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THE present study arose in connection with an investigation of the convergence and 
accuracy of homogeneous difference through-computation schemes (see [l]) for 
the solution of non-linear and quasi-linear equations of the parabolic and hyper- 
bolic types : 

.,.=~[k(x,t,u,~]-f(x,t,u,~,~)=O~ 

_!++-[kw)~] -c(x,t).& -f n,r,u,g,g ( ) = 0, 

~su=~[k(x,t)~]+e(x,t~~+f(x,t,u,~,~,~)=O 

(2) 

(3) 

in a bounded domain D = (0 < x < 1,O < t < 7’) in the case when the coefficients 
k(x, t, u) and k(x, t) are discontinuous functions of (x, t) (see [2]). 

Let u = U(X, t) be a solution of the equation J&u = 0 (S = 1,2,3) with certain 
initial data at t = 0 and .boundary conditions (generally speaking, non-linear) 
for x = 0, x = 1, whilst y is a solution of the corresponding difference problem. 
The function z = y---u is a measure of the accuracy of the difference method. It 
satisfies (given corresponding assumptions regarding f and k(x, t, u)) a non-homo- 
geneous linear difference equation YSz = $(s = 1,2,3), the right-hand side of which 
is the error of the approximation of the difference scheme in the solution of the 
differential equation ._C?,U = 0. The boundary conditions of the 1st kind (~(0, t) 

= ul(t), ~(1, t) = u2(t)) are approximated accurately on the difference net. But 
if we take boundary conditions of the 2nd or 3rd kind or even of a more general 
type, as for instance (in the case of equation (1)) 

au au 
k ax = C, ax + w---u,(t) 

at4 au 
-k= = Czat +a+-u,(t) 

for x = 1, 

for x = 0, 

(4) 

(5) 

a difference analogue of these conditions is obtained for y of the same order of 
approximation as the difference scheme (see [3]). It must be mentioned here that 
simple substitution in (4) and (5) of the derivatives by difference quotients yields 
difference boundary conditions of the first order of approximation. 

* Zh. vych. mat. 1: No. 6, 972-1000, 1961. 
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A priori estimates for difference equations 1139 

As a result we obtain for the function z non-homogeneous boundary conditions, 
analogous in form to (4) and (5), with right-hand sides v1 and yp. 

The proof of convergence requires a uniform estimation of z in terms of +, 
vr and va (a priori estimate). 

In the case of discontinuous coefficients the position is complicated by the fact 
that, as the steps of the net tend to zero, $ does not in general tend to zero close 
to points of discontinuity of the coefficient k. Hence estimation of $, maximally 
or in the mean, is insufficient for a proof of convergence. It had already been neces- 
sary in this connection to introduce the special norm II+ ]I3 when investigating the 
convergence of homogeneous schemes (see [l]) for the elementary stationary equation 
of heat conduction: 

We obtained in [4] a priori estimates, suitable for proving the convergence of 
difference schemes (for equation (1)) both in the case of fixed discontinuities of 
k(x, t) (for x = const.), and in the case of mobile discontinuities on a fmite number 
of curves x= yjm(l),171= 1,2, . . . . m,. These estimates were utilized in [5] to 
investigating the convergence and accuracy of straight-through computation schemes 
for the linear equation of heat conduction with boundary conditions of the 1st 
kind and a particular class of discontinuous coefficients. 

Since the framework of one article does not permit a description to be given 
of the difference methods of solution of equations (l)-(3), and a statement and 
proof of the corresponding convergence theorems in the different classes of coef- 
ficients, we have been compelled to offer a separate treatment of the mathematical 
equipment enabling an estimate to be made of the error z = y--u. This is the aim 
of the present article. The a priori estimates obtained also allow the question of 
stability for given initial data and right-hand sides to be elucidated. It may 
be remarked that, for parabolic equations of the second order (and boundary 
conditions of the 1st kind), stability with respect to the right-hand side is sufficient 
for convergence. A separate treatment will be given of the theorems on convergence 
and accuracy of straight-through computation difference schemes of equations 
(l), (2) and (3) with boundary conditions of an extremely general type. 

Our a priori estimates are obtained by using the method of integral (“energy”) 
inequalities, which has become popular in the theory of differential equations, as 
also the method of distinguishing the “stationary” non-homogeneities, for which 
specially accurate estimates are obtained, since Green’s difference function is used 
in their formation. We pay special attention here to the choice of norm for the 
estimate of the right-hand side and to weakening of the requirements imposed on 
the equation coefficients. 

Certain elementary inequalities (for instance (2.21)) have appeared in works 
by other authors (see [a], [7], [8]); however, they were obtained for difference schemes 
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of a particular kind and for a much narrower class of coefficients and boundary 
conditions of the first kind, and this made them unsuitable for our purposes. 

