
EOMOGENEOUS DIFFERENCE SCHEMES OF A HI.GH 
DEGREE OF ACCURACY ON NON-UNIFORM NETS* 

A.N. TIKHONOV and A.A. SAYARSRII 

(Moscor) 

(Received 

The homogeneous difference schemes 
for the differential equation 

3 March, f96f) 

corresponding to the boundary problems 

I,hw.f) U’&j&+ q (5) 24 + f (z) = 0, 0 < :c < I. 

Jfz > P (4 > Ml > 09 0 < Q (4 < M,, 

with piece-wise continuous coefficients (p, q, f E Q(O)) include an exact 
scheme Eli, [21. ‘ih is scheme enables us to determine the net function which 
coincides with the exact solution of the boundary problem on an arbitrary 
non-uniform net 

In this article we construct schemes 
on non-homogeneous nets. 

All the schemes will be of the form 

of any (pre-set) order of accuracy 

hi = O75 (hi + hi+l)* Ayi = Vyi+l= l/i+1 - yi. (.zj 

'Ihe upper index h is the conventional notation for the dependence be- 
tween the coefficients and the net. 

In the case of a uniform net (hi = h = 1/N, i P 1, 2, . , . , IV) the 
difference schemes (2) belong to the family of homogeneous three-point 

l Zh. vych. nat. 1. No. 3, 435-440, 1951. 
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conservative schemes [21, [3]. ‘Ih’ 1s is also true when the concepts of 
homogeneity and conservativeness of schemes are generalized to non-uniform 
nets. 

Schemes of an increased degree of accuracy prove to be especially use- 
ful in a number of cases which are important in practice, such as in the 
solution of equation (1) with piece-wise constant coefficients with a 
large number of discontinuities, or in the solution of systems of such 
equations, or in the solution of equations of heat conduction and 
diffusion of the form au/at = L(J’*‘Jtf)uO 

1. An exact scheme on a non-uniform net 

I. The construction of the exact schene 

Consider the first boundary problem for the differential equation 

I !p***‘)u J = 0, 0 < 2 < 1, II. (0) = /AI, 21 (1) - ut. (3) 

Let SN = t xi) be some difference net, obtained as a result of dividing 
up the segment 0 <r <l into N parts by the points 

50 = 0, 51, . . . , q, . . . , xl,,= 1. 

At each point xi there are two steps (left and right) of the difference 
net, hi = x. - xi_ 1 and hi+ 1 = ‘i+l- ‘iJ which in general are not equal 
to one another. Let h . = 0.5 (h . + hi + 1) be the mean step of the net at 
the point “i. The lo& non-uniiormity of the net can be characterized by 
the ratio 

Ai = _ ki+l --hi. 0,5 (hi+1 - hi) 

kt+r + ki = - A, - 

If the difference net is uniform, then A i = 0. 

We shall assume henceforth that on any sequence of nets SN the condi- 

tion 

kt+, 
0 < c, < 7 < C?, (W 

i 

is satisfied, where C, and C, are positive constants independent of the 
net. 

We shall use the notation 

Il. = max hi. 
O<i<N 
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Let us show that the solution of equation (3) on any net SN satisfies the 

relation 

where Pi , ’ Qih, Rib are coefficients expressed in terms of 

depending on the net SN (or Sh) or, to be more precise, on 

meters h, and hr. 

some functionals 

the two para- 

The relation (4) is obviously possible, since the solution of a differ- 

ential equation of the second order in the interval (xi_ 1, ni+ 1) is com- 

pletely determined by the values of the required function at the ends of 

this interval. 

In the article [l] th e exact scheme of (4) was constructed on a uniform 

net. 

Let US consider equation (3) in the interval (xi_ 1, xi+ 1). We intro- 

duce the local system of co-ordinates associated with the point x = xi by 

putting 

or 

x = z + pi s,where ,I'i z- Xi - fiihi. 

The segment [xi_l, xi+ 1 1 is mapped into the segment - l<sG 1, the 

point x = Xi corresponding to the point s = Ai. Equation (3) takes the 

form 

where 

U (s) = u (Xi+ tli(S - Ai)) etc. (Cij 

We omit the suffix i for all the functions in (5), as well as the step 

h. 

