ON THE NUMERICAL SOLUTION OF EQUATIONS IN GAS DYNAMICS WITH VARIOUS TYPES OF VISCOSITY*

A.A. SAMARSKII and V.Ya. ARSENIN (Moscow)

(Received 14 January, 1961)

We consider finite-difference schemes with "through computation" (i.e. which do not exclude the lines of discontinuity) for the equations of gas dynamics for one-dimensional isentropic motion of a gas with various types of viscosity. The progressive difference wave is defined. It is established that the difference equations can be solved in the form of such a wave. The requirement that the profile of the progressive wave shall be monotonic enables us to obtain a condition for the choice of the viscosity coefficient.

I.

1. The equations of the one-dimensional isentropic motion of a gas in Lagrange variables have the form

$$v_t + (p+q)_x = 0, \ \theta_t = v_x, \ (E+0.5v^2)_t + [(p+q)^v]_x = 0, \ p\theta = (\gamma-1)E,$$
 (1)

where q is the viscosity [1], p is the pressure, v the velocity, θ the specific volume, E the internal energy, f_x , f_t the partial derivatives with respect to x and t, and $\gamma = c_p/c_v$.

Let us consider the problem of the motion of a stationary shock wave, which is spreading with a constant velocity *D*. Then $p(+\infty) = p_1 = 0$; $p(-\infty) = p_2$, $\theta(+\infty) = \theta_1$, $\theta(-\infty) = \theta_2$, $v(-\infty) = v_2$, $v(+\infty) = v_1 = 0$. We shall look for the solution as a function of *s*, f = f(s), where s = x - Dt.

 2h. vych. mat. 1: No. 2, 357-360, 1961. This work was the subject of a report to the All-Union Conference on Computation Mathematics and Computation Techniques in 1959.

The problem reduces to the solution of a system of ordinary differential equations. We can easily find the integral of this system

$$q\theta = 0.5 (\gamma + 1) D^2 (\overline{\theta}_1 - \theta) (\theta - \overline{\theta}_2), \quad q (+\infty) = 0.$$
⁽²⁾

The requirements on q(s) are: 1) the system of ordinary differential equations to which our problem has led must have a continuous solution; 2) the effect of q(s) must be negligibly small outside the shock layer and in the region of the rarefied wave; 3) when the dimensions of the region of motion are large in comparison with the thickness of the shock layer, Hugoniot's conditions must be satisfied.

Generally speaking, q can be a function of v, p, θ , E and their derivatives. We consider here the following expression for q:

$$\theta q = -0.5 \mathbf{v} | \mathbf{v}_{\mathbf{x}} |^{\mu} (\mathbf{v}_{\mathbf{x}} - \mathbf{x} | \mathbf{v}_{\mathbf{x}} |), \quad \mathbf{v} = \text{const.}$$
(3)

When $\mu = 1$, $\kappa = 0$ we have Neumann's viscosity [1], which does not satisfy the second of the requirements. When $\mu = 1$, $\kappa = 1$ we have a viscosity which satisfies the second of the requirements (see [2]). When $\mu = 0$ we have a linear viscosity. We shall assume that $0 \le \mu \le 1$.

2. Let us find the spread of the front of the shock wave caused by the viscosity. In the zone of the shock wave $v_x < 0$, and so $\theta_q = \nu |v_x|^{1+\mu}$, $\kappa = 1$. For our problem we have $\theta q = \nu D^{1+\mu}(\theta')^{1+\mu}$. We introduce the new function $\lambda(s)$ with the formula $\theta = 0.5(\overline{\theta}_1 + \overline{\theta}_2) + 0.5 \times \Delta\theta \times \lambda(s)$ where $\Delta\theta = \overline{\theta}_1 - \overline{\theta}_2$. If $\theta = \overline{\theta}_1$ then $\lambda(s) = 1$, if $\theta = \overline{\theta}_2$ then $\lambda(s) = -1$.

