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THE present study arose in connection with an investigation of the convergence and
accuracy of homogeneous difference through-computation schemes (see [1]) for
the solution of non-linear and quasi-linear equations of the parabolic and hyper-
bolic types:
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in a bounded domain D = (0 < x < 1,0 < ¢ < T)in the case when the coefficients
k(x,t,u) and k(x, ) are discontinuous functions of (x,r) (see [2]).

Let u = u(x, £) be a solution of the equation L.y = 0 (s = 1, 2, 3) with certain
initial data at t= 0 and boundary conditions (generally speaking, non-linear)
for x=0, x= 1, whilst y is a solution of the corresponding difference problem.
The function z = y—u is 2 measure of the accuracy of the difference method. It
satisfies (given corresponding assumptions regarding f and k(x, ¢, u)) a non-homo-
geneous linear difference equation P z={(s=1, 2, 3), the right-hand side of which
is the error of the approximation of the difference scheme in the solution of the
differential equation .2,u = 0. The boundary conditions of the 1st kind (u(0, ?)
= u,(t), u(l, t) = uy(t)) are approximated accurately on the difference net. But
if we take boundary conditions of the 2nd or 3rd kind or even of a more general
type, as for instance (in the case of equation (1))

3}
k au C] 6 +Glu ul(t) for x =1, (4)
) du
—k az = Cp e 5 + ou—u, (1) for x =0, ®)]

a difference analogue of these conditions is obtained for y of the same order of
approximation as the difference scheme (see {3]). It must be mentioned here that
simple substitution in (4) and (5) of the derivatives by difference quotients yields
difference boundary conditions of the first order of approximation.
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A priori estimates for difference equations 1139

As a result we obtain for the function z non-homogeneous boundary conditions,
analogous in form to (4) and (5), with right-hand sides v, and v,.

The proof of convergence requires a uniform estimation of z in terms of ¢,
v, and vy (@ priori estimate).

In the case of discontinuous coefficients the position is complicated by the fact
that, as the steps of the net tend to zero, ¢ does not in general tend to zero close
to points of discontinuity of the coefficient k. Hence estimation of ¢/, maximally
or in the mean, is insufficient for a proof of convergence. It had already been neces-
sary in this connection to introduce the special norm || |; when investigating the
convergence of homogeneous schemes (see [1]) for the elementary stationary equation
of heat conduction:

d

Lk a f,)u ——
dx

[k(x) %]—q(x)uﬂ(x) 0. ©)

We obtained in [4] a priori estimates, suitable for proving the convergence of
difference schemes (for equation (1)) both in the case of fixed discontinuities of
k(x, 1) (for x = const.), and in the case of mobile discontinuities on a finite number
of curves x = m,(f),m=1,2,...,m,. These estimates were utilized in [5] to
investigating the convergence and accuracy of straight-through computation schemes
for the linear equation of heat conduction with boundary conditions of the Ist
kind and a particular class of discontinuous coefficients.

Since the framework of one article does not permit a description to be given
of the difference methods of solution of equations (1)-(3), and a statement and
proof of the corresponding convergence theorems in the different classes of coef-
ficients, we have been compelled to offer a separate treatment of the mathematical
equipment enabling an estimate to be made of the error z = y—u. This is the aim
of the present article. The a priori estimates obtained also allow the question of
stability for given initial data and right-hand sides to be elucidated. It may
be remarked that, for parabolic equations of the second order (and boundary
conditions of the Ist kind), stability with respect to the right-hand side is sufficient
for convergence. A separate treatment will be given of the theorems on convergence
and accuracy of straight-through computation difference schemes of equations
(1), (2) and (3) with boundary conditions of an extremely general type.

Our q priori estimates are obtained by using the method of integral (“energy”)
inequalities, which has become popular in the theory of differential equations, as
also the method of distinguishing the “stationary” non-homogeneities, for which
specially accurate estimates are obtained, since Green’s difference function is nsed
in their formation. We pay special attention here to the choice of norm for the
estimate of the right-hand side and to weakening of the requirements imposed on
the equation coefficients.

Certain elementary inequalities (for instance (2.21)) have appeared in works
by other authors (see [6], [7], [8]); however, they were obtained for difference schemes
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of a particular kind and for a much narrower class of coefficients and boundary
conditions of the first kind, and this made them unsuitable for our purposes.

Let us summarize the main features of the article. The introduction covers special
notation and some auxiliary relations (Green’s difference formulae, inequalities
etc.) used in what follows.

In § 1, which is in essence a continuation of [1], we consider difference boundary
problems for the stationary equation of heat conduction (6), for systems of equations,
and for the fourth order equation

2 2
S e %xi‘—]— re & |t aou=re

in the case of discontinuous k(x). The estimates obtained in § 1, are utilized in §§ 2,
3 and 4 to make the estimate more precise in the case of an awkward right-hand
side ¢.

Notice that an analogue of Theorem 5 holds for the case of certain spatial vari-
ables. We do not quote here the corresponding estimates.

In § 2, we give more precision to the results of [4] and deduce new estimates.
In particular, estimates are obtained for systems of equations of the parabolic
type.

In § 3 a number of a priori estimates is obtained for nine- and seven-point difference
schemes, corresponding to (2). The simplest of them (3.18) was obtained in [9]
with the auxiliary condition |a;] << M in the case smooth coefficients for the implicit
scheme (x, = 1) and boundary conditions of the 1st kind.

Problems are investigated in § 4 for the difference analogue of a fourth order
equation of the parabolic type.

Estimates of the same type as for difference equations hold for differential-
difference equations obtained by Rothe’s method and the method of straight lines.

All the results of §§ 1, 2 and 3 were obtained for non-uniform nets. However,
the proofs are given for uniform nets for the sake of simplifying the treatment.

The numbering of the formulae is individual to each section. Double numbering
is used to refer to a formula from another section (for instance, (B. 22) means formula
(22) of the Introduction, (2.7) is formula (7) of § 2, and so on).

INTRODUCTION

1. The difference net and net functions. We take a domain D= (0 << x <1,
0 << T). We write Q for the difference net in D, i.e. the set of points (x;, t;),
where x;=ih,i=0,1,2,...,N,h=1/N; t;=jr,j=0,1,2,...,L, 1= T/L.

Let Q, be the set of interior points (x;, #;) of the net , for which 1 <i<N—I1,
1 <j<L,Q, the set of points (x;, £;), where 1 <i<KN—1,2 <j<L,Q; the
set of points (x;,¢;), where 2 <i < N—2,2<j< L.