The general solution of equation (5) in the segment [ -1, 11 has the 
form 

E (s) = Cv, (s, hi) + Dv, (s, fi) + VP, (s, rL), 

where C and D are arbitrary constants, ur(s, h) and +v2(s, h) are linearly 

independent solutions of the homogeneous equation 2 u = 0 and uj(s, h) is 

some solution of the non-homogeneous equation (5). 
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Ye determine the functions vl, v2 and vJ from the conditions 

(7) 

We shall call the functions vl, v'*, v3 pattern functions. They are 

functionals of the coefficients t(s), i(s) and T(s) and depend parametric- 

ally on h. 

Writing s = --1 and s = 1 in (6) and using conditions (7) and (8) we 
find 

and therefore 

It is clear from this that the normalization of the functions v1 and up 
is arbitrary. Writing s =-A in (9) we obtain the relation 

u (A) = Phii (- 1) + @‘i(l) + Kh, 

the coefficients of which 

(IV 

R” = fi223 (A, Ii) = K” [> (s), I (s), 7 (s), A] 

are functionals of F(s), i(s), F(s) on the segment-:l\<s<l, depending 
on the two parameters h and A or on hl and hp (h = 0.5 (hl +.$,I, A=. 
-:0.5 (hr -: h$/h). 

To obtain the difference scheme, let us return to the initial variable 
x, writing s =- A i +:(x -: xi)/hi and using (6):Ke values of the pattern 

functions we then obtain we will denote by 't:(s, h), k =.l, 2, 3. The re- 
lation (10) takes the form (41, where 
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It is clear from the construction of the scheme (4) that the solution 
of the difference boundary problem 

yi = ~:yi_r + Qfyi+, + R!, 0 < i < NY y. = PI? yjv = PLI, (14) 

is the same as the solution of the initial problem: 

yi = u (zJ, i = 0, 1, . . . , N, 

at nodal points of the arbitrary net SN 

2. Some properties of pattern functions 

We shall need a number of properties of the pattern functions vl(s, h) 

and v2(s, h) in what follows. 

Lemma 1. If g(s)‘>O, then the pattern function v~(s, h) is positive in 

the integral -: l<s<l and v2(s, h)>O in the interval --l<sil. 

This obvious statement follows from the fact that for T(s) > 0 all the 

eigenvalues of the first boundary problem for the operator Z* are positive. 
For the same reason u1 and v2 are linearly independent. 

Lemnu 2. Ihe pattern functions ul(s, h) and vz(s, h) satisfy the rela- 

tions 

1) r1(1, E) = 7J2 (-1, E), (15) 

if i(s) >O. 

We note that condition 

- v, (A, ti) = 

(s) vl (s, 5) ds +q (A, h,s! ; (s) ~2 (s, fi) da} 7 (1’;) 

A 

(15) expresses the reciprocity principle for an 
__ _ 

ordinary differential equation. It follows from Green’s second formula: 

1 1 s (Vl~*v2 - v2~*vl) ds = &- - = 0. 

-1 P (4 

($ ‘2 V2 1 >I 

-1 

To obtain formula. (16) we integrate the equation %*vl =. 0 with respect 

to s from -: 1 to A, and the equation z*vz =- 0 with respect to s from A to 

1, and then use the conditions (7): 

s=A 
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1 

= - I- ii3 
s=A s 

ijr2 ds. 
A 

(17) 

On the segments -l<s < A and A<s <l Green's formula for v1 and uq 

gives 

Comparing these expressions, we obtain 

By substituting the expressions (17) in this equation, we arrive at 

formula (16). 

Our arguments still apply when the piece-wise continuous function p(s) 

is being considered, since at its points of discontinuity the junction 

conditions 

are satisfied, where the suffixes 1 and r correspond to the left and right 

limiting values. 

It is not difficult to show that Green's function Gh(s, t) for the 

operator e* for the first boundary problem can be expressed quite simply 

in terms of the pattern functions trl and vz: 

since 

3. The conseruatiueness of the exact scheme 

Using the properties of the tabular functions which were established in 

Section 2 we can transform the exact difference scheme to the form (2). 
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It is more convenient to transform first equation (ll), which from (15) 
we can write in the form 

;(I) -u(A) u(A) - U(- 1) vl(l, ri)---v,(A,ri)---2(A, fi) - 

vz(A, fr) - vl(A, 4 - vl(A, fL) ~a (A, 6) 
u(A)= 

=--- 
fi2 vl(l, @v3(A, fi) 

v1 (A, fi) ~3 (A, ti) - 

Using (16) we can eliminate ~~(1, h). To write down the corresponding 
diiference equation at-the point x = xi of the net, we must put u(s) = 

u(%i + s'i), F(s) = P(%i + shi) and SO on, where Xi = 
ing ui by yi we can write the exact scheme in the form 

