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The homogeneous difference schemes corresponding to the boundary problems
for the differential equation

d[ 1 d - .
Leanu=2-o2l—qg@ut f@=00<a<t. (I

My2>p(z) > M >0, 0 g (2) <M,
with piece-wise continuous coefficients (p, g, f € Q'°)) include an exact
scheme [1], [2]. This scheme enables us to determine the net function which

coincides with the exact solution of the boundary problem on an arbitrary
non-uniform net

Sn(zg =0, 2, .. o Ziy .. van=1, ly = 2, — z:)).

In this article we construct schemes of any (pre-set) order of accuracy
on non-homogeneous nets.

All the schemes will be of the form
LPpahy — 1 V¥% N\ phy +
} Y A A (—_-hiA? iYi + @;
Bi = 0,5 (b + hiy),  AYi = V¥it1 = Yit1— ¥i- (2)

The upper index h is the conventional notation for the dependence be-
tween the coefficients and the net.

In the case of a uniform net (h; = h = I/N, i=1,2, ..., N) the
difference schemes (2) belong to the family of homogeneous three-point
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conservative schemes [2], [3]. This is also true when the concepts of
homogeneity and conservativeness of schemes are generalized to non-uniform
nets.

Schemes of an increased degree of accuracy prove to be especially use-
ful in a number of cases which are important in practice, such as in the
solution of equation (1) with piece-wise constant coefficients with a
large number of discontinuities, or in the solution of systems of such

equations, or in the solution of equations of heat conduction and
diffusion of the form du/dt = L1P+90: )y,

1. An exact scheme on a non-uniform net
1. The construction of the exact scheme

Consider the first boundary problem for the differential equation
LPy =0, 0< 2<1, u(0) =p, u(l) = u,. 3

Let Sy ={x;} be some difference net, obtained as a result of dividing
up the segment 0 <Cx <X1 into N parts by the points

=0, z,...,a...,2y=1.

At each point x; there are two steps (left and right) of the difference
net, h; = x;, - x;_, and h; , = x;, | - x;, which in general are not equal
to one another. Let hi = 0.5 (hi + hi+—1) be the mean step of the net at
the point x;. The local non-uniformity of the net can be characterized by

the ratio

A e 08—k
' hiyy + by h; '

If the difference net is uniform, then Ai = 0.

We shall assume henceforth that on any sequence of nets Sy the condi-
tion

h
0<LC <L, (H)

is satisfied, where C; and C, are positive constants independent of the
net.

We shall use the notation

-
h = max h;.
0<i<N
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Let us show that the solution of equation (3) on any net Sy satisfies the
relation

u(z) = Plu (ziy) + Qfa (i) + R, 0

where Pih, Qih, Rih are coefficients expressed in terms of some functionals
depending on the net Sy (or S;) or, to be more precise, on the two para-
meters h; and h_.

The relation (4) is obviously possible, since the solution of a differ-
ential equation of the second order in the interval (x;_,, x;, ;) is com-
pletely determined by the values of the required function at the ends of
this interval.

In the article [1] the exact scheme of (4) was constructed on a uniform
net.

Let us consider equation (3) in the interval (x;_ 1 xi4-1)° We intro-
duce the local system of co-ordinates associated with the point x = x; by
putting

z = x;+ H;i (s — Ayp. Vl<b<1,

or
x = x; -+ li; s,where &; = x; — ;A

The segment [xi—-l’ Xy 1} is mapped into the segment — 1 <\s< 1, the
point x = x; corresponding to the point s = A ;. Equation (3) takes the
form

#i =5[] 17 ) = — w7 o )
where
u(s) = u (vt hi(s — AY))  ete. ()

We omit the suffix i for all the functions in (5), as well as the step

The general solution of equation (5) in the segment [ -1, 1] has the
form

u (s) = Cv, (s, k) + D, (s, k) + K%v; (s, B),
where C and D are arbitrary constants, v (s, h) and v (s, h) are linearly

independent solutions of the homogeneous equation £ u = 0 and vy(s, h) is
some solution of the non-homogeneous equation (5).
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Ye determine the functions vy, v, and vy from the conditions

. { dv
(=1 ) = 0. =R (=1, ) =1, )
p( )1 d (7
y (1, 1) =0, — 21, h) = —1,
& (1, 1) D - (1, 1) f
r3 (=1, h) =0, v (1, B) = 0. 8)

We shall call the functions vy v2, v3 pattern functions. They are
functionals of the coefficients p(s), g(s) and f(s) and depend parametric-
ally on h.

