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The basic problems of the theory of homogeneous difference schemes for
linear, quasi-linear and non-linear equations of parabolic type have
been studied in a number of works ([1]—[5]). The stability, convergence,
and also estimates of the rate of convergence (order of accuracy) of
several families of homogeneous difference schemes in the classes of
continuous and discontinuous coefficients of the differential equation
have been established. In [g] attention was paid to the fact that on an
arbitrary sequence of non-uniform nets difference schemes which have
second order approximation on uniform nets have only first order approxi-
mation. For this reason the problem of the order of accuracy on non-uni-
form nets requires special study. A family of homogeneous difference
schemes on non-uniform nets for the equation

L(k.q.nuz%(k(,;)%).-q(z)u—i—f(x)=O (1.B)

was given in [6]. The definition of this family was the same as in the
case of uniform nets with homogeneous difference schemes, studied in [71.
It was shown that the order of accuracy of these schemes on non-uniform
nets {8 equal to the order of their accuracy on uniform nets both in the
case of continuous coefficients in the differential equation and in the
case of discontinuous coefficients. It is interesting to note that this
result is obtained if we use a priori estimates of the same type as in
the case of discontinuous coefficients [7] and a uniform net. The
effective characteristic of the net is the mean square step

y 7’
|2l = (2 ki), (2:B)
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so that the estimate |z], = O (h?) on a uniform net corresponds to the
estimate |z]o = O (|%[}) on a non-uniform net.

In this article we study homogeneous difference schemes for parabolic
type equations with one space variable. In Section 1 we consider a new
family of homogeneous differences for the equation (1.B). On special
sequences of nets (k) which depend on the cholce of the coefficients
k, q, f this family has second order accuracy (Jy — ul, = O(|Hf)) in
the class of continuous coefficients.

In Section 2 we consider homogeneous difference schemes for the linear
and quasi-linear equations

@)=L (k@) +r@ )5 —a(@ 0u+ iz, (2B)

c(z ) 2 = 2 (k (2,0, w) 3) + 1 (2, 1, u, 51) (3.B)

and calculate the approximation error of these schemes on non-uniform
nets.

Section 3 is devoted to a priori estimates, Among the estimates ob-
tained in this section Theorem 5 should be noted, for even in the case of
uniform nets it essentially strengthens the results obtained in (1] and
[3]. Using the special representation of the approximation error of the
schemes found in Section 2 and the a priori estimates of Section 3 we
prove, in Section 4, a number of theorems about the order of accuracy of
homogeneous difference schemes for (2.B) and (3.B) on a sequence of non-
uniform nets. The results of Section 4 lead to the conclusion that the
order of accuracy of the given schemes remains unchanged on transferring
to non-uniform nets (by analogy with [6]),

In Point 5 of Section 4 we examine a homogeneous difference scheme
for a system of parabolic equations which is "economical" with respect
to the number of operations.

Each section has its own numbering for formulase; when referring to
the formulae of another section we use a dual system. For example (2.3)
is formula (3) of Section 2.

1. A stationary equation

1. Homogeneous difference schemes on a non-uniform net. In (6] we
studied homogeneous difference schemes on a non-uniform net for the
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stationary heat-conduction equation

L*ahy, d—i(k (z) Z—Z)_ g@)u+fx)=0, ocrct,
u (O) = Uy, u (1) = Uy, (1)
k(z) > ¢ >0, g(z) >0 (c1 = const.),

Let &y = {r;=10,1],0 < i <N} be an arbitrary difference net on
the segment O <C 2z <{ 1, where xz,= 0, 2y = 1. The step of the net
hi=z — 1, >0 (0<i<N) satisfies only the natural normal-

isation condition

D=1, (2)

and is otherwise an arbitrary net function. We shall use a notation with-
out suffixes (cf. [6]):

h=hiy h+=hi+1; h=0'5(h+h+)’ y=y(x)=yt’
Yy =y @+ h) =g YV =y —h) =4, ¥ =Gy )k
h h
Y= (Y — )k, Yy =yV—y/h = Fy., y= 3 ¥z

In (6] we considered canonical schemes.of the form

LEY Dy = (ays); —dy +9 =0,  yo=uy, yn = Uy (3)

The coefficients a, d, ¢ were calculated with the help of the same
pattern functionals A [k (s)] (—1 s << 0), D [g(5)] (—0.5 < s<<0.5),

F [f (9 (— 0.5 <s<0.5), as in the case of uniform nets (cf. [7]),
from the formulae

a=Alk(z+ sh)], (4)
d=Dlg(z+ (s+ AR], ¢=FIf(z+ (s+ A) A,
A = (h, — h)/4h. (5)

The family of homogeneous schemes (3) is defined when the class of
the pattern functionals A, D, F is given by the law (4)-(5) for calculat-
ing the coefficients of the scheme, a, d, ¢ on an arbitrary non-uniform
net.

In this article we shall consider another family of homogeneous
schemes (3) which differs from the family of (6] in that it has another
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law for calculating a, d, ¢ on a non-uniform net. We shall assume that
A, D, F satisfy the following conditions (cf. [6]):

1) A [k (s)] is a non-decreasing homogeneous functional of the first
degree having a second differential,

2) D lg(s)] and F [f(s)] are linear non-negative functionals
(F{f1 >0 when f>0),

3) AMl=1,4,[s1=—05DMU]=F[1]=1,D[sl=FI[s]l =0 (6)

i(necessary conditions of the second order approximation on a uniform
net).

Moreover, we assume that D and F satisfy the additional requirements:

5,  Fla, (s =0,
1 (M

4) Fn; ()] =
==, D [n, (s)] = 0.

D [n; (s)

We have used here the following notation (cf. [7], Section 1, Point 11):

1. for s e, 1, § = 9'
m@={ SE 9=
O f0r8>9; 0, S=f=9,
where 6 is an arbitrary number. Introducing the function
nt () = 0 for s <6,
1 for s >0,
we shall have
Mg () + M3 (8) + 7y (5) = 1. (8)

The condition F [m, (s)] = 0 means that F [f (s)] does not depend on

f (0) (the functional F is regular at the point s = 0, ¢f. [7], Section
1, Point 11).

We shall calculate the coefficient ¢ from the formula

¢ =FIf O,
P8 =2f(z + sh) m; () + 5 1 (z + sh)ng () + f(2) o (8), —0.5 <5 < 0.5.

Due to the linearity of F and the condition F [mny(s)] = O

=9 (2) = 2F[f(z+m) () + % Fi(fz+sh)ns (). (9
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The coefficient d is defined similarly:

d=d(z) =2Dlg(z+ ) n; () +2D [g(z +sh) ()] (10)

From (8) and (7) we have
Flof (91 =13, Flmg (1= —F sy ()] (14)
For, using (8), we find

Fip@)l=FU —n;(s) —a ()] = F U] — F [n; ()] = &,
F st ()] = F [s] — F [sn; ()] — F [smy{(8)] = — F [sm; (s)],

since F [s] = 0, F [sny (s)] = F [0] = 0.

If the net ;h is uniform, i.e. h = h, = #, then formulae (5) and (9)
have the same form:

¢ = F [f (= + sh)l.
In fact, in this case it follows from (9) that

e=F lf(z+s) )+ =Flfz+sh{l —n@E) =
= F [f (z + sh)],

since F [f (z + sh) my ()] = F [f () 7t ()] = f(2) F [, (s)] = 0. 1If
F [n, (5)] =0, then formula (8) gives

¢ =F [f(z+ sh)] — f(2) F [x, (5)].
For the special case

0.5
F=F Q= & B (s) ds

—0.5

schemes (5) and (9) are the same on an arbitrary net .‘;h’

X40.5h4
F=Fl+E+an=5 | 1®&=
x—0.5h
Q 0.5
~ L S f(x + sh) ds + 2 S f(z + sh,)ds,
—{

.5 0
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i.e.
9 = %F" [f (£ + sh) m; (s)] +’%‘F‘ [f (z + sh,) ng (s)].

But in the general case formulae (5) and (9) give different results. It
is sufficient to give the example

—_ N —

FIF =35[f(—3)+7(3)]
Formula (5) gives at once
¢ =3 [f (z — 0.5k) + f (z 4 0.5h,)1. (12)
Using formula (9) we find
9 = o f(z —0.58) + 5 f (z +0.5h,). (13)
Expressions (12) and (13) are equal only on a uniform net (f is an

arbitrary function).

Thus, the initial family of schemes whose coefficients are defined
by formulae (4), (9) and (10) is different from the family of schemes
considered in [6].

2. Approximation error. lLet us find an expression for the approxima-
tion error of the scheme

Ly ! y = (ayz); —dy +¢ =0, Yo = Uy, Yn = Uy, (14)

where a, d, ¢ are coefficients defined by formulae (4), (9) and (10).