Let us summarize the main features of the article. The introduction covers special 
notation and some auxiliary relations (Green’s difference formulae, inequalities 
etc.) used in what follows. 

In 9 1, which is in essence a continuation of [l], we consider difference boundary 
problems for the stationary equation of heat conduction (6), for systems of equations, 
and for the fourth order equation 

in the case of discontinuous k(x). The estimates obtained in 9 1, are utilized in $0 2, 
3 and 4 to make the estimate more precise in the case of an awkward right-hand 
side 4. 

Notice that an analogue of Theorem 5 holds for the case of certain spatial vari- 
ables. We do not quote here the corresponding estimates. 

In 0 2, we give more precision to the results of [4] and deduce new estimates. 
In particular, estimates are obtained for systems of equations of the parabolic 
type. 

In 5 3 a number of apriori estimates is obtained for nine- and seven-point difference 
schemes, corresponding to (2). The simplest of them (3.18) was obtained in [93 
with the auxiliary condition Ia;/ < M in the case smooth coefficients for the implicit 
scheme (a1 = 1) and boundary conditions of the 1st kind. 

Problems are investigated in 0 4 for the difference analogue of a fourth order 
equation of the parabolic type. 

Estimates of the same type as for difference equations hold for differential- 
difference equations obtained by Rothe’s method and the method of straight lines. 

All the results of $0 1, 2 and 3 were obtained for non-uniform nets. However, 
the proofs are given for uniform nets for the sake of simplifying the treatment. 

The numbering of the formulae is individual to each section. Double numbering 
is used to refer to a formula from another section (for instance, (B. 22) means formula 
(22) of the Introduction, (2.7) is formula (7) of Q 2, and so on). 

INTRODUCTION 

1. The drsrence net and net functions. We take a domain D = (0 < x < 1, 
0 < t < T). We write a for the difference net in D, i.e. the set of points (Xi, tj), 

where Xi=ih,i=O,1,2 ,..., N,h= l/N; tj=j-r,j=0,1,2 ,..., L, T= T/L. 
Let Q2, be the set of interior points (Xi, ti) of the net fi, for which 1 < i < N- 1, 

1 < j < L, Q2, the set of points (Xi, tj), where 1 < i < N-l, 2 < j < L, a3 the 
set of points (Xi, t,), where 2 < i < N-2,2 < j < L. 

We agree to write net functions without net indices, i.e. instead of z:’ we simply 
write z or z(x, t), whilst also omitting the dependence of z on the steps h and z 
of the net. 
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We simplify the writing by introducing the notation (see [4]): 

$+I) = &, &“(-I) = &, ; E $1, : zz $-a , 

1141 

Z-2 
z,- = - , zj; zx 

z_z(-l) ) z __ z(+l)_; 

T 
h x - h ) z,* = 0*5(z,+z;\. 

We now have 

$ [4+l (zi+l - Zi) - ai (Zi -Z&l)] = (ffZG)x ) 

2. Sums and norms. We introduce the following notation for sums 141: 

N-l N-l 

where ‘9i and j~~ are any net functions. 
Use is made below of the norms: 

II # 110 = max I +i 1, II 9 llm = (1 dJ Im, wm, m= 1,2, (1) 
O<iQV 

A-‘=.% 

II + II3 = II ? II‘&% r 64 = Xh 4(-a II 4J l/3* = II q IL 9 (2) 

II dJ lld = II dJ 113+ I(#, 1) I? Il~ll4*=II~ll3.+~~~,~~I. (3) 

When estimating the solutions of difference equations with right-hand side CJJ and 
non-homogeneous boundary conditions, use is made of the norms 

II J, II5 = II 4J 114-t I VI I-!- I v2 I 9 ll~ll5* = II~ll4f+j~1~+IhI, (4) 

where v1 = vi(t), and v2 = va(t) are the right-hand sides of the boundary conditions 
when x=0 and x= 1. 

Moreover, we shall write 

IIJG II2 = (A 11: = Irf, I)$ = IlYx I12 (Y: = (YF)3* (5) 

When investigating (in @ 1 and 4) the fourth order difference operator (ay;x);x, 
we also encounter the sums 

N-2 N-2 N-l 

((99 $1) = iz YiW4 (% +)I = iz Yidlh ((9, #> = iz WM. (6) 

If $ is a function defined on the net 6 or on part of it Q,(s = 1,2,3), the norm 
II+ Ilm is a net function depending only on t and defined on the net w, = {tj,j = 0, 1, 
2 , .**, L} or on part of it. We shall write 

II Jllm = max II 3, G=c 0 IL, m=l,2,3,4,5,3*,4*,5*. (7) 
(0 

Sums often encountered later are 

s=o,1,2. (8) 
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If 4J = (+k(x, a> is a net vector function, then 

II 4J 110 = yy 1/T WY , ll~llm=~(l~klm, I,‘-, m= 1,2, (9) 

and so on. 