We agree to write net functions without net indices, i.e. instead of zj we simply
write z or z(x, ¢), whilst also omitting the dependence of z on the steps £ and =
of the net.
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We simplify the writing by introducing the notation (see [4]):

v
A T
2V =z 2V =2z [ F=z2=7""

z—z z—z(-V PASE R

pa
Lzz= 2l g = B T e =0-5(z 2

h

We now have
1
Iz (@141 (Ziv1—2)—ai(zi—zi1)] = (azz),
2. Sums and norms. We introduce the following notation for sums [4]:

N-—-1 N—1 N N
(9 9) = :; ok, [0, §) = i;) o, (9, 4] = ,-;1 oilih, lo, V) :i:‘:o euih,

where ¢; and {; are any net functions.
Use is made below of the norms:

Iolo=max [4],  I4le= (b D™ m-12, (1)
OV

[l =lnls 7@ = X A, (e =i, @

19h= 1l D 1l =T llsH] G 1] ©)

When estimating the solutions of difference equations with right-hand side ¢ and
non-homogeneous boundary conditions, use is made of the norms

Bl =N llatfvel+]vals,  Ndlse =1 llaet]ve[+]va], “
where v; = v;(f), and v, = v,(¢) are the right-hand sides of the boundary conditions

when x=0 and x= 1.
Moreover, we shall write

1 1

Iyl =0%1F=D% D=1l OF=0 (%)

When investigating (in §§ 1 and 4) the fourth order difference operator (ayz,.)z:,
we also encounter the sums

N=-2 N-2 N—1
«cp,qo):i;z bk, (s ¢))=i=21 obih, (9 4»):; oiih. (6)

If ¢ is a function defined on the net Q or on part of it Q (s =1, 2, 3), the norm
1Y [l is a net function depending only on ¢ and defined on the net w.= {¢;,j=0,1,
2, ..., L} or on part of it. We shall write

Gl = max 196D m  m=1,2,3,4,5,3% 4%, 5*. )

Sums often encountered later are

Sl = Y sl = X clbnE, s=o12  (®)

57

J =5 ]I =s t'=st
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If ¢ = (J*(x, 1)) is a net vector function, then
[ 1
II¢Ilo=1231X]/;(¢")2 ) Il¢llm=¥(l¢"l’”, Iy, m=1,2, ®

and so on.

3. Non-uniform nets. Suppose now that the net Q= {x;,#,0<j<N,
0 < j< L} is non-uniform, i.e. its steps #; = x;—x;— and 7; = t;—¢;-, vary from
one point to the next.

We shall assume throughout that the steps 4; of the net «, = {x;,0 < i< N}
satisfy the condition

0<% < hih:l <%, (10

where %, and x; are constants, independent both of i and N.
A system of notation without indices is also used on a non-uniform net.
We shall write

_z—z,  z—ztD T ey B .
2y = = s Ix=Zx T, Zf = =
hi h T T
In addition, the difference ratios are brought in:
2(+0_ 7 z—%

i =5 g =

-’E ’
where
h = hl e O’S(hi+h,’+1), ‘-F_, = 0'5(7j+7j—l)°

It should be borne in mind here that z;3 # z3;.

The difference operator of the form (azz), on a uniform net is replaced on
a non-uniform net by the operator (az;) 3, whilst the operator Z;; is taken instead
of z;;. In addition to the sums

N N
(o §) = ,lepicpihi, (o 9] = ;Zlopmh.- etc. (11)
use is made of the sums
N-1
@ P*= Soln et (12)
i=1

In this case, as well as the norms || ||, (m = 1, 2, 3), defined by analogy with
(1), we shall make use of the norms

112 = (9" D% mo12, (13)

1915 =lnl,  n) =X ;b(x')h(x')- (14)

We define similarly || ||%, m = 3%, 4, 5, 5*,
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4. Some elementary inequalities. The mathematical apparatus that we use below
consists of Green’s difference formulae and certain elementary inequalities.

Let us enumerate first the following inequalities [11]:

1) The Cauchy-Bunyakovskii and Holder inequalities:

|G, | <llylalzll,

10,2 | <[y P, DM ([y]?, 1)+ 1/p+1/g=1,p> 0,4 > 0;
2) [yz| < y*[4c+cz?, (15)
where ¢ is an arbitrary positive constant;
3) (Em) <nym (16)
s=1 s=1
4) I ms <3 vam,, ms>0,v5>0,) vy =1, 17
s=1 s=1 s=1

LemMMA 1. Let E(t) and f(t) be two non-negative net functions, E(t) being defined
on the net {t; =jr,j=s,5+1,...,L; s=0,1}, and f(t) on the net {t; = jr,
j=s+1l,542,..,L; s=0, 1}. If

E(t) <A4+M)(E@—)+f(2)), (18)
then
E(f) < M [E(s7)+ r=§+m S (19)

For we obtain, on successively applying inequality (18):

j—s—1

E@) < ¢E(s7)+ k}jo g f(t—kt)yr, gq=14+Mc  (t=jo).

Inequality (19) follows from this.

A similar inequality is obtained for the function E(r), satisfying E(¢) < (1+M=)
[E(t—27)+<f()]. In this case we introduce the function E,(f) = E(f)-+E(t—=),
for which inequality (18) holds.

5. Green’s difference formulae. By using the obvious formulae for summation
by parts:

(y’ Z;) = _[z9yx)+yNzN——1_yOZO Yo=Y(O0),¥yn = y(l))y (20)
(y’ Z,) = _(Z,J’}]-I-YNZN—ZJ«), (21)

we can readily obtain Green’s formulae:
1) Green’s first difference formula

0, (az3)x) = — (@, yzz:1+ (@yzz)v—a(V2)o; (22)
2) Green’s second difference formula
(,V, (az.;)x) - (Z, (ay;)x) = aN(yZE _Zy.;)N —al(yzx —J’xz)o- (23)

Green’s formulae become on a non-uniform net:
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(0, (az2)2)* = — (@, yzzzl+-(ayzz)n— au(y2)o, (24)
O, (@z2)3)*— (2, (ay2)3)* = an(yzz—zy)n—ay(yz,— y:2)o- (25)

We now consider the fourth order difference operator (ay;,);, and show that
the following Green’s difference formula holds for it:

(9 (az22)7)) = (@, yzx2z) + Y0 (@ P233)5 —a Dzl — (26)
_[y(+1) (a(+1)Zxx)x'—a(+1)yxzxx]0-
We make use of Green’s second difference formula for the operator wz, in the do-
main h << x < Xy = 1—h:

(02 Wix)) = ((Yzxs w))+ (yW£-y§W)N-1 —(yw, _yxw)l'

By taking into account the identity y; = y,—hyy,, we transform this to the
form
(7, %2) = (oW H(YTOWED =y )y —(YEDWE D —w Dy, (267)
Hence (26) follows, after substituting w = azz,.
On interchanging the roles of y and z in (26) and subtracting the resulting iden-
tity from (26), we get Green’s second formula for the fourth order difference operator.

We shall not write it down.
If, for instance, the following conditions are fulfilled:

y=yx=Z=Zx=0 for x = x, = 0; y=yx=z=zx=0 for x=xy=1
or
Y =2 = (a(+1)yxx) = (a(+1) Zxx)x =0 for x =0,
¥iz=zzz = (@ Vy:dz = (@ Vzz)z = for x = I;

all the substitutions vanish and Green’s formulae become

((y, (az;:x);x)) = (a’y:_cx Z;x)’ ((y, (az;x);x)) = ((Za (ay;x);x))' (27)
In particular, we have with y = z:
((Z, (az;x);x)) = (d, Z%x)'
We shall conclude this section by mentioning one point in connection with the
notation. All constants, independent of the net, will be denoted by the letter M;

their structure and connection with the initial constants will often be ignored, since
the connection can easily be ascertained from the exposition.

§ 1. STATIONARY PROBLEMS
An a priori estimate of the form
(awg)x—dw = —¢, wy=wy=20.
was obtained in {1] for the solution of the first boundary problem
lwllo < MY lIs*

Estimates for w, wgz and w; are obtained by similar methods in this section (for
the case when the coefficients of the equation depend on ¢) for the third boundary
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problem, together with estimates of the solutions of the fourth order equation
(awz, )z, = ¥ and of a system of second order equations.

