 

Note. ‘If Al-k3 is a linear functional, then 1 aT 1 <cl, i. e. c4 = ci. 

Lem;nd 4. Let g . and pj be 
1 

non-uniform net oT with step 

functions which are given on an arbitrary 

Zi = tj - tj-1 > 0; j = 1, 2, ..b If Pj is 

a non-negative non-decreasing function (P~+~ > pj), then the inequality 
/ 

j+l 

&+I\< Co 2 ZFgY-1 + Pj+l (CO = const . > 0) (5) 
j,4 

implies 

, 

gj+l < e Co ‘i+l P~+~, i =O,l,.... (6) 

If pi is an arbitrary non-negative function, it follows from (5) that 

c,i’. j+i 
gj+l < Pj+l + c& ‘+l 2 zPPf-l* 

Y-a 

‘1~~ = ‘j+l- tl. (7) 

Let us first obtain the estimate (6). We shall look for ~j in the form 
M 

gj = (8) 
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where 
j+l 

k=i,2,... . 

Using the fact that 

‘$ zjq ($Li)\< f’S+‘r (t) dt, if f (t”) > f (1’) for t” > t’, 
YE2 -1 

and the monotonicity of pj, we find 

From this and from (8) we have (6). 

Let pj he an arbitrary non-negative function. Putting gjt1 = Pj+l + 

'j-l-l* we obtain 

j+l 

p;+l = 2 qpg-_? > 0, 

where p; is a non-decreasing function. 

we obtain (7). 

Then, using estimate (6) for vj 

Corollary. If the net 0, is uniform, .i.e. T. = T = const. than ti+,= 

tj+l - zi = tj and, instead of (6) and (7) we A ave 

gj+l < Pj+l + coec”j 7; Pj' a 
74 

Lenmla 4a. Suppose gj and fj are given on the net oT = {tj, j = 0, 

1, ...a K}. If fj is an arbitrary non-negative function, then 

gy < (1 + cOzf) gf-1 + rj’fj*c i’=i,2,..., 

implies that 

c.i: 
gj+l < e ‘+’ Pj+, , where 

j’=l 

To prove this lemma we need only sum (9) with respect to j ’ = 1,~~. , . , j t1 

(6’) 

(7’) 

(9) 
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and use estimate (6) of Lemma 4. 

my analogy with [61 we introduce notation for the sums and norms of 
net functions. Let v and y be arbitrary functions given on J,. We put 

If the function v is defined on 0: = {Xi, 0 < i <N), then 

11 u IIf3 = (I, I v PP. 

!l’hus, for example, if the function v is given for all x 4 oh, then vji 
is defined for x E U: and so 

It is not difficult to see that 

II v Ii2 < If2 Ii v lb 

We shall also use the norms 

II 9 II* = II P lla, II 9 ll3* = II CL Ill9 (10) 

where IJ is the net function defined by the conditions 

\c1 = CL;;, PN = 0 or pl=o. 

Let us give some difference identities which we shall use later: 

(vv y;)’ = (VT g/r)+ = - (9, v;] + t&N - !/ovl~ 

@, y;)’ = (‘, y;) = - k, %) + YN_l’N - (dot 
(v, @&);)’ = (v, &,,),)+ = - (6 !tk&l + @?@, - (a(+1)ihv)09 (12) 

(‘9 (‘y,);)’ = (@‘,);, !,)’ + (’ (“y; - !!‘;)), - (‘(+l) (% - &b&,’ (I31 

If y and v satisfy the homogeneous conditions 

I,, = y, = ‘, V. = VN = 0, 
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all the permutations in formulae (ll)-(13) are equal to zero. We also 
need the inequalities 

II GJ =G II %llm ~/V/IO<T+~~V~V;\~, for vO=vN=O, a>cl>O. (14) 

I(@* @I < (1, lYIPP fl, I v I”,“/“, $+$==4 P>O, 9>_0. 