3. Non-uniform nets. Suppose now that the net h = {Xi, ti, 0 < j < N, 
0 < j < L) is non-uniform, i.e. its steps hi = Xi-xi-l and 7, = tj-tjml vary from 
one point to the next. 

We shall assume throughout that the steps hi of the net w,, = {xi, 0 < i < N) 
satisfy the condition 

hi+1 
O<xll< hGX1’ (10) 

i 

where x0 and x1 are constants, independent both of i and N. 
A system of notation without indices is also used on a non-uniform net. 
We shall write 

z-_z(-1) z{-zp 
z,-= 

d-Z{-, z--z’ 
= 

hi h ’ 
Z, = Z~++l) , Zi = =-. 

7j 7 

In addition, the difference ratios are brought in: 

where 

_&+1)-z z--z' 
z; = 

A ' 
8; = - 

?' 

k = A, = 0*5(hi+hi+,), Fj = 0’5(Tj+Tj_l)s 

It should be borne in mind here that z;; # z;; . 

The difference operator of the form (a~;), on a uniform net is replaced on 
a non-uniform net by the operator (uz;) ;, whilst the operator zYir is taken instead 
of zii. In addition to the sums 

(9, +) = $i G&i 3 (CP, $1 = $ri$ihi etc. (11) 

use is made of the sums 
N-l 

(9, $1’ = C ‘pi$iA, etc. (12) 
f-l 

In this case, as well as the norms /I$ Ilrn (m = 1,2, 3), defined by analogy with 
(l), we shall make use of the norms 

II qJ IE = {(I# Im, 9*$, m=l,2, (13) 

x,=.X 

II f.JJ II: = II ? II& q(x) = c 4JW>A(x’). (14) 
x’=h 

We de&e similarly 119 jj$ m = 3*, 4, 5, 5*. 
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4. Some elementary inequalities. The mathematical apparatus that we use below 

consists of Green’s difference formulae and certain elementary inequalities. 
Let us enumerate first the following inequalities [ll]: 
1) The Cauchy-Bunyakovskii and Holder inequalities : 

IO, 2) I < IIY II* II z 11% 
2) Io,~)~~(lYlp~l)1’~(IY14~ V l/p+l/q = 1, P > 0, 4 > 0; 

IYZ[ <ya/4c+cz2, 

where c is an arbitrary positive constant; 

(15) 

3) (CmJ2<nCmf; (16) 
s=l S=l 

4) 

” n 

Ilm>,< Cwh, m > 0, vs > 0, t v, = 1. 
s=l s=l S=l 

(17) 

LEMMA 1. Let E(t) andj(t) be two non-negative net functions, E(t) being dejined 

O?Z the net {tj =iT,j= S, S+l, . . . . L; s = 0, 11, and f(t) on the net (tj = jr, 

j= s+l, s+2, . . . . L; s = 0, 11. If 

E(t) < (i+Mr)(E(t-7)+rf(t)), (18) 
then 

I’=l 
E(t) < eMt [E(sT)+ c 

t’=(s+l)r 
of]. (1% 

For we obtain, on successively applying inequality (18) : 
j-s-l 

E(t)< q'-SE(sT)+ & qk+'f(t--k+, q = 1+Mr (t = jT). 

Inequality (19) follows from this. 
A similar inequality is obtained for the function E(t), satisfying E(t) ,< (1 +M$ 

[E(t-27)+7f(t)]. In this case we introduce the function E,(t) = E(t)+E(t-T), 
for which inequality (18) holds. 

5. Green’s difference formulae. By using the obvious formulae for summation 
by parts: 

Cv, 23 = -LW,) +YNZN--1-YoZ0 Yo = Y (0)~ YN = Y (1))s 

Cv, ZJ = - (~,~I+YNZN-Z~YO~ 

we can readily obtain Green’s formulae: 
1) Green’s first difference formula 

& (az&) = - (&fiz;] f (~~zi>N-~b&; 

2) Green’s second difference formula 

0, (a&) - (z, (aY;)x) = aN(Yzi -~Yi)N-%b% -Y& 

Green’s formulae become on a non-uniform net: 

P9 

(21) 

(22) 

(23) 
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(Y, (4 ;I* = - (~,Y;zil+ (UYG)N - dY,Z)“, (24) 

(UP (K);)*-(z> (aY;);)* = a~(YZ;--zY~),--a,(Yz,-Y,z),. (29 

We now consider the fourth order difference operator (uY& and show that 
the following Green’s difference formula holds for it: 

((Y, (GJ;x)) = ~~,y_;xGx)+ V-l’ (a’-%;), --a(-l)y,z,;]N - (26) 
-[y(+l) (a(+11 Zx&--a(+l)y z ] x xX0. 

We make use of Green’s second difference formula for the operator w;;~ in the do- 
main h < x < xN-r = l--h: 

(0, KX)) = ((Yxx, ~))+(Y~,-Y,~)~-~-~Y~,-Y,~)~. 