%i - hi hi. Replac- 

Ljp.Q.” Ayi VYi 
q-7 h,A, 

-L$‘*yi+@=O! (18) 

where 

a$ = n,D:+&+& 
i * 2+1 t 

Lemma 3. The exact difference scheme LiPa’Jaf) defined by the formulae 
(18) to (21) is conservative, i.e. 

Thus, write 

;,(z, A) . = :k(% a), 

By definition, the functions 
ditions 

X = Zi + SE+, G= Xi --hiA+ . 

i+ 1 
V, (x, h) and fiS (n, h) satisfy the con- 

6% (%+I, fL) = 09 

. Using the second Green formula for the functions 9,' (CC, h) and 

;2 (X, h) on the segment "i~%X%i+1 we obtain 
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i.e. 

from which it follows that 

The fact that the scheme Lkp8qaf) is conservative means that it can be 

written in the form 

- D: . yi + (D;. 

It is not difficult to see too that the coefficient Al depends only on 
the step hi = xi - xi_ 1 and does not depend onAi, i.e. on hi+ 1. 

Thu.5 

where #(x) is the solution of the equation 

with the initial data 

f, (Xi+) = 0, $$ x=ri 1 = I- 

4. Exact boundary conditions of the third kind 

We now consider the boundary problem of the third kind. For simplicity 

we shall assume that the condition of the third kind is given only for 

x = 0, and that at the right-hand end x = 1 the previous condition of the 

first kind applies: 

L'"Sq'!'U = 0. 0 < J: <I. (I/p(O)) u' (0) - UU (0) = p.1, z.! (i) = p2. (23) 
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We find the exact difference boundary condition for x = 0 which any sol.u- 

tion of the problem (23) will satisfy. 

We introduce the local system of co-ordinates s = x/h1 at the point 

z = 0. Just as in Section 1 we introduce the pattern functions v;(s, h,), 

vz(s, hl), v;(s, hl) in the interval 0 < s < 1 using the conditions 

We put the general solution of the equation Z*u(s) = -:hff(s) in the 

form 

2 (4 = X) u (0) + ol(i , 
vi(s* % (1) + hfv; (s, h,). 

. 

It will be necessary for this function to satisfy the condition 

&)% - (0) - G(0) = pl* 

Inserting (26) in (27) and using conditions (25) we see that 

where 

u(O) = a,; (1) + 6,. 

WI 

(“7) 

Returning to the initial variable x = da, we obtain the exact boundary 

condition in the form 

u,, = ~1~1 + 6,, i;Z!l) 

where u0 = u(O), u1 z u(xl), x1 = h,, al and 6, are given by formulae. 

(28), with 

T (4 = q (Sk,), j (4 = p(sh), t(s) == f (da,). 
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Thus the solution of the boundary problem 

LjySf)Yi = 0, 0 ( i <N, yo = a1y1+ b,, yN = p-, (30) 

where Lfipa q*f) is the exact scheme of Section 3 coincides at the nodal 

points of the difference net with the solution of the problem (23): 

Y* = ’ (‘i)’ 

The boundary condition 

Uz + UU (1) = CL2 

corresponds to the exact boundary condition 

(31) 

(32) 

where 

4 = (1 + hV k:l (s, hN) + hN i q (1 t- &) “v, (s, hN) ds]}-‘, 
-1 

(33) 

‘;; (0, h,)] a,(;; (0, hN), 

vL(.s, hlv) is the pattern function defined on the interval - 1 < s < 0 by 

the conditions (7) for s = - 1 and uJ(s, hN) is defined on the same 

interval by the conditions vj = 0 for s = - 1 and s = 0. The index N shows 

that the origin of the local co-ordinate system is taken at the point 

XN’ 1. 

5. The exact scheme LiPef’ 

If q(x) I 0, then all the pattern functions, and therefore the 

functionals Ah and @, are calculated with the help of a quadrature. 