W) 

ii 

m 

x;"< . 5 pkzk, where tk > 0, %)/o, 2 Ilk = 1. w 

k=l k=l k=l 

2. Stability of the scheme (2.9) with respect to its right-hand side. 

In tll, E21, 131 we considered the scheme 

pz$ = (AZ)(=) + Y, AZ = (c&z;); - dz, 

20 = 0, ZN = 0, 2 (2, 0) = 0, 
I 

(17) 

a > Cl> 0, P > c, > 0, 0 6 d g es, 

and showed that this scheme is ~ifo~ly stable with respect to its 

right-hand side if 0.5 \<a \<I and 

where -rg is a positive constant which 

Let us show that condition (19) is 

Theorem 2. The solution of problem 

U+rl0lifJd M i 
. 

depends only on cl, ‘S., Ck’ 

superf luaus. 

(17) satisfies the inequality 

(20) 

if 

1) /@,-I < c,, 1 pr I < % 0.5<a<1, 

2) &, is an arbitrary net, - or a quasi-unifo~ net (M is a positive 

constant which depends only on cr, . . ., cs). If a_,. is an arbitrary non- 
uniform net, then estimate (20) is valid with the condition that 

II z Ilo = max xj < To, where z, > 0 is a constant which depends only 

on the constants cl, *.*, 
c4' 

We give the proof in two stages: we first obtain an estimate in the 
mean (by analogy with [21 and [51), and then we use it to obtain a uni- 
form estimate. 
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1. For simplicity in the calculations we give the proof for p = 1, 
T = const. We rewrite equation (17) in the form 

2 - adz = i + (1 - a) T& + zY. 

We square both sides, multiply by )i and sum with respect to all x E ok’ 
Using the first Green formula (12) and the inequality 

where co is an arbitrary positive constant, we obtain 

If + 22 (al + (1 - a) f) < (1 + coz) I;r + z (z + l/c,) IIY It*, 

where 

H = 11 a g* + +z g*, I = (a, zg + (d, 2%) . 

(21) 

putting cO = l/tj+l and using Lemma 4 we find 

In the general case, 

(I ri_l<m’Cm’>O), 

Y=l Y==l 

when p = p(x, t) and iT is a quasi-uniform net 

instead of (22) we have 

where M is a positive constant depending only on c2, c6, m+ and T. From 
(23) we have, in particular 

In deriving (24) we have not used the condition d <c3. 

2. Let us multiply (17) by TZ$ and sum for x E oh: 

,z 11 rpzi- $0 + a (a, z?J = (1 - a) (ii, ig] - z (adz + (1, - a) dh, z$ + 
+ (aa - (1 - a) 6, z&l + z (Y, zi.)‘. (25) 
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Using the obvious inequalities 

wt? obtain from (25), for 0.5 <a < 1 

where 

This 

Then 

Note 

will be 

gives 

using estimate (24) and inequality (14) we obtain (20). 

1. If z(%, 0) # 0, then on the right-hand side of (23) there 
the additional term 

which can be majorised by the expression 

where M=M(cl, . . . . q, ok, T, m*), M’=M(q,. - ., %, c;, C2’ ’ T, m’), M” = 

M (el ,, . . . . c6, il, 4, T, m*) are positive constants with 

+GVlW c;>GWr>o (ccp.121). 

In this case we have instead of (20) an estimate of the form 
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Note 2. The estimate (24) still holds if 
0 <d < c3 by the conditions 

Odd, I$ Id%. 

we replace the condition 

&‘ote 3. The second part of the theorem for the case of an arbitrary 
net iT can be proved by analogy with [I] if we use Lemma 4a. 

4. Stability of another scheme for the heat condkction equation. Let 
us now consider a scheme (2.19) which is also used in practice: 

PsT = (a~$)); - dz(@ + Y = AZ@) + Y, 0.5 < a < 1, 

20 = ZN = 0, 

0 < Cl < a. 0 <: ca < P, 0 < a, 1 
(26) 

where 

P = P (2, $ a = a (I, i), d = d (r, tj, t=t - 0.52. 

theorem 3. The difference scheme (26) is uniformly stable with re- 
spect to its right-hand side and the initial data on an arbitrary non- 

uniform net E: 

where 

1) z (5, tj+J It < M’ I/ z (5, 0) Ik + M ( ‘5 ZT 1) Yyj’ (g*)1A, (27) 
i’=l 

II 2 lb = II 2 lb + II 2; II** 

if the additional conditions 

I aT I f c4, I di I < c61 a.(& 0) < c;, d < ca (28) 

are satisfied. 