By taking into account the identity Y; = Y,--hY,, we transform this to the 
form 

((Y, w;;,)) = (y;x,w)+(Y(-1)w~-1)--yl;w(-1))~-_(Y(+1)~~1)-~(+1)Yx)O. (26’) 

Hence (26) follows, after substituting w = uzxX. 
On interchanging the roles of Y and z in (26) and subtracting the resulting iden- 

tity from (26), we get Green’s second formula for the fourth order difference operator. 
We shall not write it down. 

If, for instance, the following conditions are fulfilled: 

y=y,=z=z,=o fix x = x0 = 0; y=y,=z=z,=o for x = xN = 1 

or 
YX = z, = (a(+l) YXX) = (u(+l) z,*), = 0 for x = 0, 

y;; = z-- xx zzz (&l)y;;); = (a(-Qz;;), = 0 for x = 1; 

all the substitutions vanish and Green’s formulae become 

(09 (%T);,)) = (&Y, z,), ((Y, (~ZXX)XX)) = ((z, (QY&x))* (27) 

In particular, we have with y = z: 

((Z> (%M) = (a, %J 

We shall conclude this section by mentioning one point in connection with the 
notation. All constants, independent of the net, will be denoted by the letter M; 
their structure and connection with the initial constants will often be ignored, since 
the connection can easily be ascertained from the exposition. 

5 1. STATIONARY PROBLEMS 

An a priori estimate of the form 

(uw;);),--dw = -L/J, w0 = WN = 0. 

was obtained in [l] for the solution of the first boundary problem 

IIW 110 G it4 NJ 1/3* 
Estimates for w, w,- and w; are obtained by similar methods in this section (for 

the case when the coefficients of the equation depend on t) for the third boundary 
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problem, together with estimates of the solutions of the fourth order equation 
(a~;;,);~ = + and of a system of second order equations. 

1. Green’s difference function. We consider on the net w,, = {xi = ih; 0 < i < N) 

the difference boundary problem 

Lhw = (uw& - dw = - + (x = xi, 0 < i < N), (1) 

a,wx,o = %Wo-Vl -aNw;,N=dpwN-v2, (2) 

the coefficients of which satisfy the conditions 

a~M,>O,d>O,o,~O,o,~O,~,+a,~M,>O, (3) 

where MO, M1 are constants independent of h. 

Our aim is to estimate IIw Ilo and 11% /,(m = 1, 2). We do this by using Green’s 
difference function G(x, Q of problem (l)-(3) (as usual, we give no indication of 
the dependence of G on h). The function G(x, 5) is defined by the conditions 

(a(x)G;;(x, E)),-d(x)G(x, t) = - v, 

dh)G,(O, 6) = G(O, 0, ---a(l) 0 = G(L E) (5) 

and can be written in the form 

G(x, k) = ~a(x)fWi) for x < E, G(% 5) = i a(F)@(x) 

where 

A=const.>M>O 

(see (12)), whilst a(x) and p( x are found from the conditions ) 

L,a = 0, a,a,, 0 = 1, alcr,, 0 = v. ; 

Lhp = O, aNpiT, N = -19 -aNp;, N = %fb 

If d = 0, we have 

for x ’ ey (6) 

(7) 

(8) 

A = a(x)+P(x) = const. 

If el= 0, we put ala,,O= 0, a(O)= 1. 

We can prove, by analogy with [l]: 

LEMMA 2. If G(x, k) is Green’s function of problem (l)-(3), we have 

IIGII,~ M, II ‘2 Ilo < M, II Gllo < AL 
LEMMA 3. The following relations hold: 

IG&,F)j < ~4 for x#E, hlG&A( < ~4. 

We find, in fact, by making use of (6), that 

(9) 
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O;(x,5)=+a&@(S) for x<t, @it-% E> = + P;@)a(O for x > E, 

1 
G;@, 5) = - a;(x)@&) A for ~96, 

1 
G;-6, 5) = - P&9&) A 

for x>E. 

It follows from this, since a; and @; are bounded, that GgE is bounded. If, for in- 
stance, d = 0, then 

G;e(x, x) = - & + a~WW)lA. 

On putting y = w, z = G in Green’s second formula (B. 23), we obtain the 
following form for the solution of problem (l)-(3): 

w(x) = (G(x, E), #)>+G(x O)v,+G@,l)v,. (10) 

2. Estimates of w and w;. We now make use of (10) and Lemmas 2 and 3 to 
estimate the solution of problem (l)-(3). 

TI-EOREM 1. If w is a solution of problem (l)-(3), we have 

llwllo < ~ll~ll5., Ilw;llI =G ~lldClls+, (11) 

Iwx,oI < ~IIJClltP, I K,N I < ~119115.. (12) 
We introduce the function Y&C) with the supplementary conditions 

x,=.X 

-q; = $9 70 = 0, rl(x) =xzhhNx’). (13) 

Formula (B. 20) for summation by parts gives 

(G, Jo) = (G@, E), qt(6)) = - (GE, r)+ G(x, 1) ~j~-l. 