Writing s = —1 and s = 1 in (6) and using conditions (7) and (8) we
find

w1 o u(—1)
B Ry = v

and therefore

— o (s, B) —, . h
u(s)=alz—(_si’)ﬁ) W (1) 4 2 h; (1) & B2ey (s, h). (9)

It is clear from this that the normalization of the functions v; and v,
is arbitrary. Writing s = A in (9) we obtain the relation

u (A) = P'u (—1) + Q"u(l) + R", (10"
the coefficients of which

R N e R Y

R" = h2v, (A, i) = R [; (9) a (S), } (s); A]

are functionals of p(s), a(s) ;?s) on the segment —: 1 Cs<( 1, depending
on the two parameters h and A or on h; and h (h=0.5 (hy + h ), A=
-:0.5 (h, —h;)/h).

To obtain the difference scheme, let us return to the initial variable
z, writing s = A + (x — x;)/h; and using (6) ‘The values of the pattern

functions we then obta1n we will denote by vk(s, h), k=1, 2, 3. The re-
lation (10) takes the form (4), where
Pt=P!(p (z; + sh), q (m + shi), Ail, (1)
Qt= Q@ p (m + shy), q (z: + shy), A4l (12)
R = R* [p (z + shy), q (m + shy), f(zm + shy), Al (13)
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It is clear from the construction of the scheme (4) that the solution
of the difference boundary problem

y,=Ply,_,+ Qy,,, +RL 0N, yo=p, yy=ps (14)
is the same as the solution of the initial problem:
Y, = u(xi), i=0,1,.. .. N,
at nodal points of the arbitrary net Sy.

2. Some properties of pattern functions

We shall need a number of properties of the pattern functions v,(s, h)
and vz(s, h) in what follows.

Lemma 1. If g(s)>>0, then the pattern function v,(s, h) is positive in
the integral —:1<{s<C1 and v,(s, h)>> 0 in the interval — 1 s<'1.

This obvious statement follows from the fact that for E(s)*> 0 all the
eigenvalues of the first boundary problem for the operator £ are positive.
For the same reason v; and v, are linearly independent.

Lemma 2. The pattern functions vl(s, h) and vz(s, h) satisfy the rela-
tions

1) o, (1, &) = , (—1, ), (15)
2) o (1, %) — v (A, K) — v, (A, B) =
A 1
=n={v, (8, %) S 7 (s) v (s, B) ds + o, (A, h)g 7(s) v, (s, ) ds}, (16)
-1 A

if g(s) >0.

We note that condition (15) expresses the reciprocity principle for an
ordinary differential equation. It follows from Green’s second formula:

1 1
s — 2oy ds = (9 _y @)t
S‘ (0,8 vy — v, & vy) ds == (vl - — s E;-)I = 0.
- -1
To obtain formula.(16) we integrate the equation fﬁ‘vl =0 with respect
to s from —1 to A, and the equation £ v, = 0 with respect to s from A to
1, and then use the conditions (7):

(&), =t+® § qvyds,

—_



470 A.N. Tikhonov and A.A. Samarskii

(38 =—t—m § gvs ds. "
p s=A A

On the segments —1<(s <{ A and A <(s X1 Green's formula for v, and v,
gives
(vzv; - Ulv:ﬁ ,s:A = ('”2”’1 - 771”,2) 'sz..l = v, (—1, &),

(v2v1 — v123) liea = = (vav1 — 0127’2” = v (1, %).