1. Green’s difference function. We consider on the net o, = {x; = ih; 0 <i < N}
the difference boundary problem

Liw = (awz),—dw = —{ (x=2x;, 0<i<N), ¢))
Wy = O Wo—V, —AanWz, N = CaWy—Vs, (2)

the coefficients of which satisfy the conditions
a>=My>0,d>0,0,>0,06,>0, 06,+0, =M, >0, 3

where My, M, are constants independent of A.

Our aim is to estimate [w|l, and [[wzl,(m = 1, 2). We do this by using Green’s
difference function G(x, &) of problem (1)-(3) (as usual, we give no indication of
the dependence of G on h). The function G(x, £) is defined by the conditions

8 s 0’ X = E’
(a0)Gse, ) —d0)G(x B = — 20 aes ) - { e @
a(h)G4(0,8) = 6,G(0,5), —a(1)Gx(1,8) = 6,G(1, £) (5)
and can be written in the form
GEu8) = olBE)  prx<t  GED=geu@B® x>y o
where
A =const. > M >0 @)
(see (12)), whilst a(x) and B(x) are found from the conditions
Lo =0, o, o =1, 10,0 = C1% 5 (3)
LhB = 0, aNB;, N = _1’ '—aNp;, N — G2BN'
If d = 0, we have
X =x x'=1
1 h h 1
OL(X) = G_] -+ x,Z:h 2 x,) . ﬁ(X) = x';h ——a(x,) + 0__2 )
A = a(x)+B(x) = const. 9)

If 6, =0, we put aya,, =0, «(0) = 1.
We can prove, by analogy with [1]:

LemMA 2. If G(x, &) is Green’s function of problem (1)-(3), we have
[Glo<M, lGzlb<M, |lGElhb<M.
LeMMA 3. The following relations hold:
|G(x5)|<M for x #E, h|Gz(x,x)| < M.
We find, in fact, by making use of (6), that



1146 A. A, SAMARSKI
Gelr, D= 5o BO  for <k GH=x BE@e® for x>,
G(x,8) = % az(x) B (€) for x <&,

Gxe(x,8) = —i— Bx(x) g (8) for x > £.

It follows from this, since «; and P; are bounded, that G is bounded. If, for in-
stance, d = 0, then

Gze(x%, X) =— 7‘117)-1-4;(?6)[3;()6)/ A.
On putting y = w, z= G in Green’s second formula (B. 23), we obtain the
following form for the solution of problem (1)-(3):
w(x) = (G(x, &), Y(§))+G(x 0)v;+G(x, 1)v,. (10)
2. Estimates of w and wz. We now make use of (10) and Lemmas 2 and 3 to

estimate the solution of problem (1)-(3).
THEOREM 1. If w is a solution of problem (1)-(3), we have

wle < Mldllses  llwzly < Ml $llses 11)
[We,ol <Mldllse, Wz | < Ml 12)
We introduce the function 7(x) with the supplementary conditions

=19, me=0 )= Zhh«l»(x’)- (13)
X' =
Formula (B. 20) for summation by parts gives

(G, 4‘) = (G(xa E)’ Y‘E(E_,)) = (GE’ 7])+ G(x’ 1) NN-1-

Hence it follows from (10), by virtue of Lemma 3, that | w |, < M| ¢ |ls«. We now
consider

wx = (G;’ '\b)_\LG;(x’ 0) v+ G;(xa 1)V2' (14)
On taking (13) into account, we find that
(Ga_c’ ¢) = (G§E9 n)+G;(xs 1)711\/—1' (15)

On using the inequality

x'=1
Gy <X (G ) Y + Gl )¢ — ),

where the dashes indicate that the sum of the (G3z, 7)’ is taken for £ x'—#, to-
gether with Lemma 3, we find

NG < Mlnly= M| ¢l
Hence it follows, from (14), (15), that |w;]; < M|/ |[s.
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LemMA 4. If w is the solution of problem (1)-(3), we have
wzlle < M 5. (16)

The proof follows from (15) and Lemma 3. However, we shall use a different
method of proof, characteristic of the discussion that follows and making no use
of Green’s function. We multiply (1) by wh, sum over the net x = h, 24, ..., (N—Dh
and make use of (B. 22):

(a, wil+-(d, W) —anwywz, -+ aWoWy o = (§, W)
or, if (2) is applied,

I+ (d3 w2) = (‘p) W) + V1W0+ VaWy,
where
I = (a, wil+o,wi=ow5.

We introduce a function n(x) with the aid of conditions (13):
W, 9) = —(wz, D+ wynn--
On using Bunyakovskii’s inequality, together with the inequality
wt < MI (16a)
(see [4]), Lemma 1*), we have

[z | <Uwzlllnle < MYTIYle, I+ WD <MYl YT< MI$IE.

Inequality (16) follows from this, in view of (3).
We shall adduce an example, showing that {|{ ||,. gives a more exact estimate

for an awkward ¢ function by comparison with ||{/|l;, not to mention |/{],. We
assume that

1
VI:‘VZEO’ ‘-IJ = "L’i=(8i.n+1_8i,n)7‘;{ (m=20,1).

We now have:

il =—]7'/i;, Ils=1¢ls=Vh, lI¢le=Iblow=4r for m=0,

10l =V2Vh, 19la=h% [{le=H for m=1,

The advantage is clear from this of estimates obtained with the aid of Green’s
function, as compared with estimates obtained by the method of integral inequalities.
This advantage tells in the case of poor ¢ functions. Notice that the estimate [jw |}y <
< M|y is obtained instead of |wll, < M| |;» by the method of integral ine-
qualities that we used in the proof of Lemma 4.

3. Estimate of w,. Suppose now that the functions a, ¢, d, and hence w, depend
on ¢ and are defined on the net Q, or more precisely, a = a(x,f), 0<x < 1,
0<t<T, ¢=14Y(x,0), 0<x<1, 0t T, whilst the functions o,(f); v(¢)
(s=1,2) are given on the net oI = {t; =j7, 0 <j < L}
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We also assume that a, o, d satisfy Lipschitz conditions with respect to ¢, so
that

lag| <M, |d&|<M, |Gi<M s5=1,2, (7
one of the following cases being realized:
o, <M or o¢;= 0o, (18)

If, for instance, 5; = oo, we obtain with x = 0 the homogeneous boundary con-
dition of the st kind wy,= 0.
LemMa 5. If conditions (1)-(3), (17) and (18) are fulfilled, we have

lwello < M (I llse+ 1l b llse), (19)
Iwzilh <M (1 llse+ 1 i llse), (20)

| gz llse = 117 llao 1 var |+ var |-
If, for instance, the condition w,= 0 is given at x = 0, we have to put formally
v;(® = 0 in (19) and (20).
On introducing the function £ = w;, we obtain for it the equations
(@G)s—dl =—[; +([@We—diWl ==,  aly,0 =080y,

—“aNC;,N = Gch—Vz,

where

where
—_ _ - \d v - - _ \d \4—
Vi = V57— Gy WoT 7,1 Wx, 05 Vg == Vg — Ot WN—Q;, NWx,N-

The conditions of Theorem 1 are fulfilled, so that
0o < MUGlse, [ §lsn == | @ llest %]+ V2]
By Theorem 1 and conditions (17):
Vsl <vgl+Ml[blls,  s=1,2.

