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We consider finite-difference schemes with “through computation” (i.e. 

which do not exclude the lines of discontinuity) for the equations of gas 

dynamics for one-dimensional isentropic motion of a gas with various types 

of viscosity. l’he progressive difference wave is defined. It is estab- 
lished that the difference equations cau be solved in the form of such a 

wave. The requirement that the profile of the progressive wave shall be 

monotonic enables us to obtain a couditiou for the choice of the viscosity 

toe fficieut . 

I. 

1. lhe equations of the one-dimensional isentropic motion of a gas in 

Lagrange variables have the form 

uf i- (p+ q),=O, Of=u,, (E + 0.5~~)~ + [(P 4- Q)‘], = 0, ~0 = (r-- 1) E, (1) 

where q is the viscosity [I], p is the pressure, u the velocity, 8 the 

specific volume, E the internal energy, f,, ft the partial derivatives 

with respect to x and t, aud y = cfiv. 

Let us consider the problem of the motion of a stationary shock wave, 

which is spreading with a constant velocity D. lhen p(+oo) = p1 = 0; 

p(-4 = pt, et+=4 = e,, 6(-d = e,, V(4 = U2’ v(+m) = Ul = 0. we 

shall look for the solution as a function of s, f P p(s), where s= x - Dt. 

l Zh. vych. rat. 1: No. 2, 357-360, 1961. 911s work was the subject of 8 
report to the All-Union Conference on Cosputrtios Ystheutlcs sad Ca- 
putation Techniques in 1959. 
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The problem reduces to the solution of a system of ordinary differential 

equations. We can easily find the integral of this system 

2. Let us find the spread of the front of the shock wave caused by the 

viscosity. In the zone of the shock wave Vx< 0, and so 8 = ~1 v I1+p, 

K = 1. For our problem we have 8q = vD We’P+t We intr$duce tge new 

function h(s) with the formula 8 = 0.5(8, + g2, + 0.5 x Af3 x X(s) where 

h(s) = 1, if 8 = 8, then X(S) = - 1. A0 '8, - 8,. If 8 = 8, then 

Using (2) we easily find 

3"'(S) = a [I - h2 (s)y, 

Let sz denote the smallest s for which X(s) = 1, and let s1 denote the 

largest s for which X(s) = - 1. We shall call L = s2 - s1 the width of the 
shock layer. Integrating (4) we find 

i = aL,where 

1 

s dJ. 
I= 

(1 - ?b2)” 
-1 

When p = 1 (u = 0.5) we have L = %/(y +)oe5n. If we put v = v. x h'+p and 
. . 

L = n x h where n is an integer, we obtain 

vo= 0 5(r+l)(0.5.D.A\0)'~n1+l"l-l-t*. 15) 

qfl = 0.5 (r f- 1) LIZ (i&- fj)(fl -- fJ,h 4 (+w) = 0. (2) 

'Ihe requirements on q(s) are: 1) the system of ordinary differential equa- 

tions to which our problem has led must have a continuous solution; 2) the 

effect of q(s) must be negligibly small outside the shock layer and in the 

region of the rarefied wave; 3) when the dimensions of the region of 

motion are large in comparison with the thickness of the shock layer, 

Hugoniot's conditions must be satisfied. 

Generally speaking, q can be a function of V, p, 8, E and their deriva- 

tives. We consider here the following expression for q: 

9q=---O-5V Iv,I” (v,--/~vxI), v=const. (S) 

When p = 1, K = 0 we have Neumann's viscosity Ll, w&ch does not satisfy 
the second of the requirements. When p = l, K = 1 we have a viscosity 

which satisfies the second of the requirements (see [21). When p = 0 we 

have a linear viscosity. We shall assume that 0.g~ -<l. 

From this formula we can see that v. is independent of the force of the 

shock wave only when p = 1. In this case we have 
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Yo = 0.5 (y + 1) $- (‘iI 

If 0 < p c 1, then L is finite. Further, if p = 0, then L = bo. In this 
case it is convenient to introduce the concept of the effective width of 
the shock layer. 

3. Thus, let p = 0. By the effective width L, of the shock layer we 
shall mean the difference L, = s2 - s1 where s1 is the largest s for which 
0(s) - Pz = 0.5 x A0 x [ 1 + X(s) I = c x Ar9; sIL is the smallest s for 
which 0(s) - “I = - 0.5 x Ae[ 1 - h(s) 1 = - 6 At9 where c is given, 0 < 
E < 1. Then uLC = I, = Ji:ti:i (1 - AZ) -‘dX where a = 0.25/u(y+ 1)Dx A@. 
Writing Lc = n x h and Y = u,h we find 

II. 