Let u(x) be an arbitrary function satisfying the requirements
uEU%MWWEﬁmaM k, g, f=C™". Then, by analogy with [6], we
find

(auz)y = (ku')” + (Ra); + ¥,

Mo = au; — k' + TRRY, o= 0 (k) + O (Ad), (15)

where k = k(x - 0.5 h) etc. Let us expand ¢ in powers of h and hy:
h , .
¢ = 3 FU(f(x) + sht (z)) m; ()] + (16)

+5F 1 (2) + shf @) 0 (9] + O () + O (3).

From this, and from (6), (11), it follows that
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¢ = f(z) — (B2 — B [ (2) F sn;(s))/R + O (K) + O (B2),
or

¢ — f = — (B¥f); F lsm; (s)] + O (k) + O (h2). (17)
In [6] we obtained for the scheme (5) the expression

¢ —f =5 (BF): + O (h) + O (B).

We note that F [sn; (s)] = — for example in the case

8
0.6

F=F Iyl = g p()ds or Flpl=1[p(—1)+nr(3)]-

—0.5
By analogy with (17) we find

(d— @ u = — (Bqu); D sz ()] + O () + O (k). (18)

Using (15), (17), (18) we obtain for the approximation error of the
scheme (14)

P = Lﬁ;k o, __ kahy, (19)

the expression

Y=pa 9, P =0 (k) + 0 k),

. o L . (20)
po= auz — ku' + -k (ku')” + h*q’uD [sn; ()] — R3f'F [ ()]
If A has a second differential, then, from conditions (8)
a=k+ O (k) and p = O (h?).
If u = u(x) is the solution of the differential equation (1) then
(ku')" = qu)’ - f’ and
(21)

po=au-—ku' + hz{(-—- ++ D [sm; (s)])ﬁ —(-;— + F [sm; (s)])f_’ + qu’.}

3. The case of discontinuous coefficients. Let us now assume that k,
7 and f have a discontinuity of the first kind at the node x & w,. For
simplicity we shall assume for the time being that there is only one
point of discontinuity. Put f, = f(x - 0), f = f(x + 0). Let u(x)
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satisfy the coupling conditions [u]l = u, —u) =0, [ku’l = 0, at the
point x & w, and suppose that to the left and to the right of this
point the conditions of Point 2 are satisfied.

We show that at the point of discontinuity x & @, the representation
(20) is valid if the approximation error y is defined as

‘p — L;lk' q, f)u ——/L(T’E'/”u, (22)

where

Pavmn, s
L(’f. q, f) u = :),% (L(k. 7. 1) u).l + %;_(L(k- q. l)u)r‘

——

If u = u(x) is the solution of equation (1), then L* ¢ f y = (. When
(L”" @ ”u)l = (L% ”u) r the expression (19) for y follows from (22).
It is easy to see that the definition (22) is suitable by finding
the expansion of (auz);, d, ¢ in powers of h and h; in the neighbour-

hood of the point of discontinuity of the coefficients of the equation,
X E ﬁ)h- F‘Ol‘

(ku’) = (ku’)y — 0.5k (ku') + +-h? (ku'); + O (B%),
k') ™ = (ku')e + 0.5k, (ku')e + X B (ku'); + O (h3).

It follows from this and from the condition [ku'] = (ku')y — (ku'); =0
that

P

(k) = (ku’); — (& B2 (RaY")z + O (B) + O (B,

(aug) g = (k') + (auz — K" + 102 G@Y); + O (W) + O (B,

Then expanding f in powers of h and h, in the neighbourhood of the point
x € a, f(x +shy = f + shf] + Oh?), s < 0; f(x + shy) = f_+ shyfl+
O(hi), s > 0, we find

¢ = L4 F Ing] + hAF [smy (91} +
+ "T*{f,F 5l + B fF [sni (91} + O (B?) + O (hD).

After substituting (7) and (11) in here we obtain
¢ =7 — (#F); F [sm5 ()] + O (B*) + O (), (23

e
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where
=g hi+ 2.
Similarly we find
(d—q) u = — (hq'u); D lsmg (9] + O (*) + O (k). (24)

We can see as & result that the formula

TR T S y )
\p'—Ln u L u px +¢, (5)

is valid, where u is defined according to formula (20) and y* = O(h?) +
O(h).

When studying difference schemes for parabolic equations we shall
make use of another representation:

P=pi Y, =00 +0®R), p =k, B =p(z—0.5h),

po = Bu’ + L (ku) + quD [sn (9] — FF [sns (9)], (26)

where

p=Lr(a 1 — 1) + 854, 16

These formulae have been obtained on the assumption tﬁat B & 0(2:1) and

the functional A[Z(s)] has a third differential. Since it is elementary
we shall not spend time on the derivation of these formulae.

In the case of the schemes of [6], generally speaking, the representa-
tion (25) does not apply if x Sy is a point of discontinuity of the
coefficients k, q, f of the differential equation. In this connection
Note 2 on p. 829 of the article [6] needs to be made more precise.

4. On the order of accuracy on non-uniform nets. Since all the
a priori estimates obtained in [1] are still in force and the expressions
for y in [6] are of the same type as here, the theorems of [6] concern-
ing the order of accuracy on non-uniform nets are valid also for the
family of schemes (14), defined by the formulae (4), (9), (10) and con-
ditions (7), Suppose that we are given coefficients k, q, f with a finite
number of discontinuities at the points_x =&, v =1, 2, ..., v,. We
can always construct a non-uniform net o, such that the points §v €(0,1)
are its nodes, i.e. §, = xnv(ev =0), 0<n,< N. We denote the sequence

of nets ;h depending on the choice of the coefficients k, q, f and
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constructed in this way by ;h(k). Using the methods of [6] and the re-
presentation (25) on the sequence of nets Eh(k) it is not difficult
derive the following theorem.

Theorem 1. 1f k, q, f & Q'1+1) then any scheme (14) of the_initial
family n. 1 has second order accuracy on the sequence of nets wh(k) such
that

ly —ule< M|k,

where y is the solution of problem (14), u is the solution of problem
(1), M is a positive constant which is independent of the net and [Af,
is the mean square step

I = (3 k)"

i=1

To prove the theorem we need the a priori estimate

hzlo= Jy —ulo <M {p |+ ¥ [s}

obtained in [6] and the representation (25) which is valid at all nodes
of the net (k).

It must be emphasised that the only characteristic of the net is the
mean square step | A [,

2. Parabolic equations

Let us now study homogeneous difference schemes for parabolic equa-
tions.

1. Linear heat conduction equation. We begin with the homogeneous
difference schemes for the linear heat-conduction equation. Let us pose
the initial problem. Suppose that the region J = (0 < z < 1,

0 < t < T) is given. It is required to find in J the solution of
the problem

¢z, ) gp=L%"u =L (k(z, ) ge)—q@u+[(z0, 1)
w00 =u (), u(,?)=u), 2)
u (z’ O) = uo (J:), (3)

0<le<k(z, ), 0Ze<e(nt), 0<q(z1), 4)
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vhere c,, ¢, are positive constants. Let I\{r=2E§,(f) (1< vvy)} be
a finite number of differentiable, non~intersecting curves. The coeffi-
cients k, 7, f can have discontinuities of the first kind only on the
curves I (x = €, (t), v =1, 2, ..., vj). If k(x, t) has a discontinuity
for x = §,(t) then the coupling conditions

Wh=u@O+0)—u®®—-009=0 [k5] =0, 2=
®)

are satisfied.

As usual (cf. [5]) we put

A=EO<z<tnm@0<t<T), v=012 .,
g, (1) =0, Eota () = 1,
A=24, &=EGO<z<ba®, 0Kt

y={

If §,(t) =0 then x = §,(t) is a straight line parallel to the t-axis in
the (x, t) plane ("a fixed discontinuity").

We shall assume everwhere that the problem (1)-(5) has a unique solu-
tion u = u(x, t), which is continuous in E and possesses whatever de-
rivatives we need in the course of our work. Similar assumptions are
made with respect to the other problems considered below.

2. Homogeneous difference schemes. let ©p = {z;, 0 < i<{N} be an
arbitrary difference net on the segment 0 <Cx <(1, let w. = {t;, 0 <
7 << K} be the net on the segment 0 <(t <(T, where t, =0, tg =T,
op = {zi, 0 < l<N}1 We = {t1’0<1<K}' Let ﬁ =a’-h X_(I—)Tm
{(xs, t)e=JI} be the space-time net, and Q = @ X 0. the set of
internal nodes of the net Q. The steps A; = z; — ;-3 >0, 0 < i N

T =t; — e >0, 0<J <K, of the nets ‘;h and :’1 are arbitrary and
satisfy only the normalization conditions

K
Nhi=1, 2 7u="rI. (6)

If T, — Ty = 0 (7T—y) or T; — Tj—; = O (13), then we shall call

the net 5« a quasi-uniform net.
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For net functions we shall, as a rule, make use of notation without
indices, putting

h=hy, h,=hy, E=05(k+h), T=14 T=r1,
y=y@ )=yt =yt =y, y=@—y
The notation y:, ¥, Y3, ¥y was introduced in Point 1, Section 1.
We shall introduce any other notation as it is needed.