Fbr a = 1 the theorem follows from [21. Let 0.5 <a < 1. As usual we 
write down the integral identity 

r II vi+ I& + 01 if a, zi] t (d, z2)‘> = (1 - a) {(a, fg] + (d, is)‘} $- 

+ (2a - 1) {(a, @;I + (6 N) + f Vu, +)*. 

Using the estimates 
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we obtain 

where 

I = (a, 251 + (d, zy, c*=Itlax(~,~), 

I0 = (a (z, O), 2; (z, @I + (d (5, O), z2 (& 0))‘. 

This and Lemma 4s give (27). if a (2, 0) < c;, d (5, 0) Q ~8. 

The difference scheme (2.19) has second order approximation on the 
uniform net ah and on an arbitrary non-uniform net 

Y = j.&$‘+ 0 (I?) + 0 (I&$) + 0 (e), p = 0 (P). (23) 

It follows from this that. generally speaking, the scheme (2.19) is not 
worse than the scheme (2.9) since it is stable for any 11 rl),. 

5. An improved a priori estimate for the scheme (2.17). When studying 

the order of accuracy on non-uniform nets we find that the norm II Y lb* 

is too crude, even when the coefficients of the differential equation 
are continuous. Using the method of stationary solutions explained in 
[31 and estimate (20) it is not difficult, by analogy with [31, to ob- 
tain more refined estimates for )I z Ijo. 

Let us give the result for the most general problem at once: 

PZT = (ax;)(;) + Q (4 + y\y, &, = xN = 0, 2 (5, 0) = 0, 

Q (z) = 42 + d,t + b,, 2; + M; + b,,z; + b,,a;, 

0 < Cl < a g 4, 0 < ~2 < P < c;, I 4 I 6 cm I a7 I < c,, 
i (30) 

1 

1 hk Ii < ‘4 (9, k = 1, 2). J 
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Theorem 4. The solution of problem (30) on an arbitrary non-uniform 
net for 0.5 <a< 1 and for sufficiently small 11 z [I,, < 7, has the esti- 
mates: 

2) if Y =lj+“‘, I/J = p; + $*, then 

11 Z (z9 tj+l) 110 < M {II 9 t2* O) IIS + II Q C5, ti+l) IS* + (32) 

where 

II 4J IL = II CL II2 + IN’ Ilw !IS IIs* = II c1 III + IIS’ lC*, 
M = 0 for. a) Q (z) = (b lz; + b,z;)‘“’ -k d,z + d,r u b) 1 (bJT I< cs, 

s= 1,2. 

To prove Theorem 4 we have to make a few alterations in the reason- 
ing given in [I] and [31. 

6. Energy identity of the n-th rank. All the points of Section 3 
which follow are concerned with the derivation of new u priori estimates 
for the solution of problem (2.23), i.e. of the problem 

pzy = (a~;);; + Q (2) + Q, Z. = ZN = 0, Z (2, 0) = 0 (33) 

where Q(z) is given by formula (2.24). We shall assume 
cients a, p, dg, bskJ f&k (S, k = 1, 2) are bounded: 

that the coeffi- 

and p = p(x, t), in addition, satisfies the Lipschitz condition with 
respect to t 

IP,-I\< cl3 (35) 

(C,# . . . , c6 are positive constants which cb not depend on the net). 
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In Cd we considered a special case of equation (33). for d, = b,, = 
b 21 = g21 = g12 

= 0 and with boundary conditions of the general form 

a(+~ Z, c &zT + ulz - v1 for z = 0, - az-, = 8’,gi. + uzz - v2 for x = 1. (36) 

Although our argument is given for the conditions of the first kind 
z() = LN = 0 the final results are valid for conditions ‘(361 also provided I 

that &,, on fs = 1, 2) satisfy the requirements given in [sI. It is 

sufficient here to replace Il$[k, by 114 lb, where 

We shall assume that 3, is an arbitrary non-uniform net, and oT = m; 

is a non-uniform net whose steps satisfy the condition 

z < m*;, (37) 

where m+ is sane positive constant, We denote the net corresponding to 
51 by a* = oh X ‘4;. 