~q||»-ﬁ1]»a
ST

Comparing these expressions, we obtain

1 dvy !

(88 (=) — (8 )

— % d_z) = o (1, B).

P
By substituting the expressions (17) in this equation, we arrive at
formula (16).

Our arguments still apply when the piece-wise continuous functiom p(s)
is being considered, since at its points of discontinuity the junction
conditions

/1dvk 1 dvy,
\5 ds)l (;—;E>; i) =) £=1,2,
are satisfied, where the suffixes I and r correspond to the left and right
limiting values,

It is not difficult to show that Green’s function Gh(s, t) for the
operator %" for the first boundary problem can be expressed quite simply
in terms of the pattern functions v; and v,:

vy (s, B) ve (¢, B) P
nd,m o S

vy (t, k) vy (s, )
v1 (1, i) !

GP (s, t) = -
>4,

since
1 .
7(”2271"- nvy) = v (1,R) = v, (—1, k).

3. The conservativeness of the exact scheme

Using the properties of the tabular functions which were established in
Section 2 we can transform the exact difference scheme to the form (2).
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It is more convenient to transform first equation (11), which from (15)
we can write in the form

p()—u(A)  w(A)—u(—=1)  w(l, B —n(A B)—v(A kK Z(A) =
v2 (A, B) v (A, k) v (B, By vs (A, B
2 v1 (1, R) va (A, k)
n (A, B)vs (A, B

Using (16) we can eliminate v,(1, h). To write down the corresponding
difference equation at_the pomt x = z; of the net, we must put u(s) =
u(x + sh)), p(s) = p(x + sh;) and so on, where x; = x, - h; A;. Replac-
ing u; by y; we can Wr1te the exact scheme in the form

Ay, vY;
L(p.q.f) =i i i _th' . h: .
R T hi 4B} hyA} L =0 (18)
where
B, i B,
Al = oy (Auhy), Bl =y (A B, (19
i +1
Ag 1
h k; B — i
D‘i = g q (-Ti + Sﬁl) v1 (S, ﬁ{) ds + h S (xi + Sﬁi) v2 (SY ht) dS’
hiAi -~ ha—HBt a;
(20)
h_ h 1 1 t _
o} = (mDi tomr t i ) - Bivy (Ag, B, (21)

Lemma 3. The exact difference scheme L;p.q,f) defined by the formulae
(18) to (21) is conservative, i.e.

i it+1
BT’—_: A:‘-{-l or 17)2 (A h) == v1 (A h) h‘q+1 (22)

Thus, write

Vi(z, B) = vils, ), = 7o -+ shse 2o = @ —TsAs .

i+ 1 i
By definition, the functions V1 (x, h) and v, (x, h) satisfy the con-
ditions
141 i
Vl (xi’ hi+1) = 01 Vz (xi—i—l: ﬁ') = 01
i+1 i

(u_v_n) _ 1 (id&) __1

P dz X=X ﬁi—l—l ! p dz x=x; 4y hi )

4+ 1
Using the second Green formula for the functions ‘T’I (x, h) and
“’2 (x, h) on the segment x; < x < x;,, we obtain
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hea iy i1 ¥4
. i1y gy, A
_ (T may’ 00T gy = LD _p 1 dV) -
0=\ VI, Y LTy 4y T m Ve T g

.\," xi

Y 1
Vy (r R) — W Vi (@ig Big)s
1

i--1

i 41
B _ ; h L
hi¥'s (2 1) = Bssa Vi (@i higa)  oF DB = Al
from which 1t follows that
Bh 1+1

The fact that the scheme L%p'q’f) is conservative means that it can be
written in the form

1 Vy; h h
zﬂmy=—A( i\ Dy, + @
-/t hi hiA,{l 1 3/1 t.

It is not difficult to see too that the coefficient A? depends only on

the step h; = x;, — x;_; and does not depend on %;, i.e. on h; .