On now observing that
=X
- (+1) ~ M
Zhh(a;W;)" = a4y Wx—0;1Wx,0»
x'=

and taking into account inequalities (12) of Theorem 1, we obtain (19).
Lemma 5 for the first boundary problem was utilized in [5] to prove the con-
vergence of homogeneous difference schemes for the linear equation of heat conduc-
tion with discontinuous coefficients.
We can similarly prove

LEMMA 6. If the conditions of Lemma 5 are satisfied, and in addition,

ol <M, |ag|<M, |di|<M,
then
wiillo < M {1 lso+ 1| i llse 1l i llss ) » (21)
where
ll iz llse = Il Grzant| vaiz |+ | vaii |- (22)

Account must be taken here of inequality (20).
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All the results of Sections 1-3 retain their force for the solution of the boundary
problem
(awz);—d-w=—{ (23)
with conditions (2) and (3), defined on the non-uniform net
o, ={x;,0<i<N}.
Here, instead of ||{ |5« and ||¢|l;, we have to write in all the estimates the norms
bl and (¢,
defined in accordance with formulae (B. 13) and (B. 14).

4. System of second order equations. We now consider the general case of a differ-
ence boundary problem for a system of the second order:

(awa_cx)_d W= — q"s (24)
w0)=0, wi)=0, ©5)

wherea = (a;;) andd = (d;;) are matrices, i,j=1,2, ...,r; = ({)), w= (W) (j
=1,2,...,r)are vectors.}
We shall suppose that

;aijgiij>@§:¥, >0,

DdtEi >y 28, >0,
L J

(26)

where {£;} are any real numbers, § and y are real constants, not dependent on the
net.

We shall confine ourselves for simplicity to the first boundary problem, although
all the results will also hold for the boundary problem of the 3rd kind, analogous
to problem (1)-(3) for a single equation.

We form the scalar product of (24) with the vector function wk and sum over
the net from x = 4 to x = 1—A. On making use of the formula for summation
by parts (B. 20), we get Green’s formula

2 {(@wh wil+ (dwd, wh) = 3 W, 3, @7
or " t
(aws, wil+ (dw, w) = w,¢). @7)
On taking (26) into account, we have |
Bllwzl+y lIwlE < (w, ). (28)

On observing that [w] < |l wxlly, |(W, $)| <lwzllldlly, we get the first estimate:
1
llwlly < T Iz, (29)

t The employment of the convenient indices / and j can hardly lead to misunderstand-
ing, since we have agreed not to use them as net indices.
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We now bring in the vector function n= {#/(x)}, j=1,2,...,r, with the
aid of the conditions n, = ¢, n(0) = 0, so that

x—h
(%) = 2 h(x),
and we use the formula for summation by parts (B. 21)
($,w) == ;(W’, ) = (w,n) =—(wz,ml

and Bunyakovskii’s inequality

[, W[ <llwzllalills  Unlla=IPll).
Returning to (28), we find that

1
BllwzlE < llwsllzlllls and |lwzll, < glltlalla-
We have now proved
THEOREM 2. If w is the solution of problem (24)-(26), we have

wlo < % 1o, (30)

wslls < % 1. (31)

The proof is similar for
LemMMA 7. If the conditions
[l <M, |@)l<M (=12,..,1,
are satisfied then the following inequalities hold:
Iwello < M (1 lls+11 Pz lla), (32)
lwzillo < M (Il lla+1l¢hz lla)- (33)

Lemma 7 is useful in forming a priori estimates for systems of non-stationary
equations.

5. Fourth order equations. We consider the following boundary problem for
a fourth order equation:

(@Ws)zx—(@ws),+d-w=1 on the net {x;=ih 2<i<<N-2}, (34

Wo=Ws0=0, wy=wzy=0, (33)
a=M>0, b=0, d=0. (36)

THEOREM 3. If w is a solution of problem (34)-(36), we have
Iwlo < M4l lwslo< MUYl Twscla <Ml 37)

where ||y = ((n,n))§= Imlly, whilst n(x) is the solution of the problem
Tax=¢, M=0, 7451=0. (3%)
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On putting y = z=w in Green’s formula (B. 26), we obtain

(@, Wa)+ (B, W) +((d, W) = (Y, W). (39)
In view of conditions (35), formula (B. 26") gives
((q)’ W)) = ((7];::’ W)) = (7]9 w;x)'i'wN—ln;,N—l_Tl;,Nw;,N = (7]’ w;x)
On next taking into account the relations (see [4])
hwlle < llwzlle < llwmxlles [ COnws) | < il I lle
we obtain inequalities (37) from (38).
If the conditions wx, = 0, (a"Pwy);, = 0 are given for x = 1, we have
Iwllo < Mgl Ndlle=ldls+] (g, DI- (40)

An analogue of Lemma 6 holds for the solution of problem (34)-(36).
It is not possible for us to dwell here on a priori estimates for solutions of
equation (34) with boundary conditions of a higher order of accuracy.

§ 2. EQUATIONS OF THE PARABOLIC TYPE

1. The initial problem. We take the following problem in the domain Q for an
equation which is the difference analogue of a linear differential equation of the
parabolic type:

Pz =pz; —(az7)P’—Q(z2)=¢ on Q, 0))
(@D 2) = Ey(N)zi +(0:(1)2) ™ —v,(2) for x =0, t=1,2%,.,Lt=T,
—(az7)® = Co(t)zi +(02(1)2)® —vy(2) for x =1, t=72t,..,Lt=T,
2% = z(x, 0) = ¢(x), for t =0,
2

where the index « denotes summation over the rows ¢ and 7z—+ of the net with
weighting factors o, and «,:

) = 04,0, 4, >0, 2, >0, 2y oty = 1,
0(z) = (bIZ*)x+(b2zv*)x+blzx‘+b2‘zx‘+dlz +d.%, 3
z*=0-5(z+2z¢1), Zpe = 0-5(zz+2z,).
Throughout what follows we apply the conditions
>M,>0, p>=M>0, >0, 6,20, oy+0>M, >0,
16| < My, |by| <M, |d|<M, s=1,2 @
which we include in the set-up of problem (1)-(4).
All the results obtained in this section also hold for the first boundary problem
(zo=2zy = 0).

2. A priori estimates when the coefficient a is “differentiable” with respect to
t(la;] < M). Problem (1)-(4) was considered in a somewhat less general statement
in [4]. We shall therefore start with a description of the results of [4], which may be
summarized as three theorems.
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THEOREM 3. If the conditions are fulfilled: 0-5 << o, < 1,9 = 0,

la;| < My, |(B)e| < My, |05i| < M5V a0, s=1,2), %)

the solution of problem (1)-(4) is subject to the estimate, for sufficiently small

T T
t'=t

lzlo<M[ Z w9, BT, (6)
where
T90e = Il |va |/ V E +|ve] VEs ©)

In the case of the first boundary problem (zo= 0, zy = 0), (¥, appears in
(6) instead of || |,.
The constant t, depends only on M(s=0,1, ..., 5).

THEOREM 4. If conditions (5) are fulfilled, 0-5 << oy < 1, and ¢ =0, we have
Jor v < Ty
IV a(x, 1) 2z lla 4V 01() | 20| +V 02t} | 2n] < ®)
<M1V a(x,0) ¢31+V510) |9(0) [+ 5:0)  p(L) 1)
If, in addition, a < M3, 0 < 6, < My, 5= 1,2, we have

Iz lle+1 2z 1l < Ml lla+ll 93 1), ®
where L
lzlla =z lla+|2(0, ) [+] (1, £) |. (10)
Inequality (9) also holds for the first boundary problem, if H_z—ﬁ2 is replaced by
l1z llp.