Hence it follows from (lo), by virtue of Lemma 3, that II w Ijo < MI] # l/5*. We now 
consider 

w,- = (G;, +)+ G;(& O)v,+ G,-(T lb,. 

On taking (13) into account, we find that 

(G;, +) = -(GxE, y))+G;;(x, I)Y~N-~. 

On using the inequality 

x,=1 

(14) 

(15) 

II (‘& 9 -4 IL <x~h(h(G;(x’, 0, ui(D)‘+ h2Gi+‘, x’)@’ - A)}, 

where the dashes indicate that the sum of the (G+ q)’ is taken for k# Y--h, to- 
gether with Lemma 3, we find 

II (GwI) 111 < WI q 111 = MII 4~ 11~. 
Hence it follows, from (14), (15), that liw;;I]r < Mll$ &.. 
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LEMMA 4. Zf w is the solution of problem (l)-(3), we have 

II WG Ils 6 MII + 115. 

The proof follows from (15) and Lemma 3. However, we 

1147 

(16) 
shall use a different 

method of proof, characteristic of the discussion that follows and making no use 
of Green’s function. We multiply (1) by wh, sum over the net x = h, 2h, . . . . (N- 1)h 
and make use of (B. 22): 

(&w$+(d,w’)- ~N~Nw;;,N+~l~O~x,O = (+,w) 

or, if (2) is applied, 

where 
I+ (d, w’) = ($3 w) + vlw~+ bwN, 

z = (a, Jv$~+cr,w~=uzw~. 

We introduce a function T(X) with the aid of conditions (13): 

(W, #) =-(W;, T)~-WNTIN-I. 

On using Bunyakovskii’s inequality, together with the inequality 

w”<MZ 

(see [4]), Lemma l*), we have 

@a) 

I (w;, q) I < II w;; Ila llrl 112 < M fill + 113, z+Mw3 ~WJII,~~-<WI~II~. 

Inequality (16) follows from this, in view of (3). 

We shall adduce an example, showing that ]lJ, /14. gives a more exact estimate 
for an awkward $ function by comparison with l]Jr III, not to mention IlJr 112. We 
assume that 

v1= vz=o, $ = +i = (8,,n+l--6i,$~ (m = 0,l). 

We now have: 

fi ]l$!i,=-$ 11~1l~=II(JIll3=fi, Il44l4*=114J113*=~ for m=O, 

II + II2 = 42 I/K II + II* = k II 4J lh* = II* for m = 1, 

The advantage is clear from this of estimates obtained with the aid of Green’s 
function, as compared with estimates obtained by the method of integral inequalities. 
This advantage tells in the case of poor + functions. Notice that the estimate jlw Ilo < 
< M/j+ II5 is obtained instead of I/w Ilo < M\l+ &,, by the method of integral ine- 
qualities that we used in the proof of Lemma 4. 

3. Estimate of w,. Suppose now that the functions a, +, d, and hence w, depend 
on t and are defined on the net a, or more precisely, a = a(x, t), 0 < x < 1, 
0 < t < T, $ = $(x, t), 0 < x < 1, 0 < t < T, whilst the functions bs(& v,(t) 
(s= 1,2) are given on the net wT= {tj=iT,O<j<L}. 
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We also assume that Q, c,, d satisfy Lipschitz conditions with respect to t, so 

that 
la?[ < M, I&/GM, I(~s)i GM S=1,2, (17) 

one of the following cases being realized: 

ox < M or cS=oo. (18) 

If, for instance, err = 00, we obtain with x = 0 the homogeneous boundary con- 
dition of the 1st kind w,, = 0. 

LEMMA 5. If conditions 

where 

(l)-(3), (17) and (18) are fulfilled, we have 

II will0 < M (II + l/S*+ II +ill5*)5 

II W;i III < Ikf (II + IIs*+ II #ills*)9 

II+; lIti* = II+? Ila*+IviiI+/V2iI~ 

(19) 

(20) 

If, for instance, the condition w,, = 0 is given at x = 0, we have to put formally 
vi(t) E 0 in (19) and (20). 

On introducing the function < = wr , we obtain for it the equations 

(&)x-dC =-[+t+ (qG&--diG] =-$, a,<,,, = clCg-y1, 

- ai&, N = o&V - V2 9 
where 

Yr = vii-ca,$0+ai,l”r;x,o, Yz = V2i-G+*iGN-Cli,~G~,N* 

The conditions of Theorem 1 are fulfilled, so that 

IIr;II, < wlals*, llTll5* == ll~l1,*+l~J+l~2l. 