Thus
A 1 =
A= Vi B) = -V (@),
where v(x) is the solution of the equation
l}pa)pa =0
with the initial data
1 dv1 _
Vl (#i—) = 0, — > d s = 1.

4. Exact boundary conditions of the third kind

We now consider the boundary problem of the third kind. For simplicity
we shall assume that the condition of the third kind is given only for
x = 0, and that at the right-hand end x = 1 the previous condition of the
first kind applies:

L™y = 0. 0 <z <d. (1/p(0) u’ (0) — ou (0) = py, v (1) = . (23)
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We find the exact difference boundary condition for x = 0 which any solu-
tion of the problem (23) will satisfy.

We introduce the local system of co-ordinates s = x/h; at the point
z = 0, Just as in Section 1 we introduce the pattern functlons vi(s, hy),
vz(s, h ), vs(s, h ) in the interval 0 < s < 1 using the condltlons

hy
(0) ds

Lo =Ly = 0, $’”§ = /(. (24)
1
Z): (0? kl) = 07 (0) ds (O /1) - l ?
1 dv 20
1, h) =0, =—2201,h)=—I, } (2)
vy (1, 1y) p(l) s (1, i) |
v (0, Iy) = 0, (1, k) =0 |
We put the general solution of the equation £*u(s) = —:hff(s) in the
form
- — Ug(s hl) 01(8, 1)‘“ .
"(3)—m ()+v(1h) u (1) + Ko (s, k). (26)
It will be necessary for this function to satisfy the condition
h p(O) ds( ) ou (0) = Yi. (—)7)
Inserting (26) in (27) and using conditions (25) we see that
u (0) = au (1) + b,.
where
1 —1 }
= {1 + hy [ovg O, hy) + hlx (s) s (s, ) ds]
0 ‘ .) )
(25
l
i
|

by = hl[ (o hl)]alvz (0, hy).

Returning to the initial variable x = sh, we obtain the exact boundary
condition in the form
u, = azu, + by, (2

where uy = u(0), u, = u(x,), %, = h|, a; and b, are given by formulae.

(28), with

q(5) = q(sh), p(s)=p(sh), T(s)="F(sh).
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Thus the solution of the boundary problem
Lipy =0, 0<i<N, yo=an+b, yy=po (30)

where L;tp +9:f) is the exact scheme of Section 3 coincides at the nodal
points of the difference net with the solution of the problem (23):

y, = u ().
The boundary condition
w (1) —
5 ou ) =y (31)

corresponds to the exact boundary condition

Uy = aglin—y+ b, (32)

where
N 9 N —1
ay = {1 + hy |00 (5, hw) + hn S g (1 + shy) v, (s, hy) ds]} ,
—1

(33)
hy d (N) 1 (N)
by = [y — 3352 0 (0, ) [ 431 (0, ),

v,(s, hy) is the pattern function defined on the interval — 1< s < 0 by
the conditions (7) for s = - 1 and v3(s, h”) is defined on the same
interval by the conditions vy = 0 for s =~ 1 and s = 0. The index N shows
that the origin of the local co-ordinate system is taken at the point
xy=1.

5. The exact scheme L}lP:f)

1f q(x) = 0, then all the pattern functions, and therefore the
functionals A* and ®", are calculated with the help of a quadrature.

The exact scheme L;." +f) is of the form

w0, 1 A V¥ h
Ly y; = 7, A (hiA.? ) + @, (34)
where
0 X
h h’i i 1 \
Al = -0 0, k) = S p (zi + shy) ds = e S p (z) dz, (35)
i i
-1 L |

W J’l ._2__ hi
O} = Fi+ ﬁiA(A—?