A proof of Theorems 3 and 4 is contained in [4]. We shall give the proofin a short-
ened and somewhat modified form, convenient for passage to a system of equa-
tions. We confine ourselves to the proof of Theorem 3.

We multiply equation (1) by Atz; and sum over the net {x; 1 < N-1}.
On making use of Green’s formula (B. 22) and boundary conditions (2), we obtain
o, A+l = wl++(¥, ) +R, ¥ =¢+00), (11)
I=(a, 2?2:]+G1Z§+52212Va les Ztg] = (P, th)‘i‘ (flztg,o‘i‘ (fzz%,N s (12)
= (‘xla_ (1 —“l)aa Z;E;]+(“lcl_ aZéL)ZOE_'_ (13)

+ (02— azéz)ZNEN +-TV12;, 0 TVaZi Ne
In order to transform the expression
R, = (ma—oyd, zz25] = oy —1)(a, 25251+ auv(as, 2525
we make use of the identities
azzzz; = azi—razzzy, (14)

azzz; = azit-tazzizz +taizd = ari4-razzzyi— viazk - aizk. (15)
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1t follows from this that
2oy — Dazz7z = (,—0- 5) {(az2+ 322 —2az; -+ 1a;72).

On similarly transforming the second and third terms in (13) and substituting
the results obtained in (11), we obtain the fundamental identity

o 22140 ST+ (2,—0+ 5) (@, 1+ 0,28 o+ 0222 e = (16)
=0- 51+(“1_0 5)7{(0", )+°'1t22+°'2t21v}+(1 “1)7{(‘1::2:: x]+°'1tzozo+
+52rZNZN}+ T{(\F, Z7)Fvizs, 0 Verr, N}'

We estimate the expressions in the curly brackets on the right-hand side of (16)
by using conditions (4), (5) and inequality (B. 15). We note here the inequality

Vo | =V +0 [ (Vs +VE) | <Vo +MsVo5 [ (s +1/8) <A+Mg))/s .

As a result, we arrive at the integral inequality

2(p, 28)+1 < (1 M) {I+ [T B} for = < o = Toats. (17
We can readily obtain, by using (4), (5) and (1.16a):
¥, < 11+ MI+MI, (18)
where
M = M1 by, o+ b1 o+ 11)- (19)

We can therefore write
(o, 2+ I < (L + MY T+~191) for © < 1 = oty (14+MM). (20)

It is clear from this that, when b, = b, = d = 0, the previous condition T <
< 7o/ holds, where 7, depends only on M, My, M, and M, and vanishes for
a; =0, 6g=0.

We obtain (6) by solving inequality (20) and taking (1.16a) into account. The
proof of Theorem 4 makes use of (20), where we must write [[J [, = 0 and take
into account the initial condition z(x, 0) = ¢(x).

REMARKS.

1) The condition © < 1, is lifted if b, = b, =d, =0, a; = 65; = 697 = 0 or
by=b,=d;, =0 and ay=0 (a; = 1).

2) Only Theorem 3 is used in the proof of convergence. It is not required in
the proof of this that the coefficient a(x, ) be bounded from above.

3) If the conditions of Theorem 4 are fulfilled, we have

t'=t

lzlly < M{[ Z TG, YR + ezl + | 90 + [ o(D) |} 1)

4) Inequality (21) is obtained in [8] and [9] for the first boundary problem
with «; = 1 and the subsidiary assumption |a,| < M, which makes it unsuitable
for our purposes, since it excludes the possibility of fixed discontinuities of the
coefficient of heat conduction.
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5) Inequality (9) expresses the stability of the solution of problem (1)-(4) with
respect to the initial data in the sense of the norm |z|j;+ [izz!l; (cf. [8]).

6) Theorems 3, 4, as also Theorems 5 and 6 below, retain their force in the
case of the more general boundary condition

@*2)® = €z +(oz+hGz+ bz, )P —v;  for x =0,
where |§,| < M, |n;] < M, and of the analogous condition with x = 1.
3. A priori estimates when the coefficients a, by and b, are bounded. Special difficul-
ties appear when estimating the solution of problem (1)-(4) in the case when con-
ditions (5) are not fulfilled and the coefficients a, b, and b, are merely bounded.

We have succeeded in obtaining an effective a priori estimate only for the case
o, = 1. We shall state the corresponding theorem, proved in [4], for the case ¢ = 0.

THEOREM 5. If oy, = 1, and
lerl <M, |&x|<ME,  s=1,2, (22)

the solution of problem (1)-(4) is subject to the inequalities, for sufficiently small
T < Tt

t!h =t

[1, z7] <M(p)[2111<p(x t)H] (23)

t'=t t'=t

(Z =li=tx ) P)F < ME)[E < 96, ) ], (4)

1
?

where p=2",n>1 is any integer, M(p)= M(n) = M]/nZ"ean" o= M+
+ ||b1 llo/n - 2") is independent of n only when b, = 0.

The proof of Theorem 5 makes use of a difference equation for the function
z2* and the integral inequality obtained for this equation in [4].

4. An improved a priori estimate for a six-point equation. We consider the fol-
lowing problem:

pzi —(azx) = ¥'®, (25)
(@4V2,)0 = &7 +(6:2) P —v, for x =0,
_(az;)(a) = 62z;+(czz)(°‘)—v2(°‘) for x =1, (26)
2(x, 0)=0,
where
¥ = 0(2)+ ¢, 0(z2) = bzz+b“*Vz, 4 dz. 1))

The coefficients of the problem satisfy the conditions:

O<M,<a< M, M>p>M >0, |b<M, cs>0,} -8
0'1+°'2>M>0,|atl\ ’ O',,’<M]/O‘s&s, 0<é <M (s=1,2), 28)

where one of the cases holds:

0 <o, <M or 6,— oo (boundary condition of the first kind). (29)
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THEOREM 6, If z(x, t) is a solution of problem (25)-(29) and 0-5 <o, < 1, we
have for sufficiently small ~ < 74t

2]l < M{|| 4%, 1) [lss+ || $(x, 0)|| s+

+[VZ=;(H¢(x, Ole+ldr & ORN+HMLE e DS 6o

where M =0 for b= 0.

We write z as the sum z = v+w, where w is the solution of problem (1.1)-(1.4)
for d = 0, and v is defined from the conditions:

por—(avy)P = Q(v)—[ewi — Q¥ (W)],

(@ V) = 8v;+(6,0) P+ Ewr for x =0,
—(@v)® = Ev; +(6,0)P 4 Ewy for x =1,
o(x, 0) = —w(x, 0).

@1

By Theorem 1 and Lemma 5:
[wilo < MI[$lsss [zl < M| ¢llser [[wrllo < M(| b7 flsat | bllse). (32

On now using Lemma 4, we find that

100 lls < M || wz |la+M [ wlls < M| b {is+M| ¢ [se. (33)

We make use of inequality (21) for estimating the solution of problem (31).
The norm

[1owi = Q900 [le+V Ex [ wro | + ¥V Ealwin | < MY G lls+ ML [lsot |} b5 oo}

appears on the right-hand side of (21), and we estimate this with the aid of ine-
qualities (32) and (33). This leads us to (30), in view of (21) and the inequality
lzlls < 112 llg+- lw llp.