Using (2) we easily find

$$\lambda'(s) = a \left[1 - \lambda^2(s)\right]^{\sigma}, \quad \sigma = \frac{1}{1 + \mu}, \quad a = \left[0.5 \frac{\gamma + 1}{\nu} \left(0.5 \cdot D \cdot \Delta \theta\right)^{1 - \mu}\right]^{\sigma}. \tag{4}$$

Let s_2 denote the smallest s for which $\lambda(s) = 1$, and let s_1 denote the largest s for which $\lambda(s) = -1$. We shall call $L = s_2 - s_1$ the width of the shock layer. Integrating (4) we find

$$I = aL$$
, where $I = \int_{-1}^{1} \frac{d\lambda}{(1-\lambda^2)^{\sigma}} = \sqrt{\pi} \frac{\Gamma(1-\sigma)}{\Gamma(\frac{3}{2}-\sigma)}$.

When $\mu = 1$ ($\sigma = 0.5$) we have $L = 2\nu/(\gamma +)^{0.5}\pi$. If we put $\nu = \nu_0 \times h^{1+\mu}$ and $L = n \times h$ where n is an integer, we obtain

$$\mathbf{v}_0 = 0.5 \, (\gamma + 1) \, (0.5 \cdot D \cdot \Delta \theta)^{1 - \mu} n^{1 + \mu} I^{-1 - \mu}. \tag{5}$$

From this formula we can see that ν_0 is independent of the force of the shock wave only when $\mu = 1$. In this case we have

$$\mathbf{v}_0 = 0.5 \,(\gamma + 1) \, \frac{n^2}{\pi^2} \,.$$
 (6)

If $0 < \mu \leq 1$, then L is finite. Further, if $\mu = 0$, then $L = \infty$. In this case it is convenient to introduce the concept of the effective width of the shock layer.

3. Thus, let $\mu = 0$. By the effective width L_{ϵ} of the shock layer we shall mean the difference $L_{\epsilon} = s_2 - s_1$ where s_1 is the largest s for which $\theta(s) - \overline{\theta}_2 = 0.5 \times \Delta \theta \times [1 + \lambda(s)] = \epsilon \times \Delta \theta$; s_2 is the smallest s for which $\theta(s) - \overline{\theta}_1 = -0.5 \times \Delta \theta [1 - \lambda(s)] = -\epsilon \Delta \theta$ where ϵ is given, $0 < \epsilon < 1$. Then $aL_{\epsilon} = I_{\epsilon} = \int_{(1-2\epsilon)}^{(1+2\epsilon)} (1 - \lambda^2)^{-1} d\lambda$ where $a = 0.25/\nu(\gamma+1)D \times \Delta \theta$. Writing $L_{\epsilon} = n \times h$ and $\nu = \nu_0 h$ we find

$$\mathbf{v}_0 \simeq 0.25 \cdot (\mathbf{\gamma} + \mathbf{1}) \cdot D \cdot \Delta \mathbf{\theta} \cdot n \cdot \ln^{-1} \left(\frac{1}{\varepsilon}\right).$$
 (7)

П.

1. To write down the difference equations of gas dynamics we select a rectangular space-time net with steps $\Delta x = h$ and $\Delta t = r$. We shall use the "cross" difference scheme, which can be written in the form

$$v_{i}^{j+1/2} - v_{i}^{j-1/2} = \gamma_{0} \left[(p+q)_{i-1/2}^{j} - (p+q)_{i+1/2}^{j} \right], \quad \gamma_{0} = \frac{\tau}{h},$$

$$\theta_{i+1/2}^{j+1/2} - \theta_{i+1/2}^{j} = \gamma_{0} (v_{i+1}^{j+1/2} - v_{i}^{j+1/2})$$

$$(\text{ or } h \cdot \theta_{i+1/2}^{j+1} = r_{i+1}^{j+1} - r_{i}^{j+1}, \quad r_{i}^{j+1} = r_{i}^{j} + \tau v_{i}^{j+1/2}), \quad (8)$$