(i p (z + thi)[ tg f (xi + shi) ds] dt), (36)

—1 —0.6
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' %it-0,8
Fi=g \ [@dr (o= 2 —05h). (47)
#1—0.5

Thus we have

[

n =06 =\p@ds i k=0 =S;(s) ds

25 (s, ) = g (s) = {g ? (z)[i (A) dh]dt 2, (3) —

— 2, (1) i 5(‘)[& o dh] d’} N
It follows that - B
i1 x

Ve@[ | redejde -

Ml g il

co:‘:’{

—a%!—? xi P (.1:)[ § 1 (&) dE]d:c}. (38)

X1 i1

Let us put tl”i' in the form of the sum of the principal part F ’: and a con-
servative {"divergent") addition:

O = F} —AF"

To do this we write the terms in the curly brackets in formula (38) as
follows:

" *igq x Tit1 Ti4o.5
yim S » (3) L.l’“’ dt] 1 R‘ P @[ R_ f B a5+
i *i40,6 ®i+q x
+ \ e =hp \ taz 2\ p@f | 1at]es
ito,5 gt Al i %§-+0.5
x§ x Xi—0,. x, x
= Vr@[ § rat]de = n g“f.dz+§ ( p@[ | fatlds
ey Xl -1 T’y 0.5

As a result, we obtain expression (36) for ®", The second term in (36)
is of the second order of smallness as h* » 0 in the class of sufficiently
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smooth functions p(x) and f(x):
D - F = 0 (&™) (B = | hily = max hy).
1<iKN

If we set f = 0, then we obtain the best canonical scheme
0

) ;AN = R p(x; + shi)ds, (39)
1

which is the exact scheme for the equation LPy = 0.

VY

,(1)] _L(‘nm ::—-A
/i Y k; (hAh

6. Determination of the pattern functions

In the general case, when gq(x) # 0, it is not possible to express the
pattern functions directly using a quadrature However, since v,(s, #),
vz(s, ‘B) and v (s #i) are analytic in Ti it is natural to look for these
functions in the form of a power series in hZ:

v; (5. ) = 2. WP () B, j=1,2,3. (40)

k=0

The coefficients of the series vj(k)(s) satisfy the equations

A A DU o B L. i B
(/g ]’(‘) ds =\, =1, ds P() ds __/(3))

(41)
d 1 (lvgk)(s) — (k—1) . :
s =t e =t k=2
with the following additional conditions
(=) =P (1) = vy (£1) =0, k=0,1,2, ...
(0) (0)
d 1
__1_._ % (__ ) — ,1, d:;z ( ) —
p(—1) p(1) 4
dv (h) dv (k)
—~—1)=0, k=1,2,. (42)

This gives

29 () = § P W ©=\50d

8

) (5) = \ [\ *) w0 dx] d, k=1,2,...,

o (s)—i [§ () () ah | dr, E=1,2,...,
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t

A0 =m0 o (o] o odala -

1 _'1 _:1

r X
-~

—oo)) (7 0[{o® @ac]al,

-1 -1

where

09 ()= —F (), 0 (s) =g (s) YV (s) for h=1,2,....

2. Difference schemes of a high order of accuracy
1. Truncated difference schemes

In Section 1, Paragraph 6, we obtained the power series expansion in h?
for the pattern functions vj(s, h), j =1, 2, 3 with the help of which the
coefficients of the exact scheme are calculated.

If, in the expansion
00
vi(s, B) = ) o () B, = 1,2,3, (1)
k=0
we restrict ourselves to a finite number of terms and take the polynomials
m

M7 (s 1) = > e (9 - 1 (

k=n

|

for the pattern functions, then we obtain the difference scheme

L)

. 1 VY ‘ )
L;}qu,l)yi — - A ( i ) L I); . ]/i B (D’iv, (:
i

A
Byt

whose coefficients A’i', D’tf, (Dl: are calculated from the same formulae as the
coefficients A", D?, ®”" of the exact scheme, putting the polynomials
Hj(')(s, #) in place of the functions v, (s, 7.

A difference scheme constructed in this way will be called a truncated
difference scheme of the mth rank.