We put the problem (1)-(5) in correspondence with the six-point homo-
geneous difference scheme (cf. [2]):

oYy = L)Y, o<a<t, (w0 EQ,
yo=y(0’ ) = u, (9), yN‘:y(i’t) = Uy (), tE€o; (7)
y(z,0) = u,(z), =€y,

where p® = ap 4+ (1 — a);; and LL"_’Q")y = (ay; )2 — dy + @ is the
scheme defined in Section 1.

The coefficients a, d, ¢, p are given by the formulae

a=al(z,t)=Alk(z+ sh,t)],

d =d(z,t) =-”-:-D lg (z + sh, t) 05 (s)] —l—-’%"—D lg (z + sh,, 1) n¢ (9)],

Q=0 (z,0) =2F [f(z+ sh, ) m; () + 5= F If (z + sh,, 1) ¢ ()],

p=p(z, 1) =R lc(z+ sh, ) 3 ()] + 52 R le (z + shy, 1) ¢ ()],
The pattern functionals A, D, F and R satisfy all the requirements

(1)-(4) given in Point 1 of Section 1, and R possesses the same proper-
ties as D and F, so that

Rl =1, RIs1=0, Rn;(s)) =3, R In,(s)]1 =0.

In addition we shall assume everywhere that A[E(s)] has a third differ-
ential.

From (4) and the properties of the pattern functionals it follows
that

0<ae 0<le6<<p. 04 @

3. Approximation error on a non-uniform net. Let u = u(x, t) be the
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solution of the problem (1)-(5), and y the solution of the problem (7).
The net function z = y — u is determined by the conditions:

PV = (A2)® + ¥, Az = (az;); — dz, } o

zog =z =0, 2 (z,0) =0,
¥ — (L ey p(“’ur,

where Y is the approximation error of the scheme (7) in the class of
.solutions u = u(x, t) of the differential equation (1).

‘We shall assume everywhere that the conditions ensuring the maximum
order of approximation of the scheme (7) on a uniform net (conditions A)
are satisfied. These conditions are satisfied either in the whole region
ZT or in.each of the regions A, (conditions A,) if the coefficients of
the differential equation are discontinuous (cf. [4]).

Let us consider some node (x, t) & Q. Suppose that in the neighbour-
hood of this node conditions A are satisfied. Using equation (1) we can
write

— (rla D k. q, N (@) () Ju \(@)
¥ = (L — L% )@ — [ — (e 5)7].

On the uniform net Q(r = T/K = const., h = 1/N = const.), because of
conditions A, we have

2, a=0.35,

¥ =0 (hﬂ) +0 (Tma)v Mg = {1’ o ==0.5.

We put Y in the form
Y=y g, p=LFely pmeNy (o c)??—':,
= —op(ur—5) = 4 =05 (ur — ).
Using the representation (1.25) we find
b =p;+ 0 () + 0 k),
+  9c du

s e » -
poo=hp,, Bo = P'O“"‘a—;‘gt‘ﬂ [sno ()],

where 2+ is given by formula (1.28).
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It is not difficult to see that ¥ = O (17™%). Thus we have proved the
following lemma.

Lemma 1. The approximation error of the scheme (7) can be put in the
form

¥ =pP+y,, 9 =0(")+ 0 k) + 0K,

p = P—okg; }—;; = Uy (-’5 — O.5k, i), Pp == ﬁu' —}—.é_(ku’)” -+ i (10)

+ q'uD [sn;(s)] — f'F [sng (9] + ¢’ %?— Lsm; ()], J

b (1) =2+ 2 )

(The dash denotes differentiation with respect to x.)

Note 1. It follows from conditions A and equation (1) that %u/ot
satisfies the Lipschitz condition in x.

Note 2. It is clear from (10) that on a non-uniform net the scheme
(7) has first order approximation with respect to x whatever the order
of smoothness of the function u = u(x, t) and the coefficients of equa-
tion (1) may be.

Consider the case when k, q, f, ¢ have a finite number of discontinu-
ities on the straight lines x =, = const. (t) (v = 1. 2, ..., vy)
parallel to the t-axis in the (x, t) plane (fixed discontinuities). Since
the lines of discontinuity are fixed, it is always possible to change
the net o, in the neighbourhood of the points x = §,6 & (0, 1) so that
the points x = {, will be nodes of the net o, i.e. §, = xnv, 0<n,< N

(&v does not depend on t). The sequence of nets o, constructed in this
way, depending on the choice of the coefficients %k, g, f, ¢, is denoted

by gh(k). and the corresponding sequence of space-time nets by §(k) =
ah(k) X ;-r‘

Let £ = x_ be one of the points of discontinuity at which k, # &,
9, # 4., f; # f,» ¢, # c,. At this point we have the coupling conditions

] = up — uy =0, [k%%:l:o for z=CF&wp. (11)

By analogy with Section 1 we define the approximation error of the
scheme (7) at the point § € a, as:

¥ (L’;;k. ahy, Wu)(a) _ [P(a)u}' — (c %’_«t‘) ]‘ (12)
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Since the discontinuity is fixed, [au/at] = 0 when x = §.

Using the results of Point 3, Section 1 together with the argument
used in the proof of Lemma 1 we can see that formulae (10) remain in
force at the point of discontinuity of the coefficients of equation (1),
€ € w,, and we therefore have the following lemma.

Lemma 2. If the coefficients k, g, f, ¢ have a finite number of fixed
discontinuities and in each of the regions Kv (v=20,1, ..., vo) condi-

tions A are satisfied, then on the sequence of nets ﬁ(k) the approxima-
tion error of any of the schemes (7) is given by formulae (10) at all
nodes (x, t) = Qk).

If k, q, f and c have discontinuities of the first kind on the curves
z =28 (t) = zn, + Ok, 41, 0 <O, <1, then (10) is not valid at the
nodes (., t) and (Zp, 44, ¢).

4. A linear equation of general form. Let us now consider a linear
parabolic equation of general form

ou _ ykq, Ju
¢ (x, t)w——-L ¢ u + r(z, t)'a?' (13)
u(0, t) = u,(t), u(l, t) = uy(t), u(x, 0) = u,(x).
In order to write down a homogeneous difference scheme on a non-uniform
net for this equation we must find a suitable difference approximation
for the term r —— a , which is also appropriate for the case of discon-

tinuous coefficients, and, in particular, on the sequence of nets mh(k).
We shall use one of the following approximations:

) b-yy + bty, = —b‘y + L by,
ro=~Ay) = (14)
b (a*Vy.+ ays),
where

h h,
y;;:_ﬁ-y;7 y;'x\; hyx’

=+Blr(z+sh,t)yn (9], o= h—{B [r (z + shy, 1) 3 (s)],
b =%B [F (2 + shy ) ma (9} + 52 B [F (2 + sh, ) mi ()], F=ry20,

-

Here B[u(s)] is a linear non-decreasing functional satisfying the condi-
tions

Bl =1, Blsl =0, Bln(s)) =1, B ln,(s)] =0.
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lLet us find the approximation error for each of the expressions for
A(y). let x & o, be a point of discontinuity of r(x, t) and k(x, t).
Taking A, (u) = (hb-ug + h, b*u.)/k, simple calculations give

M () = o5 (MW1h + reihy) + ()3 + O () + O (B3),

or
A (@) — i’ = (4); + O (W) + O (B)), (15)

where
B =pe (2 — 0.5k, 1),  pr=(ru" — ru'Blsng () k2. (16)

If {ru’'l = 0, then o= ra. It r(x, t) and k(x, t) have discontinu-
ities at the point § = z, + 0hny, (0 <<O < 1), then (A, (u) —

ru)e—s, = O (1) (for & < 0.5) and at the point x = x_, ¥ = O(1) even for
the scheme
5

s [i 8
2T BW=D W =FR=Rk= s d

B (e}
0.5

A lul ={

| e
-

In this case in order to increase the order of accuracy we must use the
second expression for A(y) (cf. (4], [sDy.