Introducing the new function v: 

z=vw, w‘l= hi: W(2, 0) = 1, or w = (1 -+ it?z)&, (38) 

where % > 0 is an arbitrary constent we obtain 

Let us write down the elation of the n-th rank, i.e. the equation 

for the function G = v an, n = 1, 2, ..t To do this we have to multiply 

(39) by vxruS . . . vane1 = Znvan,, where a, = 2” - 1; and use the 
identity 

2v (au;);;: = (a (v”),‘); - ; Dzav~ + h+a(+%:]. 

We then obtain (cf. cl1 and [51): 
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p; - (aI;;;); + ng2n-k-l{+ 62 (:;)a + $z(+l) (ix)’ + ?F; &),) x 
k==o 

x y%r-ak+-1 + 2”d; = 2nvan’4. 

Multiplying (39) by ti and summing for x E ah, remembering that 

we obtain the basic integral (energy) identity 

(F* ;)F + 2It% + Pn + 2* (d, ;)* = 2” (Q* (V), Van)* + 

+ IZn ($9 van)* + (pZ* J)*p 

(40) 

where 

n-l 

*k-1 Pn=zX2 (; (;T)*, van-ak+l)‘~ 
W) 

k-0 

Our aim is to find an estimate for 11 v Ilo (and, therefore, for [I z Ilo) 

in terms of 119 IL. In 151 for the special case b& = grk = 0 for s f k 

and a uniform net we obtained the estimate 

where bf, = 0 for gsk = 0. s, k = 1, 2. We shall show below that I, = 0 
for the general equation (39). 

We first find an a priori estimate in the mean, Le. for IJv Ihen and 

then use it to estimate II”, II1 and 11 v b. 

7. Stability in the mean with respect to the right-hand side. Putting 
n = 1 in (40) we obtain the first rank energy identity: 

(p”, ZYq; + 21, + P, + 2 (d, vy = 2 (Qr (v), rJ)* + 2 (% v)” + ci;i_, %‘. (43) 
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Repeating the argumeut made in Point 5, Section 1 of [51 for II = 1 we 
arrive, in the case of a non-unifo~ net, at the reality 

j-l-1 

(P, v2)‘j+l + z] rj’ (a, vi]P < Mll$ (2, tj+l) lb for II r[b <TO. 
F-1 

It follows that 

where M is a positive constant depending only on cl, cq, ‘.., c6, T and 
t,, is a positive constant depending only on cl, . . . , c5. 

!I%us the scheme (39) is stable in the mean with respect to its right- 
hand side for sufficiently small T <T,. 

then the scheme (39) is stable in the meau with respect to its right- 
hand side on an arbitrary net St* for any values of 11 h IlO and 1% [j$ 

II 2 k, a lb* + l/z IIQ 65 t) II2 < M IN (z, a IL3 ’ (47) 

Be start from identity (43). which we rewrite in the form 

fP1 u”$ + r (P, r?,’ + 21; + 2M][ (p, zq* g* - 2 (1 + zq (& v*r 5 

= 2 (Q” (~1, 9’ -I- 2 (Tt v) + (pi, G2)*, (48) 

I; = (a’, v2, a’ = a(1 + fi), 9' =$(l + &). 

Let us estimate the separate terms of the right-hand side Of (48): 
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Then choosing @ = 0.5 (c&?’ i- 164 (m’)“/cl) CT’, we arrive at the in- 
equality 

which is valid for any T on the net P. 

Using Lenwa 4a we find 

It follows that 11 v lb* -I- fi (1 v; j12\< M lflb, since V(X, O) = o 

using (38), we have inequality (47). 

8. [Jniform stability. Let us now derive an a priori estimate 

ad, 

for 

I( v (I0 from (40) using the method of majorant estimate of the right-hand 

side of the identity (40) suggested in ill and perfected in 151. The 
main difference between our method and that of [51 consists in our use 
of the estimate (44). 

We need the formula 

n-1 b 

(v”“), = -jJ (v(+li)=kv=n-“k.tl ;, 
k=o 

and a similar formula for (27”“);’ Consider the expression 2” (q, van)*. 

