ON THE NUMERICAL SOLUTION OF EQUATIONS IN GAS dYNAMICS WITH VARIOUS TYPES OF VISCOSITY*

A. A. SAYARSEII and V.Ya. ARSENIN
(Moscon)
(Received 14 Janaary, 1961)

We consider finite-difference schemes with "through computation" (i.e. which do not exclude the lines of discontinuity) for the equations of gas dynamics for one-dimensional isentropic motion of a gas with various types of viscosity. The progressive difference wave is defined. It is established that the difference equations can be solved in the form of such a wave. The requirement that the profile of the progressive wave shall be monotonic enables us to obtain a condition for the choice of the viscosity coefficient.

I.

1. The equations of the one-dimensional isentropic motion of a gas in Lagrange variables have the form

$$
\begin{equation*}
v_{t}+(p+q)_{x}=0, \theta_{t}=v_{x},\left(E+0.5 v^{2}\right)_{t}+\left[(p+q)^{v}\right]_{x}=0, \quad p \theta=(\gamma-1) E, \tag{1}
\end{equation*}
$$

where q is the viscosity [1], p is the pressure, v the velocity, θ the specific volume, E the internal energy, $f_{x^{\prime}} f_{t}$ the partial derivatives with respeci to x and t, and $\gamma=c_{p} / c_{v}$.

Let us consider the problem of the motion of a stationary shock wave, which is spreading with a constant velocity D. Then $p(+\infty)=p_{1}=0$; $p(-\infty)=p_{2}, \theta(+\infty)=\theta_{1}, \theta(-\infty)=\theta_{2}, v(-\infty)=v_{2}, v(+\infty)=v_{1}=0$. We shall look for the solution as a function of $s, f=f(s)$, where $s=x-D t$.

[^0]The problem reduces to the solution of a system of ordinary differential equations. We can easily find the integral of this system

$$
\begin{equation*}
q \theta=0.5(\tau+1) D^{2}\left(\bar{\theta}_{1}-\theta\right)\left(\theta-\bar{\theta}_{2}\right), \quad q(\mid \infty)=0 . \tag{2}
\end{equation*}
$$

The requirements on $q(s)$ are: 1) the system of ordinary differential equations to which our problem has led must have a continuous solution; 2) the effect of $q(s)$ must be negligibly small outside the shock layer and in the region of the rarefied wave; 3) when the dimensions of the region of motion are large in comparison with the thickness of the shock layer, Hugoniot's conditions must be satisfied.

Generally speaking, q can be a function of v, p, θ, E and their derivatives. We consider here the following expression for q :

$$
\begin{equation*}
\theta q=-0.5 v\left|v_{x}\right|^{k}\left(v_{x}-x\left|v_{x}\right|\right), \quad v=\text { const. } \tag{3}
\end{equation*}
$$

When $\mu=1, \kappa=0$ we have Neumann's viscosity [1], which does not satisfy the second of the requirements. When $\mu=1, \kappa=1$ we have a viscosity which satisfies the second of the requiremerts (see [2]). When $\mu=0$ we have a linear viscosity. We shall assume that $0 \leqslant \mu \leqslant 1$.
2. Let us find the spread of the front of the shock wave caused by the viscosity. In the zone of the shock wave $v_{x}<0$, and so $\theta_{q}=\nu\left|v_{\lambda}\right|^{1+\mu}$, $\kappa=1$. For our problem we have $\theta q=\nu D^{1+\mu}\left(\theta^{\circ}\right)^{1+\mu}$. We introduce the new function $\lambda(s)$ with the formula $\theta=0.5\left(\bar{\theta}_{1}+\bar{\theta}_{2}\right)+0.5 \times \Delta \theta \times \lambda(s)$ where $\Delta \theta=\bar{\theta}_{1}-\bar{\theta}_{2}$. If $\theta=\bar{\theta}_{1}$ then $\lambda(s)=1$, if $\theta=\bar{\theta}_{2}$ then $\lambda(s)=-1$.