We now write, by analogy with [4], the differemce scheme for (13):

Py = LE "y + A @)Y, o<axt, .
Vo= uy (), yn = ualt)y ¥ (z,0) =1 (2). 47

If conditions A, which guarantee the maximum order of approximation
of the scheme (17), are satisfied, then formulae of the form (10) are
valid for the approximation error Y of the scheme (17):

¥ =pP+ ¥, ¥ =00")+ 0"+ 0",

- ’ ” ’ 7 ne Ia » Aot 18
M’*’hg!*m}‘ozl"o(ksksk;q,f;(ku),C-—g:—,ru,ru). ( )

Besides the scheme (17), schemes of the form
(19)
ppr = LDy L A ), yo=u () yv=us (), ¥ (2,0 =u,(2),

are of interest. The coefficients p, a, d, ¢, b , b* (or b) can be ex-
pressed in terms of the corresponding coefficients of the differential
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equation (1) taken at time T = t — 0.5 7. The scheme (19) is equivalent
to scheme (17) with respect to the order of approximation.

In practice it is sometimes advisable to use the schemes

pur = (ay) 8 + (W), 0<a<t, 0<B<Y, (20)

where ly = — dy + ¢ + A(y) and (ly(ﬁ’ is given by one of the formulae:

(e =By + U =B ly=w)® )
(o = —d(@z, ) y® +o (2, 1) + b (2, ) y¥ + b* (2, ) y©, i=t—05e.

In particular, the scheme corresponding to 3 = 0, in which all the
earlier terms are taken on the preceding row, is very convenient in
practice. In this case the successive substitution formulae may be used
on any net o, whatever the sign of d and b* may be (cf. [4], Section 2,
Point 4).

5. A quasi-linear equation. In [5] we studied homogeneous difference
schemes on uniform nets for the quasi-linear equations

.@u=%(k(z, t,u)%>~c(x, D f(z 1, u, %):o
k(z, t,))>a>0, ¢z, )>0>0), (21)
u(0,8) =u, (1), u(l,t)=u,l), u(z, 0) = u,y (2).

We shall assume that the derivatives of the functions k(x, t, u) and
f(x, t, u, p) with respect to the arguments u and p satisfy the same
conditions as in [5]. When the "heat conduction coefficient" k=k(x,t,u)
depends on u special difficulties arise. We succeeded in proving uniform
convergence in [5) only for four-point implicit schemes, the estimate of
their order of accuracy being considerably cruder than in the case k =
k(x, t). In this article we extend the class of converging schemes and
obtain new estimates of the rate of convergence which are, in particular,
more exact than those of [5] in the case of uniform nets.

We shall consider the following class of schemes:

PUr= (8 ¥:)s + 9pp  O0<a<t, 0SBKY, (22)
Yo = Uy (l), YN == Uy (t)v y (=, 0) = Uy (a:),

where @ %) and ¢(p) are found from one of the corresponding formulae:

v

8, = 0a (z, 6, ) + (1 — o) a(z, tv’ y’) = a® (z, t, "),
¥ =05(+y), i=t—r,
8(&) =4a (Z, 1=, (y')(“})’ (y. )(a) = czy‘ +—a) 3;"
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Pe =00 (.t A@) + (U =P o (2, f, v, L) = o® (2, 1, 4, A ),
P = @ (2, 1O, y@, MO (), A@) =050, +yy) =y =@+ —yTV)2A,

a(z,t,u) = A [k(z 4+ sh, t, u)l, —1<s<0,
9 (@ t,u, p) =F [f (z + sh, t,u, p) 13 (9] +
+ 2 F [f (2 + shy t,u,p) 0t ()]

p=p(2 1) =4 Fle(a+sh )0 (9] +5F le (z + sh,, 1) mj (3.

The properties of the functionals A and F are given in Point 1,
Section 1; in addition, (as in Point 2, Section 2) we make the require-
ment that A[k(s)] shall have a third differential. It was shown in [5]
that the pattern functionals

0 0.5

A (s)1=[ggd—(ss)] . P (9] = Sp(s) ds

-1 -0.5

ensure a higher order of accuracy in the class of discontinuous coeffi-
cients of equation (21). The function f in (21) must be transformed to
the form

=1zt u 25,

We then have
=0ty @), Ay =aty; + ayy,
a(z,t,u) = A"k (z + sh, t, u)l,
Q(z,t,u,p)=F lf(z+ (s + A) R, ¢, u, p)l,
p(z,t) = F le(z+ (s+ A)E, )], A = (h, — h)/4h.

As usual, u = u(x, t) is the solution of the initial problem (21),
Yy = y(x, t) is the solution of problem (22). For the net function
z = y - u we obtain the conditions

pzr = (awzz)y + Q&) + %, 2,=0, z2v=0, 2(z,0)=0,(23
a(a)>cl>0; P>Cz>0,

where Q(z) is given by an expression of the form

Q(2) = dyz + dz + bnz; + bmig + bzzz; +/b215,‘2 + (guz);g + (24)
+ (g128); + (&’222)!c + (gni))g
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for some special values of the boundary coefficients ds, bsk' Eepr S
k=1, 2.

Reasoning by analogy with Point 2 we find the following expression
for the approximation error:

v=uy Y, Y =0F)+F0OE)+0(), p=0H). (25

We shall not write out an explicit expression for u.

3. A priori estimates

To find the order of accuracy of the difference schemes examined in
Section 2 we need various a priori estimates estahlishing the stability
of the linear equations (2.9) and (2.23) with respect to the right-hand
side. Estimates of this kind were obtained in [1], [2], [4], [5]; it was
shown how these estimates are modified on non-uniform nets. For the six-
point schemes (2.9) we use the estimates of [1], [2] and [3] without any
essential alteration. We shall only show that the scheme (2.9) is stable
with respect to its right-hand side of any |tf, = max 7;, while its

stability when 1 < T is proved in [2].

We shall concentrate on the derivation of a uniform a priori estimate
for the equation (2.23), special cases of which were studied in (1] ana
[5]. with the help of an a priori estimate in the mean we substantially
strengtlien Theorem 4 of [5].

1. Introduction. We shall distinguish between two cases:
a) k(x, t) bounded:
0 <k(z, ) el (1)
and satisfies the Lipschitz condition in t:
LARSA (c, = const.> 0); 2

b) k(x, t) or k(x, t, u) is bounded only.

Lemma 3. 1f conditions (1) and (2) are satisfied and the pattern
functional ALk(s)] has a first differential, then for the coefficient
a(x, ty = Alk(x + sh, t)] we have the inequality

o

’ar’ < ¢4, where C4= c; i 3)

We recall that A[k] is a non-decreasing homogeneous functional of the
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first degree satisfying the normalisation condition A[1) = 1.

Let Al[k, u) be the first differential of the functional A[k]. we
show first that

54, [k,11<‘c_11. (4)

51

To do this we use the identity A, [k, k] = A [k] (see [7], Section 1)
and the inequalities

Ay e 4] = A, [k, 0] < Ay [k kKl = A [K] <
<A, lk k] < A4, [k, ) = ¢4, [k 11.

From the theorem about the mean value we know that the difference a — &
is equal to

a—d=Alk(z+ sh,t)] —A [k (z + sk, )] =
=A [kl —A (k] =4, [k +0vk;, th;], o<o<t.

It follows from this and from (4) that

v C'
lap | << e 4, [k + 0k, 1] << c—;—q
Note. 1f A[k] is a linear functional, then lag | <ca, ine. er=cj.

Lemna 4. let 8 and P; be functions which are given on an arbitrary
non-uniform net ST with step 7, =¢; —t,, >0, j =1, 2, ... If Pj is

a non-negative non-decreasing function (pj+1;>'pj), then the inequality

41
git1 < o 2 Ti€i—1 T Pit1 (co = const . > 0) (5)
=2
implies
c,l',_H .
gir<se Mpi,  j=01,.... (6)

If P; is an arbitrary non-negative function, it follows from (5) that

ol . i1
8i+1 < Pia + ¢ A Z TyPy—1s t;+1 =t,— (M)
P ]

Let us first obtain the estimate (8). We shall look for g) in the form

= g, ®)
k=0
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where
i+1
gO<py g D el k=12
i'=2
Using the fact that

i1 i1

Sult)< | fOd it fE)S10) tor >0

=2 -

and the monotonicity of pj» we find

W & i) (eotj )" :
S TR Pirr =t — "
From this and from (8) we have (6).

Let pj be an arbitrary non-negative function. Putting €41 = Pj+1 +

vj+1 , we obtain

j+1 i+
- L
Vi€ ) Tl t+ Py P = D) TiPr— >0,
i+ i+
i'=2 =2

where p* is a non-decreasing function. Then, using estimate (6) for vj
we obtain (7).

Corollary. If the net “"r is uniform, .i.e. 7. = 1 = const. than t;+1=

tjy; — T, = t; and, instead of (6) and (7) we {mve

g0, < €0, o (6")

gH—l Pita + Coec‘tj TE Py (7°)

=1

Lemma 4a. Suppose g. and f. are given on the net O ={¢,, J=
1, veaes K} 1f f is an arbitrary non-negative function, then

< (1' + COTJ") gj'_.l + ‘rj'fj" i, = 1» 2) LA | (9)

implies that

,

cl; b
g, e + Pjyy» Where pi= (1 + ¢Ty) g + 2 Ty f

=1

To prove this lemma we need only sum (9) with respect to j'=1,2,...,7+1
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and use estimate (6) of Lemma 4.