Putting 9 = q;, qN =: 0, we find 

2” (ji, van)* = - 2n (q, (van),)+ 

and, by analogy with [51 
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This inequality allows us to write down an estimate for 2” ((g&, Van)’ 
immediately. Fbr we have 

2” ((g,v);, 2Jaq. = - 2” (gig, (b”“),,)” < $1, + (Mx 2” 1 v pry 

and similarly for the other expressions of the same type, so that 

K, < f In + (Mr2qq$“, 

Ry analogy with [51 we find 

M = M (cl, . . ., 3>0. (501 

Let us consider the estimate of the expression 2” (&$; j-6,;;, pan)* 

in more detail. I.& us give the calculations for the first term only: 

We see from formula (41) for In that 

We can therefore write 
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6 +;in + M2n(1, o”)*, M = M @I, cr, m*) >0, 

II 

since 2, = Van-‘V2, 
v2 \< (& q)1@-‘4 7, p-=7+‘” (in/c,)‘“. 

Now let us consider the second expression: 

Then, using estimate (44) for fi II;;Ih, we find 

2” (ii,,;, + I,,;;, v”n)* < f I, ‘t P, + ; i, + (Mx2” Es),“. 

Combining all the estimates (51)-(53) and choosing z so that the co- 

efficient of 1,; ’ 
( 1 in (40) is non-negative, we obtain the inequality 

(is, ;)’ + ~1, < (6, z?)* (1 + M,z) $ ;f,, + -r (Mx~~ l@)2n, (54) 

which is valid for sufficiently small T < T,,, where T,,, M,, M are posi- 
tive constants independent of the net, T(, = -rO(cl, . . . . 
M(c,, c,), h! = I!(cl, . . . . c5, m+). 

c& b!, = 

Using Lemma 4a, it follows from (54) that 

(55) 

going from v to 2: 

We then obtain 
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The second inequality follows from 

Choosing n so that condition (78), Section 1 of [51, i.e. the condi- 
tion 

log2 + 
1 <2”< log, $ for tt* < 12, (e), 

e log2 log2 5;- 
l 

. 

(58) 

is satisfied, where E > 0 is sn arbitrary number, and using the relation 

n + + log, $<s log, log, f , 6=l+e>l, 
t I 

we find from (55) 

Choosing II = ~(7~) by analogy with (58) and using (57) we obtain 

This proves the following theorem. 

%eorem 5. If z = z(le, t) is the solution of problem (33) and condi- 
tions (34) and (35) are satisfied, then on the arbitrary sequence of 
nets Q we have the following estimates: 

II 4x3 4 112 < M II9 (2, t)d for I\z(\, < Z, (estimation on average) (60)’ 

llz (G 0 110 < M IN (5, 0 113 In8 -$ for II ill, < zb (z,, 4, .@I) 

ll 2 (2, t) Ilo < M IN (5, 0 II8 InB k for II rlio < z,, fi. < h, (e), (62) 

where 6 = 1 + E, E is an arbitrary positive number, and fO, M are posi- 
tive constants which do not depend on the net. 

Note 1. If b,, = b 21 = 0 then Theorem 5 is true for an arbitrary net 
a 

Note 2. If b 
65 = gsk = 0 (k, s = 1, 2) then the principle of the 

maximum gives 
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(cf. [51) on any net Q. If, in addition, d, < 0, this estimate is valid 
for all IfIb. 

4. On the order of accuracy of difference schemes 
on non-uniform nets 

1. Introduction. In Section 2 we studied various homogeneous differ- 
ence schemes for linear and quasi-linear parabolic equations in the case 
of non-uniform nets. 9ur final aim is to find the order of accuracy of 
these schemes on arbitrary non-uniform nets in the class of continuous 
and discontinuous coefficients of the corresponding differential equa- 
tions. This problem is studied in detail in 121, 141, [51 for uniform 
nets. The a priori estimates obtained in Section 3 enable us to 
strengthen Theorem 6 of [51 concerning the order of accuracy of schemes 
for the quasi-linear equation (2.21) considerably, even in the case of 
uniform nets. The two-parameter family of difference schemes (2.22) ob- 
viously includes the sdhemes studied in [51. 