Direct use is made of Theorem 6 in proving a theorem on the convergence of
homogeneous difference schemes for an equation of the parabolic type in the case
of fixed discontinuities of the heat conduction coefficient.

Distinguishing the solution of the “stationary” problem (1.1)-(1.4) by the root
method improves the a priori estimate for our problem, by enabling us to introduce
the norms |[[{ [l and {|¢ fis.

It must be mentioned that the most accurate estimate is obtained when
b(x,t) = 0 and {¢(x,0) = 0, since only ||{|; appears on the right-hand side of
inequality (30):

/=t

1z lo < M{]|4Cx, I)Hs-+[2 g6 OB+ T O G

We illustrated the merit of the norm | {|;. with the aid of an example in § 1,
Section 2.
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To prove theorems on convergence and accuracy, we write the solution of problem
(1)-(4) as the sum Z+Zz, where Z is the solution of the same problem with homo-
geneous boundary conditions and a good right-hand side § fi.e. having a high
order of smallness with respect to 4 and 1), whilst Z is the solution of problem (25)-
(29) with a poor right-hand side $. The function Z is estimated with the aid of
inequality (6), whilst Theorem 6 is used for estimating z.

We must also mention an a priori estimate (in the mean), obtained in [12] for
a six-point scheme with the sole assumption that a(x, ¢) is bounded. If z(x,?) is
a solution of equation (25) with the conditions

Zp=2zy=0, z(x, )=o), O<My<a< M, p=M,>0,
lor | <M. |b|<M |di<M,
then

1=t

lzle < MLE <llbee O +ME+Dlel  G=1/). (9

5. Systems of equations. We now take a system of equations which is the difference
analogue of a system of linear equations of the parabolic type. Let z = {z),j
= 1,2, ...,r} be a vector function given on the net Q and satisfying the conditions

pz; — (az) = ¥ on Q,,
' (36)
z=0 forx=0,x=1and t =0,
where a = (a;;) is a symmetric positive definite matrix; ¢ = (p;;) is a positive defi-
nite matrix, i.e. to be precise,

r

a;=ay, .Zl a; 5 > (311_21 &, 'Zi pi&il; = szzl E{>M>0,8,>M>0;

b=

Jj=

§; are any real numbers; £, and.3, are constants independent of 4 and <;
¥ = Q(z)+¢, Q(z) == bzz +b+Vz,+dz, (37

b= (b;;), d= (d;;) is a matrix, $ = ({¥), z= () are vectors.
In addition, the following conditions are satisfied:

'aij|<M, Ibij|<M: ldijl<\M’ I(a,,),‘[<M. (38)

To simplify the treatment, we shall confine ourselves to the case of the first
boundary problem, although the results below can be extended to the case of bound-
ary conditions of a more general type, analogous to conditions (2) for a single
equation (1). We have.

THEOREM 7. If oy = 0'5 and < < 7, is sufficiently small, the solution of problem
(36)-(38) satisfies the inequality

t' =t

lzll < M2 <[l 46x ) (39)
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where

2l = max}/ S0 9= (5 008 1 @0)

The theorem is proved by analogy with Theorem 3. We form the scalar product
of equation (36) with the vector Avz; and sum over the net {x = h, 24, ..., (N—1)h
= 1—h}:

ez, Z)tod= “zj+1(‘¥(¢), )+ (ma—a)z, 7, (41)
where

o
I=(az; z}=) (az5 2z,
i

We transform the expression

v v v
(a—asd)z;, 7] = Z((«la,,~«2a.,)zx, #5

= (20, —1) 2 (@25 . 3+ agr Z (@), 35].

We can write, by analogy with Section 2:

ivj vi J i . .
G;jZx%5 == Qi j¥52x — TijZ3Zx; for j <,
dvi_ v visj N T L v i.d L
Q12535 == Q13525+ T 2520 — T 25iZx -+ 7(4)H (2525 for j> i,
i i v i t T i .
@25 %5 = Hlau (22 +au(z5 ] — i zais(zif)2+§(aii)?(z;)z for j=i.

On using the symmetry of the matrix (a;;), we get
(az;. 51 = Yoz 551 =40+~ ez i+ ks, . 42)

Returning to (41), we derive the integral identity
(Pz;, 2]+0-51+ (o —0-5)(azz, 23] (43)
= 0-51+ (o — 0-5)r(ar s, 73]+ awr(azzz, 721 (¥, 7).
Proceeding now as in Section 2, and taking into account

1zl < M|l 2z 2, (44)
we arrive at inequality (39).

THEOREM 8. If oy = 0'5 and < is sufﬁmently small (= < 1), then

lzllo < M{| G 1) llo+ || 9(x. 0) [la+ [ Z Tl )+ [1px )] +

t’ =t

+M[ 3 o[l $Cx 1) [B]E (45)

t'="1

where M = 0 for b = 0.
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This theorem is similar to Theorem 5. The proof of it uses Theorem 2 and Lem-
ma 7.

6. Differential-difference equations. Analogous a priori estimates hold for the
solutions of a differential equation of the parabolic type and differential-difference
equations obtained from it by Rothe’s method [10] (replacement of the derivative
with respect to ¢ by a difference quotient) and by the straight-line method (replace-
ment of the operator with respect to x by a difference expression).

A. Rothe’s method. Let z(x, ) (netted with respect to 7), defined in the domain
O <x < )xol = {t;=j,0<j< L}, be a solution of the differential-difference
equation

d dz
p(% )z — 4= (a(x, t) -a;) =0@)+Yy (O<x<1, t=12,.., L7 (46)
with the conditions

d
60 =0, ko==Ezntoz—vl  forx=0,

(47)
d
‘—k’d_;‘ = Cozi+a2—v.(2) for x =1,
0(z) = d bz)+dz 48
Z)_—d_;(z ’ ( )
a>=>M>0, p=>M>0, |6 < M, |d|< M, >0, )

o.s>0’ 61+G2>M>0) S=1,2.

If, in addition, conditions (5) are fulfilled, where we have to write |db/dx| < M
instead of |b,,| < M, the following inequalities hold for the solution of problem
(46)-(49) when = < 1:

lzlo< MO X =T0G1312), (50)

Iz llo << M, ©) s+ [ (%, 0) lls+-
=t /=1

+[ Z <o+ 143G T + ML X <4 0)E], - 6D

where

1 1
lizllo = max|z|, Il¢l!m=[Sl¢l’”dx]'" , m=1,2, M=0 for b=0
0<xxil 0

|wus=[l§¢dauz+l§¢dxl+[v1|+1v2!, o7

l

[9lle+ IV E+v IV E

x 1
19l = !f§¢d&|\l+l§¢dx|+ val + [vel.
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If we have only conditions (49) and |p;| < M, |&| < ME,, an analogue of Theorem
4 holds.

B. Method of straight lines. Let z(x, ) denote a function defined in the domain

O<t <X W {x=0,h2h,..,No =1} (i.e. netted with respect to x) and
satisfying the equation

e(x, t)—— —(az), = 4+ 0(@),  0@) = (biz"),+byzeetdz, (52)
and the conditions

d
Z(x, 0) = O, a§.+1)zx el 61'(5"*_0'12_\’] for x = 0,
(53)

dz
—az, = ézﬁt— + 02—V, for x = 1.