The exact scheme Lipaf) is of the form 

(34) 

where 

0 

A: = 2 ;I (0, h) = s 
xi 

P (a + Sk) ds = $ 5 p (z) ds, (35) 
* 

-1 V-1 

@: = J'P+ k A ($ \ p (xi + thi) [ \ f (xi + hi) ds]dt), (36) 
-1 -0.6 
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llms we have 

VI (s, h) = 211 (s) = c p (s) ds, 
21 

v, {s, h) = 2l.J (s) = \ p (s) ds, 
s 

It follows that 

-& 1 P (2) [ 5 f (0 d5]dx). 

"i-l =i-i 

(38) 

Let us put $ in the 
servative ("divergent") 

form of the sum of the principal part Fi and a con- 

addition: 

To do this we write the 

foilows: 

terms in the curly bracket% in formula (38) as 

is 

As B result, m obtain expression (36) for cbh. 'Ihe second term in (366) 

of the second order of smallness as h* + 0 in the class of sufficiently 
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smooth functions p(z) and f(z): 

If we set f= 0, then we obtain the best canonical scheme 

(39) 

which is the exact scheme for the equation L(P)u = 0. 

6. Determination of the pattern functions 

In the general case, when q(x) + 0, it is not possible to express the 
pattern functions directly using a quadrature. However, since ttl(s, A), 

u2(s, ‘A) and v~(s, ti) are analytic in Z2, it is natural to look for these 

functions in the form of a power series in R2: 

cj (s, 5) = $ 3;” (s) Pk, j = 1, 2, 3. 
k=o 

(40) 

The coefficients of the series V. 
I 

(k)(s) satisfy the equations 

(41) 

$[~~~]_,(s),;k-‘)(s), j=l,2,3, h-=1,2 ,..., 

with the following additional conditions 

2p (-1) = ZIP’ (1) = “A”’ (?T 1) = 0, k = 0, 1, 2, . . .( 

&“I 

&(-I) =da:k)(l)=O, h-=1,2,... 

lhis gives 

UI”’ (s) = \ ; (t) dt, zp’ (s) = \ p (t) dt, 
-1 

. 
8 

L-i”’ (s) = jl p (t) [jl 7 (h) v:k-“(h) dh] dt, k= 1,2,. . . , 

(42) 

vkk’ (s) = \ 5 (t) [\ q (A) v;~-“@) dh] dt, k= 1,2,. . ., 
s 
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-1 -1 

where 

o(O) (s) = --i’(s), co@) (s) = 4 (s) dy) (s) for /I, = 1, 2, . . . 

2. Difference schemes of a high order of accuracy 

I. Truncated difference schemes 

In Section 1, Paragraph 6, we obtained the power series expansion in h2 

for the pattern functions u.(s, h), j = 1, 2, 3 with the help of which the 

coefficients of the exact si!heme are calculated. 

If, in the expansion 

we restrict ourselves to a finite number of terms and take the polynomials 

for the pattern functions, then we obtain the difference scheme 

whose coefficients Ai, Di, ti are calculated from the same formulae as the 

coefficients A:, Di, @! of the exact scheme, putting the polynomials 
II.(.'(s, Ir) in place 0 
1 

i the functions ui(s, 70. 

A difference scheme constructed in this way will be called a truncated 

difference scheme of the nth rank. 

'Ihe following account is devoted to finding the order of accuracy of a 

truncated scheme. 
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2. A comparison of the solutions of 
difference problems 

Let us compare the solutions of the two difference boundary problems 

Lhvi=~~i~~i-D:lyi=-(D:l,O<i<~. Y~=~~,TJv=~~, 
1 *a2’ 

Z,~i = ~ ~ ( ~,~ - D1:‘yi = - ~:, 0 < i < N, ?lO = ~,, ?liv = ~2, 
t 1 ? 

whose coefficients satisfy the conditions 

0 < Ml < A: < M,, 0 < MI < 1: < &&, 

0 < 0: < M3, 0 < %M,, 

(4) 

(5) 

(6) 

By where MI, hf,, M 
1 

are positive constants which do not depend on the net. 
analogy with [3 ; where a uniform net was considered, it is not,$fficult 
to show that Green's difference function of the operator L, (or LJ is 
bounded: 

O< Gik<M (7) 

and has bounded first difference ratios 

- Gi, L I< M, - hkil 1 G. 1, r+1 - Gs k i < Mv 

i, k = 0,1,2, . . . , N-l, (8) 

where M is a positive constant independent of the net. 