By analogy with [6] we introduce notation for the sums and norms of

net functions. Let v and y be arbitrary functions given on @p,. We put

N—1 N—1 N—1
(2}, "‘p) = Z vilpihiv (U, '4’)+ = 2 vi\pihi'f-l, (v, 1|’)' = Z vi\piﬁh
i=1 N t=] Nt 1=0
@ 9l = D vk,  [v,9) = ) vibihig,
i=1 i=0
[l = max[¥:f, [l = 1, [$])¥, [l = (A, [PP)Ve,  s=1.2.
xj Eop

If the function v is defined on ®} = {zi, 0 < i N}, then

ol = (1, [v T

Thus, for example, if the function v is given for all x &= ;h' then v
is defined for » & m';; and so

lozle = (1, 221" (2 =00,

It is not difficult to see that

[l <V Z]2]
We shall also use the norms
bl = Inl [l = 1l (10
where u is the net function defined by the conditions
Y = s, py =0 or p,=0.

Let us give some difference identities which we shall use later:

(v, y3) = (v, y)* = — (¥, vz] + (YV)v — Yo¥1, } )
@ yz) =@ y) = — [y, va) + yy_ o8 — W00
(v, (ay3) )" = (v, (ay)e)* = — (a, y305] + (ayz0)y — (a!FVysv), (12)

(v, (ay3)2)" = ((av3)z, y)° + (a (vy; — yv3))y — (@Y (VY — Yvx))o.  (13)
If y and v satisfy the homogeneous conditions

y0=yN=O’ v0=vN=O’
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all the permutations in formulae (11)-(13) are equal to zero. We also
need the inequalities

ol <logh,  lvh <7%u Vavzly  for a=vy=0, a>a>0. (14)
‘ 1
G < W PP @ o™, 4=t >0, >0
(15)
m m m
I 2 < S mean wherep >0, >0, Sm=1. (16)
L1 k=1 k=1

2. Stability of the scheme (2.9) with respect to its right-hand side.
In (1], [2], [3] we considered the scheme

pz; = (Az)@ + ¥, Az = (az;); — dz,
2=0, zv=0, z(z,0) =0, (7
a>c¢ >0, p > >0, 0<adCey,

and showed that this scheme is uniformly stable with respect to its
right-hand side if 0.5 <a <1 and

lar| < e (18)
T To (19)
where 1, is a positive constant which depends only on ¢, ..., ¢,.

Let us show that condition (19) is superfluous.

Theorem 2. The solution of problem (17) satisfies the inequality

i

2@ b < M( 3 w1¥ @ wE), (20)

tjrzi‘
if
D lerl < e lerl < 65 0.5 <a <,

2) “’;h is an arbitrary net, ;.‘. a quasi-uniform net (M is a positive
constant which depends only on Cps wovs Cg)e If Z,,r is an arbitrary non-
uniform net, then estimate (20) is valid with the condition that
[t]o = max 7;  1,, where 1, >0 is a constant which depends only

on the constants ¢y, ..., ¢,.

We give the proof in two stages: we first obtain an estimate in the
mean (by analogy with [2] and [5]), and then we use it to obtain a uni-
form estimate.
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1. For simplicity in the calculations we give the proof for p =1,
T = const. We rewrite equation (17) in the form

z—atAz =z + (1 — a) TAz + 7.

We square both sides, multiply by % and sum with respect to all x & O
Using the first Green formula (12) and the inequality

. 1 I
|, ) | <5 0B + S 1ok
where Co is an arbitrary positive constant, we obtain
H42t@l +(1 —) <<+ cv) HA+ t(v+ e TR, (2)

where

H=sf+ Az, =2+ 2).

Putting ¢, = l/tJ-.,_1 and using Lemma 4 we find

3 ) j+1 ) ' i+ ,
12 (2, 1) B + AP B+ Dl et N wm| VB, (22)
j'=1 i'=1

In the general case, when p = p(x, t) and 51, is a quasi-uniform net
(] %) < m't, m*>0), instead of (22) we have

2 i+1 ., i+1 .,
|+ D<M D YR, (29)
i’=1

=1

VP e + 4 "?+1"( % )5+1

where M is a positive constant depending only on Cqs Cgy M* and T. From
(23) we have, in particular

1 ., j+1 )
Al < MY v |V . (24)
§'=1 §'=1

In deriving (24) we have not used the condition d < c3e
2. Let us multiply (17) by -rzfﬁ and sum for x & oy

| Vsl + a(a, 221 = (1 —a) @4 28] — 7 (adz + (1 — a) d2, 27)° +
+ (@2 — (1 — @) &, 22 ]+ 7 (¥, z)" (25)
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Using the obvious inequalities

(aa — (1 —a)d, zzz] = 2a — 1) (a, zz5] + (1 — @) v (g, 2E] <
< (@ — 0.5) {(a, 2214 @, A} + 7 (cy/2¢) {(1 — 0) (2, 2] + a (4, £},
— (edz + (1 — o) dz, ) < 5|Vps B+
+Valed A+t —od 2
T (¥, %) <31Vl + 5 | ¥,

we obtain from (25), for 0.5 a1

(@ B <@ &+ +h+I]vE,

where
_ 2 23 L. ‘ Cq VZ;
I—(avz§1+(dsz); [ ——max(z—, —52—->,
This gives
. i+1 5 1. i+ o
@ 22V L2 2w+ > |V e
i'=1 =1

Then using estimate (24) and inequality (14) we obtain (20).

Note 1. If z(x, 0) # 0, then on the right-hand side of (23) there
will be the additional term
H=
* ) t=0

(M + MY+ M)|z(z, R, 1=kl = max (t/h}),
+
@y

M {n Vﬁz ‘go -+ TH VEZ.; fg. 4t {d, 22 & .‘_";

A
Vi

which can be majorised by the expression

where M =M (cy, ..., ¢s, ¢p T, m*), M' =M (cy, ..., 5, 0, ¢ T, m*), M" =

M (& ..., ¢ ¢, ¢ T, m*) are positive constants with
eZa>a>0, >p>a>0 (ef. [2).

In this case we have instead of (20) an estimate of the form
i+t '
J" 0] /l ,
6, b <M {a+Dlz 0k +( X wiv )"} @)

i'=1
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Note 2. The estimate (24) still holds if we replace the condition
0 <d < ¢, by the conditions

0<d,l%l<%.
Note 3. The second part of the theorem for the case of an arbitrary
net @, can be proved by analogy with (1] if we use Lemma 4a.

4. Stability of another scheme for the heat conduction equation. Let
us now consider a scheme (2.19) which is also used in practice:

pz; = (@29); — dz® + ¥ = Az® + ¥, 05<a<,
2o = zy = 0, (26)
O<cl<a' O<:c2<p1 0\<ed7

where
p = pl(z,1), a = al(z, i), d=d(z, 1), t=1t—0.57.

Theorem 3. The difference scheme (26) is uniformly stable with re-
spect to its right-hand side and the initial data on an arbitrary non-

uniform net 5:

2 o ) |y < M3 (2, 0) g + M (2 IV R e
where
2k = 13k + 15k
if the additional conditions
ol <ew  ld|<en az0)<d  d<e @9

are satisfied.

For « = 1 the theorem follows from [2]. Let 0.5 K oa<1. As usual we
write down the integral identity

©| Vg o + 2 {(a, 22+ @ 2} = (1 — &) {(a, &1+ @, )} +
+ (20 — 1) {(a, 235] + (@, 22)"} + v (¥, z)".

Using the estimates
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@ 21<(1+3@ 21 (0, 25l <F B+ (1+ D)@ A,

€1

d 2 = 2+ 1, A <@ )+ 2@ 2

@ ) <t 2 + 5@ Py,

we obtain
I<(+cof+ | ¥E,
i+ i1 g,
PR R ul 7+ 10+ 2 41V
i'=1 =1
where

I=(,z#]+ (), ¢ =max (506‘1 %)

I° = (a (z, 0), zi (z, 0)] + (@ (z, 0), 2% (z, 0))".
This and Lemma 4a give (27), if a (z,0) < ¢ d (2, 0) < ¢s.
The difference scheme (2.19) has second order approximation on the
uniform net o, and on an arbitrary non-uniform net
— () 2 m —
¥ =p + 0 (1) + O (B} + 0 (™), r=0(w) (29)
It follows from this that, generally speaking, the scheme (2.19) is not
worse than the scheme (2.9) since it is stable for any |

5. An improved a priori estimate for the scheme (2.17). When studying
the order of accuracy on non-uniform nets we find that the norm | ¥ |

is too crude, even when the coefficients of the differential equation
are continuous. Using the method of stationary solutions explained in
[3] and estimate (20) it is not difficult, by analogy with [3], to ob-
tain more refined estimates for | z .