If conditions (4) are fulfilled, together with |da/dt] < M,| do,/dt] < Mc]/ o,
|b,,] < M, we have

Izl < Tzl [l 22 |l < M{[Son 0 |+ Tolet ozl (54

where all the norms have the same meaning as in Section 2.

There is no difficulty in writing down the other a priori estimates, obtained
above for problem (1)-(4), and also estimates for the solutions of the system of
differential-difference and differential equations.

All these estimates enable us to prove the convergence of Rothe’s method and
of the straight line method in the class of discontinuous coefficients, both for the
case of fixed and for the case of moving discontinuities.

ReMARk. All the results of this section can be carried over to the case of non-
uniform nets if, as indicated in § 1, account is taken of the alteration in a non-uni-
form net of the meaning of the norms appearing in the a priori estimates. For in-
stance, in inequality (30) we have to replace [[{/[; and [[{[* by the norms [ [*
and [|[{||*s, which are defined in Section 3. Introduction, and we have to remember
that © is a net function in the sum over the time net.

§ 3. EQUATIONS OF THE HYPERBOLIC TYPE
1. The difference problem. A differential equation of the hyperbolic type

Lat = elx,) T 5(/« f) )Q()—¢ 0<x<1,0<s<T), ()

0) = b ot e, 2t gu @
has the following equation as its dlfference analogue:
Pz = pz —(@zz)P—0(z) =  on Q,,

3
0(2) = (bz,e+dz) ™+ gz; + 877, ©
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where the index « indicates summation over the three rows ¢, t—t, t—27 of the
net Q, with weighting factors o, g, o3, such that
V@ = g, 04 a0+ .9, a, =0, ap =0, a3 =0, a+aptog =1.

Let the function z(x, ), defined on Q, be a solution of the problem

Pyz =1 on £, @)
Lz = (a92) @ —Ey() (Zi+ 0177 4 E12) — (0:2)® = —v,
for x=0, t =2+,..,T, &)
lyz = (azz)® 4 Eo(t) (z + coz: +Ezz?)+(°'22)(a) =v, for x=1,
Z(x’ 0= (P(X), zt(xs 0)= (E(X), (6)

0<Mo<a<M1, 0<M0<p la;I<M9 'Pt’<M:
B]<M, |d|<M, |g|<M,

6s>0, Gg >0’ G1+62 >M>O, !o‘s;] <M o-sa's,
|Ca| <M, |esl< M, s=1,2.

2. An integral inequality. To simplify the discussion we present an analysis
for boundary conditions of the 1st kind z,= 0, zy = 0. The transformation for
boundary conditions (5) is carried out by analogy with [4] and Section 2 § 2.

We multiply equation (3) by ht(z;+8Z;), where 8 is a parameter, and we sum
over the net {x = h,2h, ..., (N—1)h = 1—h}. On using Green’s first formula
(B. 22) and taking the boundary conditions into account (z, = zy = 0), and also

@

v 1 2 T 2
ZZiy = (Z: Y+ 2;,, 5= (@) — 5 %
we get the identity

1 1—
T 42-B (o 20+ 2B

t(p, 257) 4 oy — (1 — B)T — Ber T

= 2(¥, i+ BED) + (a1 — B)a— agl, 2557 ]+ (aapa— ogdh, 25551+

¢y 14p
2

(B + (1 — B, F575]— (.20, ®)

where
I=(@,z. ¥=0@+. ©®

Suppose now that =1, ay = 0, o; > 0-5. Identity (8) can now be written
in the form

(p, 25); -+ 0-51 + 4%, — 0-5) (@, 25,] = 0-51 +
+ 2oy — 1)o@z, 73]+ 2057(@,0, 25551+ 1(F, 7+ ) —(e7, 2D, (10)
where

a—
27

} a«

Qe =

= 0-5(a;-+dz).
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On observing that
(@5l | <MD, |0, 55 | < MY [ - G 2D G, 2D,
|65 2 | < M, 2D),
we have for sufficiently small v < 742

< (1+ M) (E+ M= || T |, (11)
where

E = (p, 25)+0-5(1+ D). (12)
In view of conditions (7), it may easily be shown that
1112 < M| 13+l 2= 13411 2 [+ 22 113+ 27 18}
< MU+ T4+, +G, )
As a result, we arrive at the following integral (energy) inequality (cf. [13]):

< A+ M) B+ $ 3. (13)
For the general boundary conditions (5), we obtain the analogous inequality
E<(1+Mz)(E+<||0]B), (14)

in which
E =[p, 2H1H0-5U+1),  [p, 2] = (p, 2+ Euzhy+ oy,
I=(a, 5146284002k, 0l = Il llet]va ]/ VE +]v]/VE-

Inserting 8 = 0, oy = 0 in identity (5), we obtain the integral inequality (13)
or (14), in which

(1)

E =[p, 2]+ 051 (16)
3. A priori estimates. We make use of inequality (14) to estimate ||z]),. Ine-
quality (1.16a) is required here. On solving (14), we get
=t
E) < ME@)+ 3 <[ D[R (17)
We have from this, along with (6):

THEOREM 8. If oy = 0, o; => 0-5 (or a3 = 0, o, 2> 0-5), given sufficiently small
T £ Ty, We have the following estimate for the solution of problem (4)-(7):

2l < ) 2 <34 2 5] 5 <ToG T as)

where M =}, if zy=0 or zy =0,

2ll =1z lla+ I Zlla+ | 2z Lo+ | 25 o+l Z5lle, 2 =19, 2t =g+7p. (19)
In the case a3 =0, «, = 0-5, we have

21l = N2 lla+ 1l 25 [l 2 [l2-
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It may easily be observed that (18) implies the inequality

Izl < MiA+0 et 110+ S <BE AR, v=F. @

We now take the problem

Pz = on Q,, (21)
Lhz=—v® for x=0; lLz=v® for x=1;, z=¢(x), 2z, =¢(X) fort=0
22)

with conditions (7), where
6, < M or o, = oo (boundary condition of first kind). (23)

THEOREM 9. If oy = 0, &; 22 0:5 (or a3 =0, oy > 0-5) and the conditions aj
<M, 6l < M, s= 1, 2, are satisfied, we have for the solution of problem
(21)-(23), given sufficiently small © < ~,:

2l <31z [ < M{]|2* [1-+]] 6%, 0 sr-+1] 42, ) se-+]] 405, O e+
1905, 0t | 33 €119, 2 ool 9265, ) oo [ 95205, 0 o T+

=t
+M(Y o v, OB (24
=1
where M= 0 for b = 0.
To prove the theorem, we write z as the sum z = v+w, where w is the solution

of problem (1.1)-(1.4) for d = 0, and make use of Lemma 6 and Theorem 8.
So far we have actually considered a seven-point difference equation of the form

RN o, * %% o,
* |lag=0] or | *** o |
* % ¥ s * gg=0

An a priori estimate will be obtained in the next section for the solution of the
nine-point difference equation

**x|(0.05
05

*tl|0.25

* x %

4. An a priori estimate for the nine-point difference equation. We consider the
following problem:

Pz = $@ on Qua; = xg = 0-25, a2=0°5),} 25
Zo=12zy=0; 2z(x,0) =o(x), 2z(x,0)=¢(x),
O<M<a<< M, 0<M,<p<M,, ]“?‘<M’ |P?]<M,
b|<M, |d|<M, |g|<M. (26)