By Theorem 1 and conditions (17) : 

/&I < vsiI+~ll4JIl6*, s= 1,2. 

On now observing that 
X’=X 
$Jr(a;i;), = a?Wx-~,$,,~r 

and taking into account inequalities (12) of Theorem 1, we obtain (19). 
Lemma 5 for the first boundary problem was utilized in [5] to prove the con- 

vergence of homogeneous difference schemes for the linear equation of heat conduc- 
tion with discontinuous coefficients. 

We can similarly prove 

LEMMA 6. If the conditions of Lemma 5 are satisfied, and in addition, 

I b&i I 4 M, Ia;;I<M, 1 &j < My 
then 

where 
II Wllo < M{II 9 115*+ll +iIls*+Il Jci~ll5*>, (21) 

II kIls* = II h*+ I %I+ I %iI. 

Account must be taken here of inequality (20). 

(22) 
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All the results of Sections l-3 retain their force for the solution of the boundary 

problem 
(au.&--d. w =--I$ (23) 

with conditions (2) and (3), defined on the non-uniform net 

U,={Xi,O<i<N}. 

Here, instead of 119 116. and I[# IIs, we have to write in all the estimates the norms 

II 9 1% and II 4~ ll6*, 
defined in accordance with formulae (B. 13) and (B. 14). 

4. System of second order equations. We now consider the general case of a differ- 
ence boundary problem for a system of the second order: 

(aw;;,)-d. w= -+, (24) 

w(0) = 0, wil) = 0, (25) 

where a = (aij) and d = (dii) are matrices, i,j = 1,2, . . . , r; CI, = (43, w = (d) (j 

= 1,2, . . . . r) are vectors.? 
We shall suppose that 

ZaijEiEj 2 @Ttf, P >OP 

(26) 

C dijk&j 2 y C 5;v Y20, 
i. j j 

where {kj} are any real numbers, p and y are real constants, not dependent on the 
net. 

We shall confine ourselves for simplicity to the first boundary problem, although 
all the results will also hold for the boundary problem of the 3rd kind, analogous 
to problem (l)-(3) for a single equation. 

We form the scalar product of (24) with the vector function wh and sum over 
the net from x = h to x = l--h. On making use of the formula for summation 
by parts (B. 20), we get Green’s formula 

5 {(ai,&, $I+ (dij MJ, Pvi)} = F (wi, $i), (27) 

or 

(a%, W;;l+(dw, -9 = w,$,>, (27’) 

On taking (26) into account, we have 

B Ilw;ll;+y Ilwlli =G (w, $1. (28) 
On observing that IwI < II w;IIz, I(w, +)I < /I w;(I,II+[I,, we get the first estimate: 

Ilw!kl < $ll$!l*, 

t The employment of the convenient indices i and j can hardly lead to misunderstand- 
ing, since we have agreed not to use them as net indices. 
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We now bring in the vector function q = ($(x)} , j = 1,2, . . . , r, with the 
aid of the conditions 7% = 9, YJ(O) = 0, so that 

x-h 

rl@) = xlhWa, 

and we use the formula for summation by parts (B. 21) 

($3 w) =I T (w’, 99 = (w, a) = -_(w;;, ?I 

and Bunyakovskii’s inequality 

I Ww) I =G II~llall~ll3 (II q II2 = II + lb). 
Returning to (28), we find that 

pllw;II; < IIw,lleII+ll3 

We have now proved 

THEQRFM 2. If w is the solution of problem (24)-(26), we have 

llwllo < $ ll4Jll3, (30) 

Ilw;lla < + (31) 

The proof is similar for 

LEMMA 7. If the conditions 

/(aij)T(<M, /(d&/GM (i=1,2,...,r), 

are satisfied then the following inequalities hold: 

IIWlllo < wIIqJll3+llwl3)~ (32) 

Ilw;illo < ~(II~ll,+Il+rll3). (33) 

Lemma 7 is useful in forming a priori estimates for systems of non-stationary 
equations. 

5. Fourth order equations. We consider the following boundary problem for 
a fourth order equation: 

(aw&,-(bw;;>,+d. w = (J on the net {Xi = ih, 2 < i < N-2}, (34) 

w,- w&~=o, WN=W;,N=O, (39 

a>M>O, bz=O, d>O. (36) 

THEOREM 3. If w is a solution of problem (34)-(36), we have 

Ilwllo G MllcC,II,, IIW;llo~~ll4Jlls IIK,lla<~IIf#II,~ (37) 

where II # II3 = ((ri, d = II r IL whilst q(x) is the solution of the problem 

rxx=o, rl1=0, %&1=0 (38) 
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On putting y = z = w in Green’s formula (B. 26), we obtain 
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(a 9 4x) + ((b, 4) + ((4 w3) = ((9 9 WI. (39) 
In view of conditions (35), formula (B. 26’) gives 

(($9 w)) = ((%W w)) = (? > w;,)+WN--IY)~N-l-Tlx,NW;,N = (q, w;,). 