$$E_{i+1/2}^{j+1} - E_{i+1/2}^{j} = 0.5 \left[(v_{i+1}^{j-1/2})^{2} - (v_{i+1}^{j+1/2})^{2} \right] + \gamma_{0} \left[(p+q)_{i-1/2}^{j} v_{i}^{j-1/2} - (p+q)_{i+1/2}^{j} v_{i+1}^{j-1/2} \right],$$

$$p_{0} = (\gamma - 1) E.$$

We shall not use fractional subscripts and indices below, but shall agree to let v_i^j refer to the point $(x_i, t_{j-1/2})$, p_i^j , q_i^j , θ_i^j , E_i^j to the point $(x_{i+1/2}, t_j)$ where $t_{j-1/2} = \tau \times (j-1/2)$, $x_{i+1/2} = h(i+1/2)$.

2. Let us solve the problem of the motion of a stationary shock wave, which was considered in I, using the "cross" scheme. The progressive wave $u = f(x \pm Dt)$ satisfies the equation $Du_x \pm u_t$.

By analogy with this we define the difference progressive waves using the relations

$$u_{i}^{j+1} - u_{i}^{j} = \pm D\gamma_{0} (u_{i}^{j} - u_{i-1}^{j})$$

or

$$u_i^{j+1} - u_i^j = \pm D\gamma_0 \left(u_{i+1}^j - u_i^j \right)$$

We shall look for the solution of the difference equations (8) in the form of progressive waves, writing

$$v_{i}^{j+1} - v_{i}^{j} = -\gamma_{0} D \left(v_{i+1}^{j} - v_{i}^{j} \right), \quad \theta_{i}^{j+1} - \theta_{i}^{j} = -\gamma_{0} D \left(\theta_{i}^{j} - \theta_{i-1}^{j} \right).$$

$$w_{i}^{j+1} - w_{i}^{j} = \gamma_{0} D \left(w_{i}^{j} - w_{i-1}^{j} \right), \quad (9)$$

where

$$w_i^j = E_i^j + 0.5 \, (v_{i+1}^j)^2.$$

Using (8) and (9) we find

$$D \cdot v_{i+1} = P_i, \quad v_i = D(\overline{\theta}_1 - \theta_{i-1}), \quad Dw_i = P_i v_{i+1} = Dv_{i+1}^{\$}$$
(10)

(or $E_i = 0.5v_{i+1}^2$). The index is the same everywhere here, and so it has been omitted. Also $P_i = q_i = p_i$.

Using the Hugoniot condition, we find from (10)

$$q_i \theta_i = 0.5 (\gamma + 1) D^2 (\overline{\theta_1} - \theta_i) (\theta_i - \overline{\theta_2}).$$
(11)

From formula (3) with $\kappa = 1$ and $\nu = \nu_0 h^{1+\mu}$ we obtain

$${}_{i}\theta_{i} = 0.5\mathbf{v}_{0} | v_{i+1} - v_{i} |^{\mu} [| v_{i+1} - v_{i} | - (v_{i+1} - v_{i})].$$
 (12)

From (11) and (12) we obtain an equation for θ_i :

q

$$0.5 (\gamma + 1) D^{1-\mu} (\overline{\theta}_1 - \theta_i) (\theta_i - \overline{\theta}_2) = v_0 (\theta_i - \theta_{i-1})^{1+\mu}.$$
(13)

We introduce the new unknown η_i from the formula $\theta_i - \overline{\theta}_2 = \Delta \theta \times \eta_i$ $(\eta_i > 0)$ and obtain for it the equation

$$\eta_{i-1} = \eta_i - a \eta_i^{\sigma} (1 - \eta_i), \qquad (14)$$

where $a = (1/\nu_0) [0.5 \times (\gamma + 1) (D \times \Delta \theta)^{1-\mu}]^{\sigma}$. Clearly $\eta_{\infty} = 1$, $\eta_{-\infty} = 0$.