We use the notation 

N-l 

(9) 
i-1 

where +i is any net function. 

Lenuna 4. If the conditions (6) are satisfied and, in addition, $, p1 
and p2 are bounded, then 

i=0,1,2,...,N-1, 

where M is a positive constant, independent of the net. 

'Ihus the solution of the problem (4) can be found using Green's 
difference function 
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Green's difference function is 

‘iflk 

i 

-? 

1”:. 

i < k, 

Gik = dl2> 
h I 

-Y 
aN 

i > k, 

where ai and pi are solutions of the equation LhVi = 0 with the conditions 

~O=o,-g~=l, pN=o, kA*=-l. (13) 

It follows that 

and similarly 

,ai,~‘lhN (Gi t 1 .x-l - Gi,,V_l) = 0 (1). 

It follows from (ll'> that Ayi/hi+.l is bounded. 

Lemma 5. If the conditions of Lema 4 are satisfied, then 

11 y - g Ilo < M ( (I A” - ii” /I’- -I- .I1 fl ilD h - 1.81 iI1 + p” _ &,}, (14) 

where y is a solution of problem (4), Tis a solution of problem (5) and 

M is a"positive constant independent of the net. 

To prove the leuma, we form an equation 

& xz - (CD; - 6;) + -& A 
{ 1 

_ (jl! - b:) ,Yi} = - Yi, 

for the difference 

1 1 'Yi 
-r, - 
‘.li \ I 

- 
<-:_I h, 

20 x 5.v - 0. 

Iv 

2 - yi -.yi: 
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N- I 

since 
N-l M-l 

i=l fi -co 

To obtain the inequality (14), we use the fact that the functions yi, qk 
and their first difference ratios are bounded. 

&turning now to exact aud truncated difference schemes, from Lema 5 
we have 

where u = u(x) is a solution of the initial problem, and yh is a solution 

of the difference boundary problem 

where tk(PaQsf) is the truncated scheme (3) of the nth rank. 

To estimate the error in the coefficients of the scheme on the right- 
hand side of formula (15), we must evaluate the difference 

3. Estimate of the remainder tern in the expansion 
of the pattern functions 

Let us turn now to the proof of the boundedness, for any RI >O, of the 
functions 
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k=o 

j= 1, 2, 3, m > 0. 

First we shall show that the inequalities for .q(m+‘l)(~, h) and 
Q$‘+ lb, h) 

(18) 

are satisfied, where K = @,hi,), and M is some positive constant dtpand- 
ing on If,, bl, and MS only. 

Thus using conditions (41), (42) of Section 1 we hem, for Vet’ 

‘Ibis gives 

ni”+“(s, h) = j j (t) [ j ij (h) !a:“” (h, ii) drzJ dt, 
-1 -1 

Sip) (s, Ii) = \p (t) Lja (a) cg” (h, Ii) da] dt. 
rl t 

‘&en, using the conditions MI < i < MS, 6 < MS we have 

(20) 

It is not difficult to show that for $(‘)(s, *I ‘-Uj(S, h) 

sly’ (s, Ii) < &lx (I -t s), C1i”’ (S, h) Q iI!!% (I_- S). (21) 
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(19) follows from (20) and (21). 

Let us turn now to the function 

u, (S, hi) = 115"' (s, h) + ~"~Wq"+')(s, h), (22) 

where I$ WS, h) = ~~0u3~k)(s);szk is an mth degree polynomial in <.= )i2. 

Introducing Green's function 

Ol(S, fi) vztt, 4 

G" (s, t) = %(I, n) ' 

Ul (t, Q v2 (& 4 

Vl(l, fi) ' 

we write the solution of the boundary problem 

z*vs = - r (S), V, (* 1, tt) 

in the form 

2+ (s, ri) = \ Gh (s, t) 7 (t) dl. (2; 

-1 

Then, since the function l/ul(l, h) is analytic in some region 1 (,I< co 
of the complex variable c.=-ti2, it is easy to see that-the function 

V+") (s, h) is analytic for sufficiently small hQh,. It is therefore 

bounded: 

I 8!““-” (s, tL) / < JI, , J fi < ilo, (23) 

where M is a positive constant independent of 6 and s. 

Thus the estimate of the form (25) applies to all the pattern functions. 

