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We consider finite-difference schemes with "through computation” (i.e.
which do not exclude the lines of discontinuity) for the equations of gas
dynamics for one-dimensional isentropic motion of a gas with various types
of viscosity. The progressive difference wave is defined. It is estab-
lished that the difference equations can be solved in the form of such a
wave. The requirement that the profile of the progressive wave shall be
monotonic enables us to obtain a condition for the choice of the viscosity
coefficient.

L

1. The equations of the one-dimensional isentropic motion of a gas in
Lagrange variables have the form

v 4 (P 9),=0, B;=0v,, (E+0.50%, +[(p+ 9°],=0, ph=(v—1)E, M)

where g is the viscosity [1], p is the pressure, v the velocity, 6 the
specific volume, E the internal emergy, f,, f, the partial derivatives
with respect to x and ¢, and y = cP/c,.

Let us consider the problem of the motion of a stationary shock wave,
which is spreading with a constant velocity D. Then p(+=) = p; = 0;
p(—w) = p,, 8(+o) = 0,, 8(~w) = 0,, v(~w) = v,, v(+es) = v; = 0. We
shall look for the solution as a function of s, f = f(s), where s=zx — Dt.

¢ Zh. vych. mat. 1: No. 2, 357-360, 1861. This work was the subject of a
report to the All-Union Conference on Computation Mathematics and Com-
putation Techniques in 1858.
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The problem reduces to the solution of a system of ordinary differential
equations. We can easily find the integral of this system

=0.5(r+1) D (61— 0)(0 —Bs)» 4 (Ho0) =0 )

The requirements on g(s) are: 1) the system of ordinary differential equa-
tions to which our problem has led must have a continuous solution; 2) the
effect of ¢(s) must be negligibly small outside the shock layer and in the
region of the rarefied wave; 3) when the dimensions of the region of
motion are large in comparison with the thickness of the shock layer,
Hugoniot’s conditions must be satisfied.

Generally speaking, g can be a function of v, p, 6, E and their deriva-
tives. We consider here the following expression for gq:

Bg=—05v|v " (v,—x]|v,|), v=const. (3)

When p = 1, k = 0 we have Neumann’s viscosity [1], which does not satisfy
the second of the requirements. When g = 1, x = 1 we have a viscosity
which satisfies the second of the requirements (see [2]). When p = 0 we
have a linear viscosity. We shall assume that (< p < 1.

2. Let us find the spread of the front of the shock wave caused by the
viscosity. In the zone of the shock wave ¥, < 0, and so 6_=v|v |1+“
k = 1. For our problem we have 0q = VDH"(G )H'“ We introduce the new
function A(s) with the formula 6 = 0. 5(0 +0 o) + 0.5 x A6 x A(s) where

Ab = 0 9 If0-0 then A(s) = ,1f6=0 then A(s) = - 1.
Using (2) we easily find
M (s) = a [1— A2 (5)]°, s:-i—irz, a:[O.SI-_%l(O.&D-AB)""*‘]O. (4)
Let s, denote the smallest s for which A(s) =1, and let s, denote the

largest s for which A(s) = ~ 1. We shall call L = s, — s; the width of the
shock layer. Integrating (4) we find

1
dh _T(1—0)
= al i= —_— = — .
I = oL, where S FERTY V“I‘(.?’__G)
—1 2
When p = 1 (0 = 0.5) we have L = 2v/(y £)% 57, If we put v = v, x h1*# and
L = nx h where n is an integer, we obtain
Vo =05 (y4-1) (0.5-D-AQ)¥pl b ~1-p (5)

From this formula we can see that v, is independent of the force of the
shock wave only when p = 1. In this case we have
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n2
gl (8)

Vo =0.5(y 1)

If 0 <p <1, then L 1s finite. Further, if p = 0, then L = «. In this
case 1t 1s convenient to introduce the concept of the effective width of
the shock layer.

3. Thus, let p = 0. By the effective width L, of the shock layer we
shall mean the difference L = s, — s, where s; is the largest s for which
0(s) - 0, =0.5x A0 x[1+X(s)]=¢€ x AB; s, is the smallest s for
which 8(s) - 8, =~ 0.5 x AL 1 - A(s)] =~ ¢ Af where ¢ is given, 0 <
e <1. Then al, = I, = [{1*2€) (1 - A%)~1d) where a = 0.25/v(y+1)Dx AS.

1-2)
Writing L, = nx h and v = v h we find

1
Vo~ 0.25-(7 4 1)-D-Af-n-In-1 (T) . )

.

1. To write down the difference equations of gas dynamics we select a
rectangular space-time net with steps Ax = h and At = r. We shall use the
"cross" difference scheme, which can be written in the form

N - , , T
v] Pl v~ /o = Tollp+ ‘I)J'_t/z —(p+ ‘1)12+1/2]v Yo= ">

j+ j Y je
9%-{-11/2“" BZH/! = To(lgi—ll —o] ")

. . B . i, - 1/"
(or h-Gifl =it _pd¥1 0¥ L_ ]l gl ™, ®)

i+, Tit1 i

) iy ) ‘ o L

S — Bl =05 (@IF7 )2 — @112 + 1 (P + O, 2] Yo — (p+ ) py,0l 7,
ph = (v — 1) E.