We rewrite the difference equation P,z = ¢ in the form
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Vezr—025 Rt =1/p%;+025<R ]/ % +2¥® [/, ¢1))
where
R— ]}; (@24 @], ¥ = 0@)+i. 28)

On squaring (27), multiplying by » and summing over the net {x = h, 2h, ...,

(N—1)h}, we find
~ [ia
ie]/i -
P il

1 M|
(0, 20)+0-5 I+ = | R|} = (o, ) +0'5 T+ 4 22

2 v
+ 12 —1_—‘1’ 40572 (i Y@ R ]/5—)+ 21(¥Y®, z5)+
I/P 2 e
+0-51(az, 221 — 0-5(d;, Z32z 1, (29)
where
I=(a,z]. (30)

For future transformations, we make use of (26), together with the inequalities
1 Y

T3 < Mo {THTH T Y346, 2D+ 6, 2D)-
As a result, we obtain for sufficiently small t < 1, the following energy ine-
quality:

|5, 255 | < MAI+D), 2

< M@ || R|E+= ([ [,

E<(4+Mr(E+M:| D), (31)
where

v 1
E = (o, 2)+05(+D+ 5o | R|} (32)
An immediate consequence of (31) is

LEMMA 8. The integral inequality
EQ) < M(EQ+ S <[40 ) tor e <, )
holds for the solution of problem (25), (26), where
E(x) = (p(x, %), 5+ 05 {(a(x, 0), gz 1+ (a(x, 7), (9 + 772" I}-+
2 (0, 0) 0 Ha(x, et ol DTS (B
It is easily seen that we can write, by (26),
E(z) < M {||X[3+ (| ox [B+7* [l 2z [D (1 + )}
E(m) < M([o|3+lez[DA+1)-

or

We have thus proved
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THEOREM 10. Given sufficiently small © > ©,, the solution of problem (25), (26)
satisfies

2o < Nzl < M {EG+LS; <1405, 18] (35)
2l <zl < M2 B A+0+] S <l 6o
where
2l = 2t €l 25 ot 25 e 2

An analogue of Theorem 9 holds for problem (25), (26).

5. Some remarks

1) If the initial data are zero (¢ = ¢ = 0), the requirement in Theorems 8
and 10 that ¢ and p be bounded from above becomes unnecessary.

2) Estimate (8) was obtained in [9] for the particular case ay = 1 (ot = a3 = 0)
with the subsidiary assumption that |a,] < M and p =1 for the first boundary
problem (z, = zy = 0).

3) We saw in § 2 that a priori estimates of the same kind hold for difference,
differential and differential-difference (Rothe’s method and the straight-line method)
equations. A similar situation is observed in the case of equations of the hyperbolic
type. There is therefore no need to write out the a priori estimates for differential-
difference equations.

4) If the difference net Q is non-uniform, the difference equation P,z = ¢ has
to be written in the form

v (
o&7 —(azz): - Q(2) = ¢.
All the estimates obtained in this section retain their force for this equation,

if we everywhere changes all the norms [ to [ld[*.
5) Similar results are obtained for a system of equations

pz; 7 — (az,)P— Q(z) = ¢,
where a= (a;), p= (p;) are positive definite matrices (a;=a;), z= {z},

¢ = {{J} are net vector functions.

§ 4. FOURTH ORDER EQUATIONS

1. Difference equations. We consider the following problem:

Paz = PZ;;+(aZ;x)§52+ 0(z)=1¢ on Qy, ¢))]
Z=1z,,, Zy =2z =0, (2
z(x,0) = g(x), z,(x,0) = (%), (3)
where
0(2) = ((bzz)y+cz5 +d2) P+ gz; 1§35 4)

v@ = 0ot a0t a0, o, =0, 2,20 o3>0, oaFastoy=1
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By hypothesis, the coefficients of the problem satisfy the conditions:
0<M<a, 0<M<yp, [B[<M, [c|[<M, [d<M, |a|<M, |p|<M.
)
All the results obtained below for problem (1)-(5) retain their force if we take
instead of (2) any of the pairs of boundary conditions:

Hz=2z,=0 for x = 0; zz:=(@Vz;5); =0 for x = 1;
2) Zyx = (a(_*-l)zxx)x =0 for x = 0; zZ = 0, Z_ =0 for x = ];
3)z2=2,=0 for x = 0; z; =0, (a( Dzz: =0 for x = 1;
4) z, = (a"Vz,,), =0 for x =0; Z=2z;=0 for x = 1,

Equation (1) is the difference analogue of the fourth order linear parabolic
equation

JE— (k( t)ax2)+c( no +{ox( )+b2 o bt by } b
©

2. An integral inequality. A priori estimates for the solution of problem (1)-(5)
may be obtained with the aid of integral relationships by analogy with § 3.

We multiply (1) by At(z;+8%7), sum over the net {x = 24, 3h, ..., (N—2)h}
and make use of Green’s formula (B. 26). By virtue of boundary conditions (2)
the substitutions vanish, and we obtain an identity, which becomes with § =1,
oy = 0:

(e, Zf_))?‘}‘ ol = a4+ (¥, z; +20)) + (0 — O‘3‘1, Ziefz) — (o7, 25 )); (M

where
IF = Q(Z)+"Ily I— (a Zxx) (8)
On proceeding by analogy with Section 2, § 3, we obtain from this the integral
inequality for sufficiently small = < 7,:
<M E+M= | YD, [ [E=(CF, DY), ©)
where
E=((p, 2)+05(I+1). (10)
We have, by conditions (2) and (5):

120l < 5 75 e < gl 25 o < M1, (1)
e <(I+Md5, |, 5D)| < M=(G, 2y, (12)
1 |2 < M {6, 22)+(G, &I+ I+ ¢ 18- (13)

On now returning to identity (8) and taking (12), (13) into account we find
the required integral (“energy”) inequality:

E<(1+MT)(EV'—I—MT]|&IJH§) for © < %o, 1 > 0:5. (14
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The same inequality is got with B = 0, g = 0, ®; > 0-5. In this case

E=((,z)+1I.
3. A priori estimates

THEOREM 11. If z(x, t) is a solution of problem (1)-(5) and wy =0, «, = 05,
we have for sufficiently small © < =,:

Izl <lizlh < MU+ 1S, <106 I, 2 =20,
where

12 lls = 1l 2 {laF11 £l 25 lle 1l Z llot| 250 ot [| B ol 72 -
If o3 =0, this estimate retains its force with the condition that

ll2lls = 12 {241l 2z lla-1] 25 [la 1} 25 -

To prove the theorem, we solve inequality (14) and at the same time take (11) and
(5) into account.

Theorems analogous to Theorems 9 and 10 hold for our problem (1)-(5). We
shall omit their statement, so as not to overload the discussion. Also, their proofs
give rise to no new factors.

There is no difficulty about writing down corresponding estimates for differential
and differential-difference equations.

We omit here the case of boundary conditions of a higher order of accuracy,
since this substantially increases the complexity of the treatment.

Transition to a system of equations also presents no difficulty.

The method developed here enables estimates to be obtained (and hence con-
vergence theorems to be proved in a class of discontinuous coefficients) for higher
order equations.

A study of difference schemes for fourth order equations on a non-uniform
net deserves attention.

In conclusion, the author takes the opportunity to thank A. N. Tikhonov for
a discussion of the results obtained,

Translated by D. E. BROWN
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