Let us give the result for the most general problem at once:
pz; = (az;)‘;:) + Q2+ V¥, Zo=12y = 0, z(z,0) =0,
Q (Z) = dyz + dgi + buz& —+ bnf; + b%z; + bni;,

O<Cl<a<c;70<cz<p<c¢lhlds|<cs’|a?i\<\c" |
bk | S o5 (5 k=1, 2).

(30)
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Theorem 4. The solution of problem (30) on an arbitrary non-uniform
net for 0.5 <« <1 and for sufficiently small |7, < 7, has the esti-
mates:

1)

12 (2, tip) o+ 12z (@ i) e < M (2 (2, O) o + | 2z (2, O ]) + (31)
i+ Y
+ M( '21 T | W)

2) if ¥ =9, ¢ =p, +¢, then
Iz (@ tiva) b < M {9 (2, O) s + | ¥ (2, 8i1a) o + (32)

i+1 j+1

+ [2 o (9 B + [ ] I§~)]l/’} + W[Z y (¥

i'=1 =1

K]
]

B+ )]

where

Mol = Il + 19" Ik =0l + 19" [
M =0 tor a) Q(2) = (byz3 + bazy)® + dyz + dpz u b) | (B)7 | <o
s=1,2.

To prove Theorem 4 we have to make a few alterations in the reason-
ing given in (1] and [3].

6. Energy identity of the n-th rank. All the points of Section 3
which follow are concerned with the derivation of new a priori estimates
for the solution of problem (2.23), i.e. of the problem

pzr = (azz)z; + Q(2) +9, 2z =12y = 0, z2(z,00=0 (33)

where Q(z) is given by formula (2.24). We shall assume that the coeffi-
cients a, p, ds, bsk' Eep (S) k =1, 2) are bounded:

0K, 0<“2<Pr dsl<cs, Ibek|<cu lgakl<cu (34)

s, k=1, 2,

and p = p(x, t), in addition, satisfies the Lipschitz condition with
respect to ¢

lPgl < € (35)

(¢ys -+, €, aTE positive constants which do not depend on the net).
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In [5] we considered a special case of equation (33), for d2 = 612 =

621 = 8y T8 =0 and with boundary conditions of the general form

a iV z, = & 2; + 02— v, for 2=0, —az. = &,2; + 0,2 — v, for z=1. (36)

Although our argument is given for the conditions of the first kind
z, = zy = 0 the final results are valid for conditions (36) also provided |

that &,, 0. (s = 1, 2) satisfy the requirements given in [e]. 1t is
sufficient here to replace |f; by [} s, where

ol =¥k + 10 1) [+ [Vl + [ vl

We shall assume that ;h is an arbitrary non-uniform net, and o, = m_'r
is a non-uniform net whose steps satisfy the condition

T m', (37)

where m* is some positive constant. We denote the net corresponding to
Q by O = 0 x of.

Introducing the new function v:
z=vw, wi=Mw, w(, 0)=1, or w= 1+ Mrt)w, (38)

where M> 0 is an arbitrary constant we obtain

po; — (av)x + dv = ¥ =9 + Q, (v), v, = vy = 0, v(z, 0) = 0,
Q1(v) = —a{’ + bnvg -+ bzzv;; + 512;’32 +521{’; + (8'1x”)£+
+ (gg90) 3 + (Em;’); =+ (—gn"\");v r (39)
p=1p1, d=pYM —dy, dy = dyY, bux = b, gk = Eaf,
v = Y/w, r= {1+ M)

Let us write down the eguation of the n-th rank, i.e. the equation

n
for the function » =9 %, n=1, 2, ... To do this we have to multiply
(39) by wxet, ., ®" = 2™, where a, = 2" — 1; and use the
identity

20 (av5); = (a (1)7)3 — 5 [havk + hyattizd].

We then obtain (cf. [1] and [5]):
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n n n—1 x k - K
or — (@) + 312 [ a0t + St (07 + 56 ()
k=0
X v TR 4 o"dp = 2" Y,
Multiplying (39) by % and suming for x & o, remembering that
(_g. a(f,;)z + %a(ﬂ; (;x)s, ,,an—“tm)' = (a (g;)s’ %%ty 4
+ (a0 (,‘fx)s’ Pkt |

we obtain the basic integral (energy) identity

@ O + 2Lt Pat- 27 (@A 0 =2"(0:(0), o) + (40)
+ 22, 0+ Gr O
where
To= (0, (021 S22 g(a (o) vosmsrs) 4 @00 (o), w*n—owtayy, (at)
k=0 n—1 X
Po=x 3 27 (o), oesy, @)
R=0

Our aim is to find an estimate for |v[, (and, therefore, for |z )
in terms of |$fs. In [5] for the special case by = g = 0 for s 7 k
and a uniform net we obtained the estimate

I3 0" < M2"e%" [§ (e, Ok, 19(& Db =max|b (z,1) s,

where M, = 0 for g, =0, s, k =1, 2. We shall show below that M, =0
for the general equation (39).

We first find an a priori estimate in the mean, i.e. for [ [y, and
n
then use it to estimate |v|, and | o [,.

7. Stability in the mean with respect to the right-hand side. Putting
n =1 in (40) we obtain the first rank energy identity:

6 )+ 2, + Py + 2 (d, 08 = 2 (Qy (v), v)’ + 2 (%, o) + (o7, 99", (43)
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Repeating the argument made in Point 5, Section 1 of (5] forn=1 we
arrive, in the case of a non-uniform net, at the inequality

41 P —
B, o)+ 3 1y (@, o2 < MIF (@, Gra) b for DT <.

=l

It follows that

1o (2,0 ke + V] 25 (2, ) | < MI¥ (2, O T 1Th <% (44)

<
bz (2, t) e + Ve lz (2, O <MY (2, ) s Torlth<w  (45)
where M is a positive constant depending only on Cis Cqs vvey ) T and
T, 18 a positive constant depending only on ¢, ..., Cg.

Thus the scheme (39) is stable in the mean with respect to its right-
hand side for sufficiently small T <7,.

Lemma 5. 1f d, <0, by = gu=0, s=1,2, i.e.
(46)
Q(z) = Q(2) + dyz,  Q°(2) = byy + buZy + (Erad)y + (gu?)y + da2,

then the scheme (39) is stable in the mean with respect to its right-
hand side on an arbitrary net Q* for any values of |k, and |ty

1z (2 ) e + Vlzz (2, ) h <M 9z, D) 5. (47)
We start from identity (43), which we rewrite in the form

(® v*) + T (e vY) 4 21+ 2M | (p, )" B — 2(1 + M) (dy, o*) =
= 2(Q° (v), v)’ + 2 (¥, v) + (o7, V)", (48)

If=(a, va_";], o' =a(l + M1), ¥ ="P(1 + Mr).

Let us estimate the separate terms of the right-hand side of (48):

20, o) <2 blozh <ili +%w B, a=ad+¥9>a

2(ds9, o) < 20| e ol < =0V 57 e + 2 o),
2 (bavg + bauvy, ) = 2 (biz xy V) 4 2 by vz, ¥) <4V Zes]vzhe]v e <
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2 1 Ty 16
<‘Vi”‘nv be (1" <-I—Il (7)1

c1

2((gp)z, 1) = — 2 (e, ] <o b UV < H1 4+

Yok G v=) L\VE e

Clcz

Then choosing M = 0.5 (cgc5 ”* + 16¢% (m*)%/cy) ¢;', we arrive at the in-
equality

Woole+ i <+ MOV po o+ +2 v B,

which is valid for any T on the net Q*.

Using lemma 4a we find

Voo (z, tip) e + o (ti) < {“ V——v e+ 1V o |5 lt=o +
i+

+o Y ulv @ ok

It follows that [vle + Vv vz <M |¥ls, since v(x, 0) = 0 and,
using (38), we have inequality (47).

8. Uniform stability. Let us now derive an a priori estimate for
||, from (40) using the method of majorant estimate of the right-hand
side of the identity (40) suggested in [1) and perfected in [5]. The
main difference between our method and that of [5] consists in our use
of the estimate (44).