Ve shall not use fractional subscripts and indices below, but shall
agree to let v refer to the point (x,, ti_1 o)y PL, a}, 0%, E to the

point (x;, ,,, t;) where ti_1yg=7 % (G-1/2), ;1,9 = b+ 1/2).

2. Let us solve the problem of the motion of a stationary shock wave,
which was considered in I, using the "cross" scheme. The progressive wave
u= f(x t Dt) satisfies the equation Du_t u,.

By analogy with this we define the difference progressive waves using
the relations

j+1 i - i
ul"l—u 4 Dyo(ui—ul )

177 A

or

it+1 i __ Iyl
wj Tl —ul = & Dyo (uiy; —u)e
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We shall look for the solution of the difference equations (8) in the
form of progressive waves, writing

41 . . ) 1 - ) .
oI — vl = — D], —v]), T —0l=—1D (B —0l,)
it j . N j )
wi't —wl = oD (w] —w]_), oy

where ) _ )
wl = L]+ 0.5, )%

Using (8) and (9) we find

D-vpy =Py 2, =D(W1—-0;_) Du;= Py =va+1 (10)

(or E; = 0.51}2‘.+ ). The index is the same everywhere here, and so it has
been omitted. Also P; = q; = p;.

Using the Hugoniot condition, we find from (10)
9,8, =0.5(y -+ 1) D (61— 8,) (9; — Ba)- (11)
From formula (3) withk = 1 and v = Vohl“" we obtain
28 =0.5vo | vy  — vy P {l vy — ;| — (V45 — 7)) (12)
From (11) and (12) we obtain an equation for 9'::

0.5 (1 + 1) D™ (61— 6;) (B; — 82) = vo (8; — 6;_, )1 T (13)

We introduce the new unknown 7, from the formula 6; - ¥, = A6 x 5,
(n; > 0) and obtain for it the equation

Ny =m—an; 1—my), (14)
where a = (1/v,) [0.5x (y + 1) (Dx A9)™17. Clearly g, =1, n__ = 0.
3. Let us consider a linear viscosity (g = 0, ¢ = 1). In this case
equation (14) takes the form
Ny =M —an; (1 —ny). (15)

We shall look for a monotonic non-negative solution of this equation. It
exists for any 0 < a < 1. From the condition a <1 we find

Vo= Vo ep =05 7+ 1) D-AS. (16)

For Neumann's viscosity (p = 1, o = 0.5) we have

NGy=my—al 0 —n,). (17
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Let n; 5 1 — ¢ where ¢ is given, 0 < ¢ < 0.5. The least value of n for
which 7, _ | >¢ is the effective width of the difference shock layer. "¢
Given ¢ it is easy to calculate L, for any a from formulae (15) and (17).
The values of I, - for ¢ = 0.1 and ¢ = 0.05 are given in the table.

Using a table such as this, it is easy to demonstrate the rules for
selecting the coefficient of viscosity v;. Thus, we can find a, for given
¢ and L, = n from the table. Clearly for all a » a,..we obtain the effec-
tive width L not exceeding the given value of n. Using this condition
and the inequality (16) we find for a linear viscosity

i 1 - i
:r-fg— -D-Aegva<z—"§--D.Aa = (18)
n
For the Neumann viscosity we find
T+1 T+1
2(1__8)82<V0< 202 (19)

n

The left-hand inequality of (19) is obtained from the requirement that
Np. 1 1S non-negative, if 5, <1 - ¢. We note that then the width of the

afl
B €
0.2 0.4 0.8 0.8 l 1.0 ? 1.5 2.0 3.0 4.0
o | 04 | 211 8! 6| 5] — ] — 1| — 1| —
005 | 20 | 15 9| 7| 6| — | —1]—1—

1 0.4 16 g 7 5
0.05 21 11 8 6

4 3 3 2 2
5 4 3 3 2

difference shock layer is infinite, although for the differentiai equation
the width of the shock layer is finite. With the same plan we have looked
at viscosity terms g of the form

g0 =—05]v|{vy— v ) vand g8 = —0.5v (| v | + Bo)(vx— 19, 1),
Bo>0 (small).

4. We used the "cross" difference scheme with viscosity to compute the
motion of a stationary shock wave, the decay of a discontinuity, and other
cases. These problems were calculated with a linear viscosity and with a
Neumann viscosity. It always proved to be possible to use 3 to 4 times as
large a time step with a linear viscosity as with a Neumann viscosity.
However, with a Neumann viscosity it was possible to have a smaller
effective width of the shock layer. In a number of cases the numerical
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solution was compared with the exact solution of the problem, and each
time the computation with a linear viscosity gave very good accuracy.
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