3. Let us consider a linear viscosity ($\mu = 0$, $\sigma = 1$). In this case equation (14) takes the form

$$\eta_{i-1} = \eta_i - a\eta_i (1 - \eta_i). \tag{15}$$

We shall look for a monotonic non-negative solution of this equation. It exists for any $0 < a \leq 1$. From the condition $a \leq 1$ we find

$$\mathbf{v}_{\mathbf{0}} \geqslant \mathbf{v}_{\mathbf{0}, \mathbf{cr}} = 0.5 \ (\gamma + 1) \ D \cdot \Delta \theta. \tag{16}$$

For Neumann's viscosity ($\mu = 1$, $\sigma = 0.5$) we have

.

$$\eta_{i-1} = \eta_i - a \sqrt[n]{\eta_i} (1 - \eta_i). \tag{17}$$

Let $\eta_i \ge 1 - \epsilon$ where ϵ is given, $0 < \epsilon < 0.5$. The least value of n for which $\eta_{i-n} \ge \epsilon$ is the effective width of the difference shock layer. L_{ϵ} Given ϵ it is easy to calculate L_{ϵ} for any a from formulae (15) and (17). The values of $L_{\epsilon} \cdot \text{for } \epsilon = 0.1$ and $\epsilon = 0.05$ are given in the table.

Using a table such as this, it is easy to demonstrate the rules for selecting the coefficient of viscosity ν_0 . Thus, we can find a_n for given ϵ and $L_{\epsilon} = n$ from the table. Clearly for all $a > a_n$, we obtain the effective width L_{ϵ} not exceeding the given value of n. Using this condition and the inequality (16) we find for a linear viscosity

$$\frac{\gamma+1}{2} \cdot D \cdot \Delta \theta \leqslant \mathbf{v}_0 \leqslant \frac{\gamma+1}{2} \cdot D \cdot \Delta \theta \cdot \frac{1}{a_n}.$$
(18)

For the Neumann viscosity we find

$$\frac{\gamma+1}{2(1-\epsilon)} \epsilon^2 \leqslant \nu_0 \leqslant \frac{\gamma+1}{2a_n^2} \,. \tag{19}$$

The left-hand inequality of (19) is obtained from the requirement that η_{n-1} is non-negative, if $\eta_n \leq 1 - \epsilon$. We note that then the width of the

	ε	<i>a_n</i>								
ĥ		0.2	0.4	0.6	0.8	1.0	1.5	2.0	3.0	4.0
0	0.1	22 29	11 15	8 9	6 7	5 6	_			
1	0.1	16 21	9 11	7 8	5 6	45	34	33	2 3	2 2

difference shock layer is infinite, although for the differential equation the width of the shock layer is finite. With the same plan we have looked at viscosity terms q of the form

$$q\theta = -0.5 |v| (v_x - |v_x|) \text{ v and } q\theta = -0.5 \text{ v } (|v| + \beta_0) (v_x - |v_x|),$$

$$\beta_0 > 0 \text{ (small).}$$

4. We used the "cross" difference scheme with viscosity to compute the motion of a stationary shock wave, the decay of a discontinuity, and other cases. These problems were calculated with a linear viscosity and with a Neumann viscosity. It always proved to be possible to use 3 to 4 times as large a time step with a linear viscosity as with a Neumann viscosity. However, with a Neumann viscosity it was possible to have a smaller effective width of the shock layer. In a number of cases the numerical solution was compared with the exact solution of the problem, and each time the computation with a linear viscosity gave very good accuracy.

REFERENCES

- 1. Neumann, J. and Richtmyer, M., A method for the numerical calculations of hydrodynamical shocks. J. Appl. Phys., 21: No. 1, 232, 1950.
- Brode, H.L., Numerical solutions of spherical blast waves. J. Appl. Phys., 26: No. 6, 766, 1955.

Translated by R. Feinstein