We need the formula

n—1

k
(@) = 2 (o) ki kb1 0
k=0

and a similar formula for (»°7);. Consider the expression 2" (¥, v°")".
Putting % = 1y, My = 0, we find

2® (f, 2% = — 2" (n, (¥°"))"

and, by analogy with (5]
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(0" ) < In+ (M2 B = 5 Lo + (M2 [9)*".  (49)

This inequality allows us to write down an estimate for 2" ((gan?)y, ")
immediately. For we have

2" ((ga?)g, 7" = — 2" (g2, (0°M))* < 2Ty + (Mx2" | o)t

and similarly for the other expressions of the same type, so that

Ko = 2" ((gu1v)3 +(§u;’,); + (824?) 3y + (Z’u';);, v?‘ﬁ)‘ <
<3+ M2 (ol + o fe)1™

Since, from (44), |2l < M]]_\-FI,
Kq < ":-In + (M,@"ﬁ—“a)“. M=M(e,...a>0 (50

By analogy with [5] we find

2" (buvs + buvy, 0 LI+ Mx2®(L, 0, M=M(@ >0 (51)
2" @5, PN < (py B + M2 (U, 0,  M=M@ >0 (52)

Let us consider the estimate of the expression 2" (31255-}-5,15 o V)
in more detail. Let us give the calculations for the first term only:

2 Buavs, 0™ = 2° Buaver 1) = 2° Gt (0 b 773), o8
1873, ¥ )= (,“v“’ v ) - (u”m U+TUI , 2’"_1)+ —

- v v v - v n—l1
= 2" (b0 v "0, V)t 2% (bygv, w7 VUMY
We see from formula (41) for In that
Va5, |, | v*=1])* (a0}, pono)h g 2™t

We can therefore write

- ﬂ:—l v - ;" 1
2" (byov, V)T L 2%, (vE, 2) P (vRn1s 1)t (53)

v v . n -
< 2"0‘61_1/21!)'“1/2“ (vi’ Ua“ ¢|)+1/2 (1’ v)“H‘l’l ll‘l"‘) g
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(e — 2™ ¥ "
< 2("1+1)/2C‘c (r—12™) In'/a+ 120 (1’ v)+(l/._ 1/2m) <

<'.1'2—% Vﬂ + Mzﬂ(iy ;).; M =M (c1, ¢g, m*)>0,

va"‘

. n . 1 1/271 a ¥ v i,
since v = v 2, PP ('E I,,) (vi» v" l)<2""’”’2 (In/cl) .
Now let us consider the second expression:

2% (Bugps, o7 v < Lo X2 ;;_V HL L)W b VRIVE o be) <

<L 2o |VF oo + 2 VR ozl

Then, using estimate (44) for Vv|vz|p, we find

- v R . . Ty —
2" (bwv,‘; + bzlv;: v ’:‘In + Py 4 TIn + (Mx2" v IIS)’n-
Combining all the estimates (51)-(53) and choosing M so that the co-

n
efficient of (1, v)‘ in (40) is non-negative, we obtain the inequality

@ 0+ Ua< (G, 0) A+ Myt) + T, + v (M2 [P, (54)

which is valid for sufficiently small 7 < To» Where T, Ml, M are posi-
tive constants independent of the net, T, = T (c,, ..., ¢), Ml =
M(cz, cehs M=H(cl, cees Cg, MP).

Using Lemma 4a, it follows from (54) that

. o + <oz f< a2 TR for 1< (55)

Going from v to z:
n n—1,2 2= un
(4, 2 + ez p <M (M2 [RRy" for T< o

We then obtain

12 (z, 1) lo < Mx2" [ (=, ) . ", %, =min &, (56)
I 2 (2, t) o < Mx2" [P (2, ) ||§,‘t'_1/2 , T, =min Vi (57)

o<ty
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The second inequality follows from

((Zh) <mrmeon ki<l

Choosing n so that condition ('718), Section 1 of [5], i.e. the condi-
tion

1
logs 7~ n 1
—_— <K2"< log, 5 for h, < hy(e), (58)
& log loga 7— *

is satisfied, where € > 0 is an arbitrary number, and using the relation
n+ Ei;logzzi'—Qé logzlogzﬁj—f‘, §=1+e>1,
we find from (56)
I 2(z, )0 < M ¥ (z, )]s ln‘ 7o for B <Ch (e). (59)
Choosing n = n(r,) by analogy with (58) and using (57) we obtain
12 (@, ) < MT¥ (&, D1+ tor 7, < (o)

This proves the following theorem,

Theorem 5. If z = z(x, t) is the solution of problem (33) and condi-
tions (34) and (35) are satisfied, then on the arbitrary sequence of
nets Q we have the following estimates:

l2(z, )], < M (=, 1) 4 tor [ tfy < 1’0 (estimation on average) (60)°
12 (z, )lo < M (& D 1n°i tor |7y <t (% ), (61)
[z (z, )l < M|V (z, 1) "s lna for | 1]y < T B, < ky (e), (62)

where § =1 t &, & is an arbitrary positive number, and v, M are posi-
tive constants which do not depend on the net.

Note 1. If b12 = b21 = 0 then Theorem 5 is true for an arbitrary net
Q.

Note 2. If bes 0 (k, s =1, 2) then the principle of the

maximum gives

Bsk

lz @@ D<M (z, o for Tl <To
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(cf. [5]) on any net Q& If, in addition, <1I<; 0, this estimate is valid
for all [<jo.

4. On the order of accuracy of difference schemes
on non-uniform nets

1. Introduction. In Section 2 we studied various homogeneous differ-
ence schemes for linear and quasi-linear parabolic equations in the case
of non-uniform nets. Our final aim is to find the order of accuracy of
these schemes on arbitrary non-uniform nets in the class of continuous
and discontinuous coefficients of the corresponding differential equa-
tions. This problem is studied in detail in [2], [4], [5] for uniform
nets. The a priori estimates obtained in Section 3 enable us to
strengthen Theorem 6 of [5] concerning the order of accuracy of schemes
for the quasi-linear equation (2.21) considerably, even in the case of
uniform nets. The two-parameter family of difference schemes (2.22) ob-
viously includes the schemes studied in [5].

We shall always assume that in all the region ZT or in each of the

regions A,, v =0, 1, ..., v, (in the case of discontinuous coefficients)
the conditions under which the schemes we are studying have the maximum
order of approximation on uniform nets are satisfied. Then, as we showed
in Section 2, the approximation error Y of our schemes can be put in the
form

a) for the schemes (2.10), (2.17) and (2.19)

2,a=0.5
Cop oy, =0+ 00 +0G™), ma={; a0}

po=ph? = 0 (h?),
where Ho is given by one of the formulae (2.10), (2.18),

b) for the scheme (2.22)
Y=p=p3y+¢" p=pt=00), $Y=0")+0(*)+0(x). (2)

If conditions A are satisfied in 7?, then (1) and (2) are valid at
all nodes (x, t) of the net Q. If there are lines of discontinuity of

the differential equation z = §, () = Zn, +0vhn, 41 (0O, <1, v =
1, 2, .., vo) and conditions A are satisfied in each region ZV, then
in the case of fixed discontinuities (§,(t) =0, v=1,2,...,vy) (1)
and (2) are valid at all nodes of the net Q apart from the nodes (zn,, t;)
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and (Zn1y, %), j =0, 1, ..., K. We can choose the sequence of nets
Q(k) in such a way that the formulae (1) and (2) hold along the lines of

discontinuity x = §, = x_also, for these nets.
v

In the case of moving or oblique discontinuities (§\',(t) # 0 for at
least one v) the situation is more complicated (cf.[z]).

v

We shall assume below that in the case (a) the following condition is
always satisfied: the function o (%, t) satisfies the Lipschitz condi-
tion in t, so that

o)r | < M, pp = 0 (4, 3)

where M is a positive constant which does not depend on the net.

It is clear from formula (2) that (3) implies, for instance, that
3%u/3x% satisfies the Lipschitz condition in t.

To simplify our formulations, instead of saying "the solution of
problem (2.7) converges uniformly to the solution of problem (2.1) and
has an accuracy of N(h?) + O(x"%)" we shall say: “"the scheme (2.7) con-
verges uniformly at a rate O(h?) + O(-r"“)".

This enables us to simplify the formulations of the theorems concern-
ing the convergence and accuracy of our schemes.

2. Continuous coefficients.

Theorem 6. When 0.5 <Ca <1 the difference scheme (2.17) converges
uniformly at a rate O (|h?)|,+ O(|7™°),) on an arbitrary sequence of

non-uniform nets 9, or, more accurately

Iy —ul < M(RE + 17 tor |7l < (4)
e = (33 @)t el =

tjl =ty

where y is the solution of problem (2.17), u is the solution of problem
(2.13), T and M are positive constants which do not depend on the choice
of nets.

Theorem 7. When 0 <Ca<(1 and 0<_P <1 the difference schemes (2.2)
converge in the mean at a rate O (jA*[,) + O (Jt|,) and converge uni-

formly on the sequence of nets Q¢ at a rate O ([[h,2 2 In® 51—) +

OUI T g In® ?1‘—) , or, more accurately
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Iy — ule = [y (2,0) —u (@ )b <M (B +{th) tor [Tl < Tyt S 04 (5)
v (@ 1) — u (2, Ol < M(| s 1o 5= + Il 1nd )

tor 7l < %(T0 8), B <ho(d), T m'T, (6)

where u is the solution of problem (2.21), y is the solution of problem

(2.22), ki = mink, tv,=7,4; = min 7, 8 >1 is an arbitrary
o<i<N 0<j'<j+1

number and T, M, m' are constants which are independent of the choice
of net (t = tjﬂ).