The following account is devoted to finding the order of accuracy of a
truncated scheme.
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2. A comparison of the solutions of
difference problenms

Let us compare the solutions of the two difference boundary problems

AT ) ) . .
Lhyi— A( i 4,1) Diyi= — @}, 0 < i< N. yp=p1, yv="Ms (4)

. AN . . ~ ~
LhinTiA (IIA,J—D;yi= — @ 0 i <N, ¥o= 1 Yn= P (5)

whose coefficients satisfy the conditions

0 < M < AN M, 0< M; <Al <M, )
0 <Di < My, 0 DI,

where M, Mz, M, are positive constants which do not depend on the net. By

analogy with [3]’ where a uniform net was considered, it is not gifficult

to show that Green’s difference function of the operator Lh (or Lh) is
bounded:

0<GusM (7
and has bounded first difference ratios
1 ,
" | Gity, x — Gi, x| << M, ‘Ei—"Gi,k+1'—‘Gi,kl<M,
i+1 k-1 (8)
Lk=01,2,...,N—1,

where M is a positive constant independent of the net.
We use the notation

N-—1

[¥lo = max| i, o= 2 1wln,  el= Zwm. (9)

i=1
where i; is any net function.

Lemma 4. If the conditions (6) are satisfied and, in addition, <I>"-', ®
and pu, are bounded, then

Ay;
Byyy

<M i=01,2...,N—1, (10)

where M is a positive constant, independent of the net.

Thus the solution of the problem (4) can be found using Green's
difference function
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(11)

N—1
h N—
= Z Gy Dy~ by — Ay R — Ay 1h1\ ! Wo,
e ;
N—
Ay, G. G;
h‘;;_?_‘,””’;) ol —
i+1 A i+1
G — G, G —G
. i+1. 1 i1 - i4+1,N—1 i, N—1 ’
Ay Rihp Py — AN Fbis Ro- (11"
Green’s difference function is
;B .
. 1<k,
(12)

N
G = 2,B; >k
b l b

ay
where a; and 8. are solutions of the equation Lyv; = 0 with the conditions
ABpy_
N—1 — _,1. (13)

1
bN: ) —A—— hN

1 Aa, __

% =0 Z 7,
It follows that
1 1 Ao, AB; AL BB
T G =G0 = Rl e, 00
{
(Giyyn—y — Gin—y) = O (1).

and similarly
hiy iy
It follows from (11°) that Ay /h,, , is bounded

Lemma 5. If the conditions of Lemma 4 are satisfied, then
FDM — DM " — D (14)

h‘

‘]}1

ly —gl<M{ja" — A"+
where y is a solution of problem (4), Y is a solution of problem (5) and
Vo d

=¥~ Yt

M is a positive constant independent of the net
To prove the lemma, we form an equation for the difference z = y;
) )

ms~y@—®+wA“I*ﬁmj
—(Di =Dy = —¥ zv = 0.

ZO =
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This gives

N--1

- i e~ , =1
zi= 3 HpCu (— (Dk— D)y -+ (DF — DRy —
k=t
N—1 =
Z Gi, k+1— G ,,, 1 1 Ay, P
- P Mgy
. Fr=to Myt Mgy A P
since
N—1 N—1

Z GuAvg= — Z (Gi, k1) — G: 1.) ey (Gu =0 for k=0, N).
i=1 K-
To obtain the inequality (14), we use the fact that the functions y,, a;k
and their first difference ratios are bounded.

Returning now to exact and truncated difference schemes, from Lemma 5
we have

fm)

9% — uly <ML A" — AN 2| DY — DR - dh — By, (15)

(m)
where u = u(x) is a solution of the initial problem, and y" is a solution
of the difference boundary problem

UW” =0, 0<i- N,
(m) ()

ﬂ=m,%=m-

(16)

where I.:h("""f) is the truncated scheme (3) of the mth rank.