On next taking into account the relations (see [4]) 

Ilwll,< Ilw;llo~ Ilw;,ll2, Ihw;;,)I < Il~llzllw;xllz, 

we obtain inequalities (37) from (38). 
If the conditions w, = 0, (u(-~)w& = 0 are given for x = 1, we have 

Ilwllll < Mlldllh9 ll+Ila= 1191133-1((~, 111. (3 

An analogue of Lemma 6 holds for the solution of problem (34)-(36). 
It is not possible for us to dwell here on a priori estimates for solutions of 

equation (34) with boundary conditions of a higher order of accuracy. 

5 2. EQUATIONS OF THE PARABOLIC TYPE 

1. The initial problem. We take the following problem in the domain fi for an 
equation which is the difference analogue of a linear differential equation of the 
parabolic type : 

9lZ = pz;-((az;)y-Q(z) = + on G, (1) 

(a(+l) z.p = &,(t)z; + (q(t)z)‘” -VI(t) for x = 0, t = T, 2r, . . . . Lr = T, 

- (uz#“’ = &,(t)z; + (az(t)z)‘“’ - vz(t) for x = 1, t = r, 2r, . . . . L,r = T, 

ZO = z(x, 0) = q(x), for t = 0, I 

(2) 
where the index a denotes summation over the rows t and t--7 of the net with 
weighting factors a1 and Q: 

&) = a,W+az6, a1 > 0, a2 > 0, a,+a, = 1, 

Q(z) = (b,z*),+(b,g*)x+blz,.+b,~~.+d,z+d,z’, (3) 

z* = 0 - 5(z +z’-‘9 9 z,. = 0 * 5(z; +z,>. 

Throughout what follows we apply the conditions 

a>Mo>O, p>Mo>O, &,>O, o,>O, aI+oz>M,>O, 

j~,~~~,, jb,l<f%, I4I=34, s=l,2 
(4) 

which we include in the set-up of problem (l)-(4). 
All the results obtained in this section also hold for the first boundary problem 

(z,j = z, = 0). 

2. A priori estimates when the coeficient a is “di$eentiable” with respect to 
t(lq\ < M). Problem (l)-(4) was considered in a somewhat less general statement 
in 141. We shall therefore start with a description of the results of [4], which may be 
summarized as three theorems. 
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THEOREM 3. If the conditions are fulfilled: 0.5 < u1 < 1, ‘p 3 0, 

\a;\<%, I(~,),I~~~, Ie,iI<KJZZ @ = 1,2), (5) 

the solution of problem (l)-(4) is subject to the estimate, for sufficiently small 

7<70: 
t’=t 

(6) 

where 

In the case of the first boundary problem (zO = 0, zN = 0), II+ II2 appears in - 
(6) instead of \I$ 112. 

The constant T,, depends only on MS@ = 0, 1, . . . . 5). 

THEDREM 4. If conditions (5) are ful’lled, 0.5 < CQ < 1, and + s 0, we have 

for 7 < TV: 

II Ja(x,I) Il,+h(o I Gl I +bdt> 1 ZN I < (8) -- 
< M(IlI/44 0) c~;Il+l/4) / cpC-V~+~40) II dl)llJ. 

If, in addition, a < M,, 0 < C, < M,, s = 1,2, we have 
- 

where 
II 2 ll2+llGll2 < Mllv lla+II’p; IM, (9) 

ljz1/2 = 11~112+~~~~,~~~f-~~~~,~)I. (10) 
- 

Inequality (9) also holds for the first boundary problem, if l/z iI2 is replaced by 

llz 112. 
A proof of Theorems 3 and 4 is contained in [4]. We shall give the proof in a short- 

ened and somewhat modified form, convenient for passage to a system of equa- 
tions. We confine ourselves to the proof of Theorem 3. 

We multiply equation (1) by hrz; and sum over the net (xi, 1 < i < N- 11. 
On making use of Green’s formula (B. 22) and boundary conditions (2), we obtain 

+,4+-d = ai+7(Y, zi)+R Y = ++Q(d, (11) 

I = (a, .2$-i- blzi + b2z& IP, z3 = (P, z!) + Gzi2,0+ e,zS,TV 9 (12) 

R = (ala- (1 ---LX&, z;~~+(alo,-- a&)z,,i+ 

+ (cQ$ - &&i&V + ?zi, 0 + ‘%zi,N. 
(13) 

In order to transform the expression 

RI = (ala-a& z;i;] = (2a,-l)(a,z&+cr,~(a~, z&J 

we make use of the identities 

az;i; = az&- 7az;z;; , (14) 

az;;& = a”;: + -raz;g; + Ta+j = 2;: + -raz;z;;- ?az$+ 7aiZj. (15) 
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It follows from this that 

(2cr,-l)uz;i~ = (a,-o~5){(az~+ti~~)-~~az~+7.a~}. 