Using (2) we easily find

$$
\begin{equation*}
\lambda^{\prime}(s)=a\left[1-\lambda^{2}(s)\right]^{\sigma}, \quad \sigma=\frac{1}{1+\mu}, \quad a=\left[0.5 \frac{\gamma+1}{v}(0.5 \cdot D \cdot \Delta \theta)^{1-\mu}\right]^{\sigma} . \tag{4}
\end{equation*}
$$

Let s_{2} denote the smallest s for which $\lambda(s)=1$, and let s_{1} denote the largest s for which $\lambda(s)=-1$. We shall call $L=s_{2}-s_{1}$ the width of the shock layer. Integrating (4) we find

$$
I=a L, \text { where } I=\int_{-1}^{1} \frac{d \lambda}{\left(1-\lambda^{2}\right)^{\sigma}}=\sqrt{\pi} \frac{\Gamma(1-\sigma)}{\Gamma\left(\frac{3}{2}-\sigma\right)} .
$$

When $\mu=1(\sigma=0.5)$ we have $L=2 \nu /(\gamma+)^{0.5} \pi$. If we put $\nu=\nu_{0} \times h^{1+\mu}$ and $L=n \times h$ where n is an integer, we obtain

$$
\begin{equation*}
v_{0}=05(\gamma+1)(0.5 \cdot D \cdot \Delta \theta)^{1-\mu} n^{1+\mu} I^{-1-\mu} . \tag{5}
\end{equation*}
$$

From this formula we can see that ν_{0} is independent of the force of the shock wave only when $\mu=1$. In this case we have

$$
\begin{equation*}
v_{0}=0.5(\gamma+1) \frac{n^{2}}{\pi^{2}} \tag{b}
\end{equation*}
$$

If $0<\mu \leqslant 1$, then L is finite. Further, if $\mu=0$, then $L=\infty$. In this case it is convenient to introduce the concept of the effective width of the shock layer.
3. Thus, let $\mu=0$. By the effective width L_{ϵ} of the shock layer we shall mean the difference $L_{\epsilon}=s_{2}-s_{1}$ where s_{1} is the largest s for which $\theta(s)-\bar{\theta}_{2}=0.5 \times \Delta \theta \times[1+\lambda(s)]=\epsilon \times \Delta \theta ; s_{2}$ is the smallest s for which $\theta(s)-\bar{\theta}_{1}=-0.5 \times \Delta \theta[1-\lambda(s)]=-\epsilon \Delta \theta$ where ϵ is given, $0<$ $\epsilon<1$. Then $a L_{\epsilon}=I_{\epsilon}=\int_{(1-2 \epsilon)}^{(1+2 \epsilon)}\left(1-\lambda^{2}\right)^{-1} d \lambda$ where $a=0.25 / \nu(\gamma+1) D \times \Delta \theta$. Writing $L_{\epsilon}=n \times h$ and $\nu=\nu_{0} h$ we find

$$
\begin{equation*}
v_{0} \simeq 0.25 \cdot(\tau+1) \cdot D \cdot \Delta \theta \cdot n \cdot \ln ^{-1}\left(\frac{1}{\varepsilon}\right) \tag{1}
\end{equation*}
$$

I.

1. To write down the difference equations of gas dynamics we select a rectangular space-time net with steps $\Delta x=h$ and $\Delta t=r$. We shall use the "cross" difference scheme, which can be written in the form

$$
\begin{gathered}
v_{i}^{j+1 / 2}-v_{i}^{j-1 / 2}=\gamma_{0}\left[(p+q)_{i-1 / 2}^{j}-(p+q)_{i+1 / 2}^{j}\right], \quad \gamma_{0}=\frac{\tau}{h}, \\
\theta_{i+1 / 2}^{j+1}-\theta_{i+1 / 2}^{j}=\gamma_{0}\left(v_{i}^{j+1 / 2}-v_{i}^{j+1 / 2}\right) \\
\text { (or } \left.h \cdot \theta_{i+1 / 2}^{j+1}=r_{i+1}^{j+1}-r_{i}^{j+1}, \quad r_{i}^{j+1}=r_{i}^{j}+\tau v_{i}^{j+1 / 2}\right), \\
L_{i+1 / 2}^{j+1}-E_{i+1 / 2}^{j}=0,5\left[\left(v_{i+1}^{j-1 / 2}\right)^{2}-\left(v_{i+1}^{j+1 / 2}\right)^{2}\right]+\gamma_{0}\left[(p+q)_{i-1 / 2}^{j} v_{i}^{j-1 / 2}-(p+q)_{i+1 / 2}^{j} v_{i+1}^{j-1 / 2}\right], \\
(\gamma-1) E .
\end{gathered}
$$