We shall always assume that in a13 the region z or in each of the 

regions 4, v = 0, 1, . , , , ,vo (in the case of discontinuous coefficients) 
the conditions under which the schemes we are studying have the maximum 
order of approximation on uniform nets are satisfied. Then, as we showed 
in Section 2, the approximation error P of our schemes can be put in the 
form 

a) for the schemes (2. lo), (2.17) and (2.19) 

y =p’;p’ +q, I@’ = 0 (h2) + 0 (y + 0 W), ma = {f;:,::;} 
p = p&” = 0 (Is), 

(1) 

where I.+, is given by one of the formulae (2.10). (2.18); 

b) for the scheme (2.22) 

w=q7=p; -+ q', p = p@ = 0 (ha), q'= 0 (It") + 0 (Jq)SO (z). (2) 

If conditions A are satisfied in XI then (1) and (2) are valid at 
all nodes (x, t) of the net Q. If there are lines of discontinuity of 

the differential equation I = EY (t) = G,, j- 6vhn,+1 (0<6, <l, v = 

1, 2, .t t I vo) and conditions A are satisfied in each; region -4, then 

in the case of fixed discontinuities (gi (t) E o’, v = 1, 2, . . . , v,,) (1) 

and (2) are valid at all nodes of the net !J apart from the nodes (z,,,,, tj) 
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and (G,,+I, tj), j = 0, 1, . . t s I{. We can choose the sequence of nets 
R(k) in such a way that the formulae (1) and (2) hold along the lines of 
discontinuity x = 5” = x 

“V 
also, for these nets. 

In the case of moving or oblique discontinuities (c;(t) y 0 for at 
least one v) the situation is more complicated (cf. [21). 

We shall assume below that in the case (a) the following condition is 
always satisfied: the function P,(x, t) satisfies the Lipschitz condi- 
tion in t, so that 

I (PJi I < 1cfs pi_ = 0 (V, (3) 

where M is a positive constant which does not depend on the net. 

It is clear from formula (2) that (3) implies, for instance, that 
&l/&s satisfies the Lipschitz condition in t. 

To simplify our formulations, instead of saying “the solution of 
problem (2.7) converges uniformly to the solution of problem (2.1) and 
has an accuracy of 0(h2) + Ok we shall sas: “the scheme (2.7) con- 
verges uniformly at a rate 0(h2) + O(-f’a)n. 

This enables us to simplify the formulations of the theorems concern- 
ing the convergence and accuracy of our schemes. 

2. Continuous coefficients. 

Theorem 6. When 0.5 <a < 1 the difference scheme (2.17) converges 

uniformly at a rate b (11h2 jllz + 0 (11 z” $J on au arbitrary sequence of 

non-uniform nets 6, or, more accurately 

where y is the solution of problem (2.17), u is the solution of Problem 
(2.13), T,, and M are positive constants which do not depend on the choice 
of nets. 

theorem 7. When 0 <a < 1 and 0 \<p <l the difference schemes (2.2) 

converge in the mean at a rate 0 (li ha 11,) + 0 (IIz11J and converge uni- 

formly on the sequence of nets Q* at a rate 0 (/h2112 119 $-) + 
* 

0(/lr(121ns ;;I;), or, more accurately 
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!Ibr - u iL = II Y (~0 - 24 (5, oIla\< M (Ipq, + II a) for II ~ll0\(~0~ t E Qk# (5) 

II Y (G t) - u (2, 4 II, < M (II ha lla In” k + II f Ila I+) 

for II rll0 < G(%, 81, fi. < ho Cd), 7 < m*;, (6) 
where u is the solution of problem (2.21), y is the solution of problem 

(2.22), & =O;yN&, r. = ~,j+~ = miq xf, 0 > 1 is an arbitrary 
o<Y<1+1 

number and x0, M, mi are constants which are independent of the choice 
of net (t = tj+l). 

To prove Theorem 6 it is 
Theorem 4; to prove Theorem 
[21- [51). 