To prove Theorem 6 it is sufficient to use expression (1) for Y and
Theorem 4; to prove Theorem 7 we use expression (2) and Theorem 5 (cf.

[2]-[5)).
If the net Q is uniform, then from (6) (cf. [5]) we have

ly — uo < M (B In* 4+ v 1n® 7). @

We are naturally assuming that as [hf,—>0 and |v|,—O0, h =min f;
and 7, = min 7; satisfy the requirements: ln(1/p )<t/ kMG, In(1/7) <

1/i%| §, where e is a positive number as small as we please.

3. Discontinuous coefficients. Let us restrict ourselves to studying
the convergence of our schemes for fixed discontinuities only, when the
coefficients of the differential equations have discontinuities of the
first kind only on a finite number of straight lines parallel to the t-
axis in the (x, t) plane,

Theorem 8. The difference scheme (2.17) converges uniformly on the
sequence of nets Q(k) at a rate O (||h2||,;) + O (jv™=],) when the coeffi-

cients of equation (2.13) have only fixed discontinuities and 0.5 <
a<1.

If we choose the net Q (k) = wp(k) X 0. so that the lines of dis-
continuity of the coefficients of the differential equation (2.13) are

nodal lines of the net Q(k), then, as we showed in Section 2, the
approximation errors are given by (2.18) at all the nodes of the net

x E “’h(k) and for all tj = o Therefore the proof of Theorem 8 is the
same as that of Theorem 6.

We shall not formulate the theorems about the accuracy of the schemes
(2.17) and (2.22) on an arbitrary sequence of nets Q (or Q‘) since in
this case the corresponding theorems of (5] apply, if we put
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O (k) + 0 (™) instead of O (|hls) + O (17™=],), and for the scheme
(2.22) put

0 (14 1005 ) + O (v 10 ®)

instead of O (A" *™) 4 O (¢, where p (k) ~1/VIn (1/k), p (v) ~
1/V 1a (1/7) .

The generalisation of the theorem of [5] to the case of non-uniform
nets also presents no difficnlty. From Theorem 5 we know that the
schemes (2.7), (2.17) and (2.22) have the same order of accuracy if
k(x, t) and, correspondingly, k(x, t, u) possess moving (oblique) dis-
continuities (see, also, [2]).

4. Other schemes for quasi-linear equations. Consider problem (2.21).
Besides the schemes mentioned in Section 2 the scheme

PY; = %(a(o.u) (39 t, y.) (y;; +!;;))§ =+ P (x’ z; %‘(y + 1;), %J}" (y + !;))’} (9)
Yo=u (1) yv=1us(t), ¥z, 0) = u,(a),

where p = p(x, ?), t=t-0.5 T, and a is found from the second of

(0.5)
the formulae of Point 5, Section 2 with « = 0.5, y* = 0.5(y + y{-1)y,
deserves attention.

On a uniform net this scheme has second order approximation. On a
non-uniform net the approximation error can be put in the form

V=¥, p=0()+0(), ¢ =0®) +0@k)+0@) (10)

The error z = y — u, where y is the solution of problem (9), is given
by a special case (with b1 = b2, g‘;” = g,) of the problem

pzr = 0.5A (z + 2) + ¥, zyp = 2, =0, z (z,0) = 0,

Aw = (aw;); + blwi +~bzw‘,'c + (glw)g'E + (gﬁw);; + dw’ (11)
0<<e 0<e<p, |d|<<es, bt |8]<ep s=1, 2,
lerl < ¢ (12)

Let us show that the scheme (11)-(12) is stable in the mean on any
sequence of nets, so that for ||T[, < ¥, we have the estimate

— j+1 Vs
12 @ i) e < M{VE@ 0 2 (2 O + [ Y w1 (2t B] ] (43)

=1
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As usual, we go from the function z to the function v putting

2= p=0+M),p or pr=My px0=1 (14
where f:’ is an arbitrary positive constant.

To simplify the calculations we shall take p = 1 for the time being.

Using the relation z; = 0.5 (u + ﬁ) vy + 0.5 (v + v) By, and the nota-
tion

we= BB
p4p
and noting that v v = 2w——x1."v1, we obtain
(— Py + 20 = Aw + ¥, (15)

where

®=pg/ip + 1), ¥=¥/0.5 @ +p).
Consider the product

ppw = vy (0o + po)/(p + ) = 0.5( + ) H{pl(@* )+ (16)
+w0}] + pl(v?); — i)} = 0.5(0%); + 0.5%x02,
It is easy to see that
1 — e = 1 —v(pug)(p + )2 = (17
=1 — (@ —p)? @+R7=2m + p)" > 0.
We multiply (15) by »fi and sum with respect to x & w,. Using (16),

{17), after a series of simple majorant estimates, we arrive at the in-
equality

(0, ) < + M) (5, %) + <y Rleam)~! (18)

(we have written it for p # 1), and this will be satisfied if we choose

ITI=I4(CI, cees Cg) sufficiently large and v sufficiently small:

1<10, ‘E'o~‘=‘\70(cl,...,cs)>0.
Using Lemma 4a and returning to the function z we obtain (13).

We can use the estimate (13) to prove the theorems concerning the
convergence and accuracy of the scheme (9) both in the class of continu-
ous coefficients of equation (2.21) and in the class of discontinuous
coefficients of this equation. We note only that in the class of con-

tinuous k and f (conditions A are satisfied in Z[- y the scheme (8) has
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second order accuracy:

ly —ule =0 (1) + 0@  onQ

_ The scheme (0) has the same order of accuracy on the sequence of nets
Q(k) in the case of fixed discontinuities also (the conditions A are
satisfied in each of the regions AV, v =01, c.0y V).

5. On an economical homogeneous difference scheme for a system of

parabolic equations, Let us consider in J = 0<Cx <1, 0t <<T) the

problem
ot I 3 o . )
=25 (W 0g) Py =tz )
=1

ui (0, )y =ul(t), @'(1,8)=ul(t), ui(x,O)y=ui(z), i=t,..., p

P P

D k&> D) e k= ()i << (om = consti>0, m=1,2). (20)

i, =1 i=1

In [3] we studied six-point schemes for a system of parabolic equa-
tions and obtained a priori estimates which, by analogy with the case of
one equation (p = 1), enable us to prove uniform convergence and to ob-
tain an estimate of the order of accuracy of these schemes both in the
class of continuous coefficients and in the class of coefficients which
have fixed discontinuities. There is no need to give the proofs here,
Since the schemes of (3] are implicit, the solution of the resulting
difference equations requires a larger amount of calculation and can be
found, for example, by using the formulae of matrix successive substitu-
tion [9]. We consider below a scheme which requires a small number of
operations, since in order to find the vector y = {y‘} at each moment of
time t = t+) We require only a p-times successive application of the
one-dimensional substitution formulae (cf. [9], [10]. [4]). This scheme
has the form

i1 . v v .
y;— = 2 (aijyi-c)& + % {(anyi)§+ (any;)&‘} +
j=1
P, ‘
+ 3 @ul); + ¢ (2,1 — 0.57),
j=it1
O =u @), ¥ )=u, v(0 =1t =279

|
|
b 21)
|
J

for the equations (19).

We shall restrict ourselves here to the class of schemes for which
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aij; = 4 Ik,-,' (.2: -+ sh, t)], —1<<8K0,

where A [p (s)] is a linear non-decreasing functional for which
AM1l=1, Alsj=-—05
It follows from this and (20) that

P 14 P
> o= A[ S kyat o, t) Wb > D (22)
i, jeml i, j=1 i=1

To compute ¢° we use the same functional F [f(s)], that we used in
Sections 1, 2:

¥ (2, 1) = F [fi (z + sh, 1) 17 ()] + 22 F [fiz + shy, 1) ¢ (9)).

The approximation error {‘I"} = ¥ of scheme (21) can be put in the form

V= )y +9",  p=o0m, } 23
» P~

PE=0() +0Mm) +0(), i=t2...

By analogy with [3}, using the method of energy inequalities, we ob-
tain the a priori estimate

fy — uly < M {Jp (z, ) + lpglz, D+ ¥ (2, )]s} (24)

for sufficiently small [tf, << v, Here y = {y'}, u = {u¥}, p == {p'},
Y* = {¢"} are net vector-functions.

1t follows from this and from (23) that the scheme (21) converges uni-
formly on an arbitrary sequence of non-uniform nets at a rate O (|A%),)+

O () -
Translated by R. Feinstein
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