To estimate the error in the coefficients of the scheme on the right-
hand side of formula (15), we must evaluate the difference

v; (s, B) — MY (s, B) = B2nt2 (92010 (s) - hgv;m+'3) 4 ..)=
= pacteQmin (s, B). (17

3. Estimate of the remainder term in the expansion
of the pattern functions

Let us turn now to the proof of the boundedness, for any m >0, of the
functions
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[ee]
QY (s, 1) = 2 oY () B,

k=0
j=1,2,3, m>0. (18)

(F1r.;;t we shall show that the inequalities for Ql("" (s, h) and
Q2+ (s, h)

@m0l (19)

Q;"‘-H) (S, h) < M [x(4— 3)}2m—

0 < QMY (s, B) << ww
S CmF DI

0

are satisfied, where x = /(M,¥,), and ¥ is some positive constant depend-
ing on M, M, and M, only.

Thus using conditions (41), (42) of Section 1 we have, for u;.*’(s)

(m+1)
d 1 uQ
ds | p(s) s

Q(m-i-l) g( +1)

] = g (s) Q" (s, ),

QY (— 1, k) = (=1, B) =0, Q" , K)= (, 1) =0.
This gives
s ‘
Qs my = \pw [{ 70 oo n dAJ dt
—1 —1
L
QY (s, B) = & o [\7 ™ & @) an e
Then, using the conditions M, < p p<M. b, 4\ M; we have
g
QY (s, B) ut \ S Q™ (A, B) dhdt,
11 (20)

Q™(A, k) dA dt.

L/‘v-‘

1
QU (s, 1 \

It is not difficult to show that for Qj(”(s, %) =-v;(s, b)

QO (s, B) < Mx (1 +5), QO (s, B) < Mn (1 — ). 1)
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(19) follows from (20) and (21).

Let us turn now to the function

vy (s, B) = I1§™ (s, h) + K2 +2QE" (s, B), (22)

»n
where Ha(')(s, h) = kE vy (k) (s)n2k is an mth degree polynomial in ¢ .= %2,

Introducing Green’s function

v1(s, B)va (2, B)

s <L
Gy =| nhH T (23)
v (t, B)va (s, h) .
Ul(i,zh) ? s> !)

we write the solution of the boundary problem
Log= —f(s) v(=1, k) =0

in the form

1
vg (s, B) = S G (s, 1) f (1) dt. (24
-1
Then, since the function l/v (1, h) is analytic in some region |{|<<¢,
of the complex variable £.= %2, it is easy to see that_the function
Q3("+ U (s, h) is analytic for sufficiently small #<Ch,. It is therefore
bounded:
QU (s, 1) <M <y (25)

where M is a positive constant independent of # and m.
Thus the estimate of the form (25) applies to all the pattern functions.
4. The accuracy of a truncated scheme
To determine the accuracy of a truncated scheme, i.e. to evaluate the

(=)
norm ||y h_ ul| ,, we first find the magnitude of the error caused by sub-
stituting the pattern functionals

A" Ip (s), g (s), Al, @"[p (s), g (), 7 (), Al, D" [g (s), P (5), Al

(m) (m) (m)
of the exact scheme by the functionals AR , ph , @ of the truncated
scheme.
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Let us first consider the difference

(nl?
Al‘. . Ah — _]’; 4y (A "l) . ll(m, (A /( ] o '-l--ZS"z(Lrn«f-l)(‘A7 /l) (zb)

It follows from the estimate in the previous section and from condition

(H) (Section 1, Paragraph 1) that
(my

A" — AT M (R (27)
where /{ is a positive constant independent of the net and of m,
(m)
The difference D* - Dk can be put in the form
()
D" —D"=
a a
B a2tz ~ (met1) QYn—(-U (A, B ¢ — () ‘
= ——-—————“(A, %) I:_&lq (S) Ql (S’ 71_/) ds HY,U(A, 7y \Sl ‘I(S)Hl (3, h) dS-“'f

e [ QY (A, By ¢
("H-l) (m) Do
MA ’"H (s) © )ds——nmgqs)ﬂ (s, h)ds] (28)

Because of the lower limit p(x) > M, > 0 we have v; (A, B) =M, >0,
n"’(A M>=M>0, j=1, 2.