If the net n is uniform, 

sufficient to use expression (1) for ‘i’ and 
7 we use expression (2) and Theorem 5 (cf. 

then from (6) (cf. [51) we have 

lb - u~,<M(hW++ ‘~ldf). (71 

We are naturally assuming that as llh I/,,+ 0 and 11 x Ilo+ 0, he = q in Ai 

and T* = min 7j satisfy the requirements: ln(l/!~h,)<l/IJhi!& ln(l/@ < 

‘i/lz(l ;, where E is a positive number as small as we please. 

3. Discontinuous coefficients. Let us restrict ourselves to studying 
the convergence of our schemes for fixed discontinuities only, when the 
coefficients of the differential equations have discontinuities of the 
first kind only on a finite number of straight lines parallel to the t- 
axis in the (r, t) plane. 

Theorem 8. The difference scheme (2.17) converges uniformly on the 

sequence of nets i(k) at a rate 0 ( I~2/jj + 0 (11 z"'~II.J when the coeffi- 

cients of equation (2.13) have only fixed discontinuities and 0.5 < 
o,<l. 

If we choose the net a (k) = &(k) X 0, so that the lines of dis- 
continuity of the coefficients of the differential equation (2.13) are 

nodal lines of the net E(K), then, as we showed in Section 2. the 
approximation errors are given by (2.18) at all the nodes of the net 
n E. oh(k) and for all t j E r+. Therefore the proof of Theorem 8 is the 
same as, that of Theorem 6. 

We shall not formulate the theorems about the accuracy of the schemes 
(2.17) and (2.22) on an arbitrary sequence of nets i? (or PI’, since in 
this case the corresponding theorems of [51 apply, if we put 
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0 (It*) + 0 (zma) instead of 0 (Ilhlg) -I- 0 (ll~“‘~&), and for the scheme 

(2.22) Put 

0 (IPljtt I+) + 0 (IW I+) (8) 

instead of 0 (hxl--p(h’) + 0 (dwp’*jj, ‘4l:ere p (h) - l/vln (l/h), p (z) - 

l/JfiT@?T) . 

The generalisation of the theorem of 151 to the case of non-uniform 
nets also presents no difficulty. From Theorem 5 we know that the 
schemes (2.7), (2.17) and (2.22) have the ssme order of accuracy if 
k(x, t) and, correspondingly, k(x, t, u) possess moving (oblique) dis- 
continuities (see, also, [21). 

4. Other schemes for quasi-linear equations. Consider problem (2.21). 
Besides the schemes mentioned in Section 2 the scheme 

PyT = + (%4 (5, t, Y3 (Y,- + 5& + cp (2, 6 + (Y + I;), $ (Y + & ) t 

Yo = Ul (0, YN = up (0, Y (5, 0) = 4) (z), I 

(9) 

where p = p(x, t), 7 = t - 0.5 T, and a(,, 5j is found from the second of . 
the formulae of Point 5, Section 2 with a = 0.5, y* = 0.5(y + y(-l)), 
deserves attention. 

On a uniform net this scheme has second order approximation. On a 
non-uniform net the approximation error can be put in the form 

y =‘p;+9’, IL = 0 (h2) + 0 (T2), q? = 0 (h2) + 0 (y) + O(z2). (10) 

The error z = y - u, where y is the solution of problem (9), is given 
by a special case (with b, = b,, g(;‘) = g2) of the problem 

pzf = 0.5A (2 + t) + Y, zo = ZN = 0, z (z, 0) = 0, 

Aw = (a~;;); + b,w; + 4,w; + (w); + (gp); + dw, (11) 

O<q\<a, O<C,,<P, IdI+,, IbsI\(cr, /g&cc,, S=I, 2, 
IPrIG c6- (13 

Let us show that the scheme (ll)-(12) is stable in the mean on any 
sequence of nets, so that for 11 zI\, < T, we have the estimate 
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As usual, we go from the function z to the function tr putting 

where fi is an arbitrary positive constant. 

To simplify the calculations we shall take p = 1 for the time being. 

Using the relation Zf = 0.5 (CL $ fi) UI 3_ 0.5 (V + ;) &, and the nota- 
tion 

W= rv+i;G 
ii+i;- ’ 

and noting that v f $ = 2w - xZ2z$, we obtain 

V - 2W)V~ + 2xw = Aw + F, 

where 

x=I”ilb+tEi, F= Y/O.5 (p + i). 