4. The accuracy of a truncated scheme 

TO determine the accuracy of a truncated scheme, i.e. to evaluate the 
("I,, 

norm Ilu - 411, we first find the magnitude of the error caused by sub- 

stituting the pattern functionals 

A" lj (4, ; (4, Al, 0" 1: (4, i (4, 7 (4, Al, I)" 1; (4, p(s), A1 

(d (4 ( 4 
of the exact scheme by the functionals Ah , Dh , id) of the truncated 

scheme. 
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Let us first consider the difference 

_,$'I _ Ai' = + [til (A,$i) _ llyfLj (A: I;;,] L= /;"r*:+2 ~. ("'l+l) (& ,1), QL (26) 

It follows from the estimate in the previous section and from condition 
CHH) (Section 1, Paragraph 1) that 

()‘l) 
n” __ A” j B Icf (h*)2’1!_1, 

i27) 

where M is a positive constant independent of the net and of m. 

‘Ihe difference Dh _$)h can be put in the form 

(VL) 
@ _ D" = 

+ pll+i 
i(s) C@‘+1) (s, A) ds- 

s2y+qa, IL) 1. - 
~2 (A, h) 

\ $“‘(A, IL) > 
q (~)lI:“‘~(s, h) ds . (28) 

I 

Because of the lower limit p(x) >I,> 0 we have vi( A, h) >M1 20, 
lI~"'(A,h)>M,>O, j = 1, 2. 

Ihen, since CJiD+l) (s,.fi)<M,,(j = 1, 21, <GM, we have 

ID” _ ‘Jt 1 G 4M;7 (p)27n+2 = _u. (fp)2m+2 
w 

Similarly, we obtain an estimate of the error @ -:a 
( R)h 

where 

As a result, we arrive at an estimate of type (271 or (29): 

Cm) 
/ a” - CD” 1 \< A!1 * (h*ym-e2, IP < h,. (30) 

where the coefficients F(s), <<s> and f(s) are arbitrary piece-wise con- 
tinuous functions. 

The following theorem follows from (271, (221, (30) and Lemna 4: 
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Theorem. A truncated difference scheme of the mth rank (n>O) is of 
the (2mr +2)th order of accuracy as llh 11 1 =’ h* -P 0 in the class Q’ ‘) of 
piece-wise continuous functions p(x), q(x), f(r) on any sequence of differ- 
ence nets satisfying 

or, in .other words, 

where C,, C,, M and x0 are positive constants independent of m and the 
choice of net. 

Notes 1. lhe theorem is stated for the first boundary problem, although 
it can also be extended to the case of the third boundary problem 
(Section 5). 2. ‘lhe simplest truncated scheme is that of zero rank giving 
secondorder accuracy in the class Q lo) for any nets satisfying (H). 

Its pattern functionals are given by the formulae 

(32) 

where 

I$” (A) = j p(s) ds, 

‘lbe functionals(1) and(!) do not depend on h, i.e. are canonical (see 

Cll; El; 131). 

5. Truncated difference bowadary conditions 

Let us now consider the boundary condition of the 3rd kind 
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lu = 11’ (0) --au(O)=p, 
P t(J) 

(35) 

and the corresponding boundary problem 

LCPm gS j) U = 0, lu = PI, U (1) = /.k?. (36) 

In Section 4, Paragraph 1 it was showu that the exact boundary condi- 
tion for x = 0 has the form 

(37) 

(35) 

Replacing the pattern functions uz(s, $1 and w3*(s, hl) in (37) by the 
polynomials I$ (“)(s, h,) and l-@s) (s, hl) of the 2mth degree in ‘X, we 
obtain the truncated boundary condition of the aoth rauk 

It is not difficult to see that 

;, ‘L- F1 _=‘o (1,;“‘~’ Z’) ( 

It follows that the solution of the difference boundary problem 

;;ilL 9. i) 
,,L 111 

yi = 0, 0 (; i t( N, I,, y := FL, yv = pz, 

*tP,P.h) with the truncated scheme Lh and the truncated boundary condition of 
the mth rank is of the (2n + 21th order of accuracy relative to the solu- 
tion of the boundary problem (36). 

‘Ihe truncated condition of zero rank is of the fonz 

where 

Yo - VlYl + rll, 

This condition can be replaced by one which is equivalent to it as far 
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as accuracy is concerned, but is rather simpler: 

VI = Cl + h,P,l ((7 + 03 kQl))-‘, '11 = hl)“Yl (p1 - 0,5hq,). 
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