Then, since Q;-"" D, A< My(G =1, 2), g<<M; we have

(m)
| D" — D" | < S ey = gy 29)
(m)
Similarly, we obtain an estimate of the error ®" —=<f>h where

h 2 1 1
¢ :<h20 + v (A, R) + vs (A, K) )v3(A’h)’

(m) (n) 1 (m)
th. — (n2D11+ n(m) (A ) + n(m) (A, k) )1—[3m (A, h)

As a result, we arrive at an estimate of type (27) or (29):

(m)

(D" — (D“i K M- (R, B Ry, (30)

where the coefficients p(s), g(s) and }ks) are arbitrary piece-wise con-
tinuous functionms.

The following theorem follows from (27), (22), (30) and Lemma 4:
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Theorem. A truncated difference scheme of the mth rank (m>>0) is of
the (2m +2)th order of accuracy as ||h||,=h* » 0 in the class Q(°) of
piece-wise continuous functions p(x), g(x), f(x) on any sequence of differ-
ence nets satisfying the condition

fe
06 <FRLC (H)

or, in other words,
(1) ) i3 | — ,
Dy — o MYRE™TE, [l <y, (31)

where Cl, Cz' M and ho are positive constants independent of m and the
choice of net.

Notes 1. The theorem is stated for the first boundary problem, although
it can also be extended to the case of the third boundary problem
(Section 5). 2. The simplest truncated scheme is that of zero rank giving
second order accuracy in the class Q'®) for any nets satisfying (H).

Its pattern functionals are given by the formulae

A = \peds = @), o (9= 5 P (s)ds, (32)
1

a
Dip) 90, Bl = gas-w(s)ds + =\ 7)o" (9ds, (33)

o (&)
B 15(0) 760,70, 81 = (WD + g + gy ) o8 ) A

where

e (A) = & ?(s)ds,
A

A (B) = 5= o1 (8) g p)[(Frar]ar—o0 1 )§5(t>[§7(x>d7~]dt}-

(0)
) —t — -1

()  (0) .
The functionals A and D do not depend on h, i.e. are canonical (see

f}; [2); 3.
5. Truncated difference boundary conditions

Let us now consider the boundary condition of the 3rd kind
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W (0)
o= —

and the corresponding boundary problem

ou (0) = p, (35)

LPNy =0, lu=p, o) =p.. (36)

In Section 4, Paragraph 1 it was shown that the exact boundary condi-
tion for x = 0 has the form

M=y hy ) -
= 55 v o g Y g @hymae s = i, (37)
— Vhl dv:; h (0
Wi = Yy — 2(0) ds (0, hy), Ay =0y (0, Ay). (38}

Replacing the pattern functions vz(s, h,) and vy* (s, hl) in (37) by the
polynomials Hz(')(s, h;) and H3‘(')(s, h,) of the 2mth degree in %, we
obtain the truncated boundary condition of the mth rank

mn e

lh.’/ == lII‘
It is not difficult to see that

m

W= O hu— L = 0 ("),

It follows that the solution of the difference boundary problem

ne n t

LP TPy =0, 0<icdN, hys=py, 4y =y,

]
with the truncated scheme L;ip +@+}) and the truncated boundary condition of
the mth rank is of the (2m + 2)th order of accuracy relative to the solu-
tion of the boundary problem (36).

The truncated condition of zero rank is of the form

Yo = Viy1 + M
where

1y i h

vi == {1 + I o+ %AIS q(l.)(gp(g)wg)dx]} I \ p(x)dr,
q

1
0 0
hy x

no={b— g p@ (7 @)d8)de |,

0 (1]

This condition can be replaced by one which is equivalent to it as far
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as accuracy is concerned, but is rather simpler:
vi={1+4+/Mpi(v+ 0.5k}, n1 = hpevy (0, — 0,5kq,).
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