Consider the product 

It is easy to see that 

1 - & = ~-~2(~-)~(~ +ycL)-” = 

=1 - (p --J8 f(p + ;1)-2=2p$@ + r;>-” > 0. 

(371 

we multiply (15) by lutZ and sum with respect to x E mh. JJsing (161, 
(171, after a series of simple majorant estimates, we arrive at the in- 
equality 

(We have written it for p y l), and this will be satisfied if we choose 

M=jij(c,, ..‘, cS) sufficiently large and -r sufficiently 

x < ro, z, = z, (Cl, . . . ) cc) > 0, 

Using Lemma 4a and returning to the function z we obtain 

small : 

(13). 

Fe can use the estimate (13) to prove the theorems concerning the 
convergence and accuracy of the scheme (9) both in the class of continu- 
ous coefficients of equation (2.21) and in the class of discontinuous 
coefficients of this equation. Be note only that in the class of con- 

tinuous k and f (conditions A are satisfied in R) the scheme (9) has 
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second order accuracy: 

The scheme (0) has the seme order of accuracy on the sequence of nets 
z(k) in the case of fixed disoont+uities also (the conditions A are 
satisfied in each of the regions %, v = 0, 1. _.. , vO). 

5. On an economical honwgeneous difference scheme for a system of 
parabolic equations. Let us consider in 3 = O<x <l, 0 <t <T) the 
problem 

(kj(s, t)c) + fj(5, t) (i = 1, 2, * . * , p), 1 (19) 

Ui (1, t) = U:(t), U* (2, 0) = U:(X), i z 1,. , . , p; I 

%:, kij = kj$* 1(&j)? I< & (cm = COIlSt>O, m=1,2). (20) 

In [31 we studied six-point schemes for a system of parabolic equa- 
tions and obtained a priori estimates which, by analogy with the case of 
one equation (p = l), enable us to prove uniform convergence and to ob- 
tain an estimate of the order of accuracy of these schemes both in the 
class of continuous coefficients and in the class of coefficients which 
have fixed discontinuities. There is no need to give the proofs here. 
Since the schemes of [31 are implicit, the solution of the resulting 
difference equations requires a larger amount of calculation and can be 
found, for example, by using the formulae of matrix successive substitu- 
tion hl. We consider below a scheme which requires a small number of 
operations, since in order to find the vector y = {y “1 at each moment of 
time t = t,+l we require only a p-times successive application of the 
one-dimensional substitution formulae (cf. [91, [IO], [41). This scheme 
has the form 

& = 5s (a,&); + f [(t&j&+ (a&); ] + 1 
$4 I 

+ 5 (&jig; +cpi (r, t - 0.52), 
} (21) 

j=i+l 1 

Yi (0, t) = u: 01, Y’ (1, t) = u; (t), 9% (2, 0) = u; (2) (i-1,2, . * *, p) . j 

for the equations (19). 

We shall restrict ourselves here to the class of schemes for which 



392 A.A. Sararskii 

aij = A Ik+j (X + A, t)], --Igsgo, 

where A /JA (s)] is a linear non-decreasing functional for which 

A RI = 1, A fsl = - 0.5 

It follows from this and (20) that 

TO compute qi we use the same functional F 17 ($1, that we used in 
Sections 1, 2: 

opi (2, 0 = $ F If (z + sh, t) 7; (s)l + % F ff”(s + sh,, t) ‘1;: @)I. 

The approximation error (Y!“) = Y of scheme (21) can be Put in the form 

Y” = (pi); + 9*** pi = 0 (ha), 

lp = 0 (h2) + 0 @I + 0 t@, I 
(23) 

i=l, 2,. . . , p. 

f$y analogy with [31, using the method of energy inecluafities, we ob- 
tain the a priori estimate 

for sufficiently small 11 z(), < z,. Here g = {$}, u = {ui}, p = {Pi}, 

lj’ =: (q.9) are net vector-functions. 

It follows from this and from (23) that the scheme (21) converges uni- 

formly on an arbitrary sequence of non-uniform nets at a rate 0 (IIh21Ja)+ 

0 (il z Iid - 

Translated by R. Feinstein 
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