1. To write down the difference equations of gas dynamics we select a 
rectangular space-time net with steps Ax = h and At = r. We shall use the 
“cross” difference scheme, which can be written in the form 

We shall not use fractional subscripts and indices below, but shall 

agree to let v< refer to the point (xi, ti_ 1 2), pi, q{, O’,, E{ to the 
point (xi+ 1,2, tj) where tj_ 1,2 = r x (j - i/2) 1 ‘i+ 1/2 = h(i + l/2). 

2. Let us solve the problem of the motion of a stationary shock wave, 
which was considered in 1, using the “cross” scheme. The progressive wave 
u = f(x f Dt) satisfies the equation Duz + ut. 

By analogy with this we define the difference progressive waves using 
the relations 

Jf’_J= IDy,+J 1 1 i 1-I ) 

or 
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We shall look for the solution of the difference equations (8) in the 
form of progressive waves, writing 

Using (8) and (9) we find 

D. v<+~ = Pi, Vi = D (~, - 9i_1), D’L’~ = Pi~i+l= Dv~+, (10) 

(or E, = 0.5~~ i+ 1). The index is the same everywhere here, and so it has 
been omitted. Also Pi = qi = pi. 

Using the Hugoniot condition, we find from (10) 

Qj,Ot = O.5 (T + 1) 0’ (E - 9i) (0, --<,)s 

From formula (3) with K = 1 and v = v,,/-z"~ we obtain 

Qif3i = 0.5VO 1 Vi+1 - ‘5 1” II ‘ifI - vi I - (Vi+, - Vi)]. 

From (11) and (12) we obtain an equation for 8,: 

'.'(~+')D'-'(tf~-9i)(0t-_~a)=~o(ei-6,_~)"~. 

ifi) 

(1”) 

(13) 

We introduce the new unknown vi from the formula 8, - 8, = A0 x vi 

(7 i 2 0) and obtain for it the equation 

Q-i= rli-'qp (1 - rli), (141 

where a = (l/va) LO.5 x (y + 11 (D x A~)l~plQ. Clearly 'I, = 1, v_,= 0. 

3. I,et us consider a linear viscosity (cc = 0, u = 1). In this case 
equation (14) takes the form 

4. t-1 = 'livuollitl -vi). (151 

We shall look for a monotonic non-negative solution of this equation. It 
exists for any 0 < a < 1. Fran the condition a < 1 we find 

For Ne umann's viscosity (a = 1, u = 0.5) we have 

Q-i= 'Ii-- a I/rli(l -V*). (I';, 
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Let n i h 1 - f where E is given, 0 < c < 0.5. The least value of n for 
which ni_ n > E is the effective width of the difference shock layer. E 6 
Given E it is easy to calculate L, for any a from formulae (15) and (17). 
The values of 1, . for L: = 0.1 and E = 0.05 are given in the table. 

Using a table such as this, it is easy to demonstrate the rules for 
selecting the coefficient of viscosity ve. Thus, we can find un for given 

E and L, = n from the table. Clearly for all CI > an. .we obtain the effec- 

tive width i, not exceeding the given v alue of n. Using this condition 
and the inequality (16) we find for a linear viscosity 

For the Neumann viscosity we find 

The left-hand inequality of (19) is obtained from the requirement that 

9 n- 1 is non-negative, if nn < 1 - e. We note that then the width of the 

P 

0 

- 

1 

i i i i i 1 I i i;-‘-- 

__~. 

diiference shock layer is infinite, although for the differential equatron 

the width of the shock layer is finite, With the same plan we have looked 
at viscosity terms q of the form 

4. We used the “cross” difference scheme with viscosity to compute the 
motion of a stationary shock wave, the decay of a discontinuity, and other 
cases. These problems were calculated with a linear viscosity and with a 
Neumann viscosity. It always proved to be possible to use 3 to 4 times as 
large a time step with a linear viscosity as with a Neumann viscosity. 
However, with a Neumann viscosity it was possible to have a smaller 
effective width of the shock layer. In a number of cases the numerical 
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solution was compared with the exact solution of the problem, and each 

time the c~utati~ with a linear viscosity gave very good accuracy. 
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