We shall not use fractional subscripts and indices below, but shall agree to let v_{i}^{j} refer to the point $\left(x_{i}, t_{j-1 / 2}\right), p_{i}^{j}, q_{i}^{j}, \theta_{i}^{j}, E_{i}^{j}$ to the point $\left(x_{i+1 / 2}, t_{j}\right)$ where $t_{j-1 / 2}=\tau \times(j-1 / 2), x_{i+1 / 2}=h(i+1 / 2)$.
2. Let us solve the problem of the motion of a stationary shock wave, which was considered in I, using the "cross" scheme. The progressive wave $u=f(x \pm D t)$ satisfies the equation $D u_{x} \pm u_{t}$.

By analogy with this we define the difference progressive waves using the relations

$$
u_{i}^{j+1}-u_{i}^{j}= \pm D \gamma_{0}\left(u_{i}^{j}-u_{i-1}^{j}\right)
$$

or

$$
u_{i}^{j+1}-u_{i}^{j}= \pm D \gamma_{0}\left(u_{i+1}^{j}-u_{i}^{j}\right) .
$$

We shall look for the solution of the difference equations (8) in the form of progressive waves, writing

$$
\begin{gathered}
v_{i}^{j+1}-v_{i}^{j}=-\gamma_{0} D\left(v_{i+1}^{j}-v_{i}^{j}\right), \quad \theta_{i}^{j+1}-\theta_{i}^{j}=-\gamma_{0} D\left(\theta_{i}^{j}-\theta_{i-1}^{j}\right) . \\
w_{i}^{i+1}-v_{i}^{j}=\gamma_{0} D\left(w_{i}^{j}-w_{i-1}^{j}\right),
\end{gathered}
$$

where

$$
w_{i}^{j}=E_{i}^{j}+0.5\left(v_{i+1}^{j}\right)^{2} .
$$

Using (8) and (9) we find

$$
\begin{equation*}
D \cdot v_{i+1}=P_{i}, \quad v_{i}=D\left(\bar{\theta}_{1}-\theta_{i-1}\right), \quad D w_{i}=P_{i} v_{i+1}=D v_{i+1}^{\mathbf{2}} \tag{10}
\end{equation*}
$$

(or $E_{i}=0.5 v_{i+1}^{2}$). The index is the same everywhere here, and so it has been omitted. Also $P_{i}=q_{i}=p_{i}$.

Using the Hugoniot condition, we find from (10)

$$
\begin{equation*}
q_{i} \theta_{i}=0.5(\gamma+1) D^{2}\left(\overline{\theta_{1}}-\theta_{i}\right)\left(\theta_{i}-\bar{\theta}_{2}\right) . \tag{11}
\end{equation*}
$$

From formula (3) with $\kappa=1$ and $\nu=\nu_{0} k^{1+\mu}$ we obtain

$$
\begin{equation*}
q_{i} \theta_{i}=0.5 v_{0}\left|v_{i+1}-v_{\varepsilon}\right|^{\mu}\left[\left|v_{i+1}-v_{i}\right|-\left(v_{i+1}-v_{i}\right)\right] . \tag{12}
\end{equation*}
$$

From (11) and (12) we obtain an equation for θ_{i} :

$$
\begin{equation*}
0.5(\gamma+1) D^{1-\mu}\left(\bar{\theta}_{1}-\theta_{i}\right)\left(\theta_{i}-\bar{\theta}_{2}\right)=v_{0}\left(\theta_{i}-\theta_{i-1}\right)^{1+\mu} \tag{13}
\end{equation*}
$$

We introduce the new unknown η_{i} from the formula $\theta_{i}-\bar{\theta}_{2}=\Delta \theta \times \eta_{i}$ ($\eta_{i}>0$) and obtain for it the equation

$$
\begin{equation*}
\eta_{i-1}=\eta_{i}-a \eta_{i}^{\sigma}\left(1-\eta_{i}\right), \tag{14}
\end{equation*}
$$

where $a=\left(1 / \nu_{0}\right)\left[0.5 \times(y+1)(D \times \Delta \theta)^{1-\mu}\right]^{\sigma}$. Clearly $\eta_{\infty}=1, \eta_{-\infty}=0$.
3. Let us consider a linear viscosity ($\mu=0, \sigma=1$). In this case equation (14) takes the form

$$
\begin{equation*}
\eta_{i-1}=\eta_{i}-a \eta_{i}\left(1-\eta_{i}\right) \tag{15}
\end{equation*}
$$

We shall look for a monotonic non-negative solution of this equation. It exists for any $0<a<1$. From the condition $a<1$ we find

$$
\begin{equation*}
\left.v_{0} \geqslant v_{0, c r}=0.5 ; \gamma+1\right) D \cdot \Delta \theta \tag{16}
\end{equation*}
$$

For Neumann's viscosity ($\mu=1, \sigma=0.5$) we have

$$
\begin{equation*}
\eta_{i-1}=\eta_{i}-a V \overline{\eta_{i}}\left(1-\eta_{i}\right) . \tag{17}
\end{equation*}
$$

Let $\eta_{i}>1-\varepsilon$ where ϵ is given, $0<\epsilon<0.5$. The least value of n for which $\eta_{i-n} \geqslant \epsilon$ is the effective width of the difference shock layer. L_{ϵ} Given ϵ it is easy to calculate L_{ϵ} for any a from formulae (15) and (17). The values of $L_{\epsilon} \cdot$ for $\epsilon=0.1$ and $\epsilon=0.05$ are given in the table.

Using a table such as this, it is easy to demonstrate the rules for selecting the coefficient of viscosity ν_{0}. Thus, we can find a_{n} for given ϵ and $L_{\epsilon}=n$ from the table. Clearly for all $a>a_{n^{2}}$. we obtain the effective width L_{ϵ} not exceeding the given y alue of n. Using this condition and the inequality (16) we find for a linear viscosity

$$
\begin{equation*}
\frac{r+1}{2} \cdot D \cdot \Delta \theta \leqslant v_{0} \leqslant \frac{\gamma+1}{2} \cdot D \cdot \Delta \theta \cdot \frac{1}{a_{n}} . \tag{18}
\end{equation*}
$$

For the Neumann viscosity we find

$$
\begin{equation*}
\frac{\gamma+1}{2(1-\varepsilon)} \varepsilon^{2} \leqslant v_{0} \leqslant \frac{\gamma+1}{2 a_{n}^{2}} \tag{19}
\end{equation*}
$$

The left-hand inequality of (19) is obtained from the requirement that η_{n-1} is non-negative, if $\eta_{n} \leqslant 1-\epsilon$. We note that then the width of the

${ }^{\mu}$	ε	a_{n}								
		0.2	0.4	0.6	0.8	1.0	1.5	2.0	3.0	4.0
0	0.1 0.05	22 29	11 15	8	6 7	5 6	-	-	-	-
1	0.1 0.05	16 21	9 11	7 8	5 6	4	3	3	${ }_{3}^{2}$	2

difference shock layer is infinite, although for the differential equation the width of the shock layer is finite. With the same plan we have looked at viscosity terms q of the form

$$
\begin{gathered}
q \theta=-0,5|v|\left(v_{x}-\left|v_{x}\right|\right) v \text { and } q \theta=-0,5 v\left(|v|+\beta_{0}\right)\left(v_{x}-\left|v_{x}\right|\right), \\
\beta_{0}>0(\text { small }) .
\end{gathered}
$$

4. We used the "cross" difference scheme with viscosity to compute the motion of a stationary shock wave, the decay of a discontinuity, and other cases. These problems were calculated with a linear viscosity and with a Neumann viscosity. It always proved to be possible to use 3 to 4 times as large a time step with a linear viscosity as with a Neumann viscosity. However, with a Neumann viscosity it was possible to have a smaller effective width of the shock layer. In a number of cases the numerical
solution was compared with the exact solution of the problem, and each time the computation with a linear viscosity gave very good accuracy.

REPERRKNCES

1. Neamann, J. and Richtnyer, M. A method for the numerical calculations of hydrodynamical shocks. J. Appl. Phys., 21: No. 1, 232, 1950.
2. Brode, H. L., Nunerical solutions of spherical blast waves. J. Appl. Phys., 26: No. 6, 766, 1955.

[^0]: - Zh. vych. met. 1: No. 2, 357-360, 1961. This work was the gubject of a report to the All-Union Conference on Compatation Mathenatics and Computation Techniques in 1959.