On similarly transforming the second and third terms in (13) and substituting 
the results obtained in (ll), we obtain the fundamental identity 

‘E[p,zt2]+0* 51$_(cc,-O.5){(a,z~r]+o,b,+o,z~ N}? = (16) 

=0.51i_(a,-0.5) {( 7 af, ii) + r&z; + a,,&} + (1 -cC,>Z{(ur, z:&] + o,;z,ia + 

+ %-f~iV} + T{(F z;) + VJ;, 0 + vzz;, N} . 

We estimate the expressions in the curly brackets on the right-hand side of (16) 
by using conditions (4), (5) and inequality (B. 15). We note here the inequality 

- 
I~~I=Id~+caT/(l/b+~/~)Igli’;i$Msli/a;r /(/d+~‘F)<(1+M67)1/K 

As a result, we arrive at the integral inequality 

~(p,z$+I< (l+M~){~+~IIYll~} for 7 < 7. = qo/a2. (17) 

We can readily obtain, by using (4), (5) and (1.16a): 

im2 < iqr2+nill+A4I: (18) 
where 

M= ~~ll~r;llo+II~Ilo+ll~Ilo~. (1% 

We can therefore write 

+J;)+K(l tMr)(i+rII+llS for T < r. = T&Q (1 +MZ). (20) 

It is clear from this that, when b, = F1 = d = 0, the previous condition t < 
< ?,/a, holds, where 7,, depends only on M,, Mb, M, and i%f~ and vanishes for 
Ui Z 0, b,iZE 0. 

We obtain (6) by solving inequality (20) and taking (1.16a) into account. The 
proof of Theorem 4 makes use of (20), where we must write I&& = 0 and take 
into account the initial condition z(x, 0) = cp(x). 

REMARKS. 

1) The condition 7 < 70 is lifted if b, = b, = dl = 0, ai = bli = ~3~; = 0 or 
b1 = b, = dl z 0 and a2 = 0 (a1 = 1). 

2) Only Theorem 3 is used in the proof of convergence. It is not required in 
the proof of this that the coefficient a@, t) be bounded from above. 

3) If the conditions of Theorem 4 are fulfilled, we have 

t,=t 

4) Inequality (21) is obtained in [8] and [9] for the first boundary problem 
with aI = 1 and the subsidiary assumption laxI < M, which makes it unsuitable 
for our purposes, since it excludes the possibility of fixed discontinuities of the 
coefficient of heat conduction. 
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5) Inequality (9) expresses the stability of the solution of problem (l)-(4) with 
respect to the initial data in the sense of the norm 112/]2+ ]lz& (cf. [8]). 

6) Theorems 3, 4, as also Theorems 5 and 6 below, retain their force in the 
case of the more general boundary condition 

(U(+l)Zx)(a) = LIZi + (o,Z+hr,Z+hy,Z,)(a)--v, for x = 0, 

where l&l < M, 1~1 < M, and of the analogous condition with x = 1. 
3. A priori estimates when the coeficients a, b, and b, are bounded. Special difficul- 

ties appear when estimating the solution of problem (l)-(4) in the case when con- 
ditions (5) are not fulfilled and the coefficients a, b, and b, are merely bounded. 
We have succeeded in obtaining an effective a priori estimate only for the case 
a, = 1. We shall state the corresponding theorem, proved in [4], for the case ‘p = 0. 

THEOREM 5. If a1 = 1, and 

1 ptj < M, 1 e, j < MC,, s = 1, 2, (22) 

the solution of problem (l)-(4) is subject to the inequalities, for suficiently small 

T < T,: 

(23) 

(24) 

where p = 2”, n > 1 is any integer, M(p) = M(n) = Mdn2”e~n@, T,, = M(l+ 
+ 116, &,/n - 2”) is independent of n only when b, = 0. 

The proof of Theorem 5 makes use of a difference equation for the function 
~2” and the integral inequality obtained for this equation in [4]. 

4. An improved a priori estimate for a six-point equation. We consider the fol- 

lowing problem: 

pz;--(az;)y = Y@), 

(a(+l)z,)(@ = L1zi + ( alz)@) - vl(cr) for x = 0, 

-(uzp) = ~‘zz;+(azZ)(a’)-vV,(m) for x = 1, 

z(x, 0) = 0 ) 

where 

‘I!= Q(z)+~J, Q(Z) = bz;+b(+l)zX+dz. 

The coefficients of the problem satisfy the conditions: 

O<M,<a<M,, M>p>Ml>O, jbj<M, Idl<M, a,>O, 

q+a,>M>O, ~U~~=of, Ia,&ofl/Os;is, O<C,<M (s = 1,2), 

where one of the cases holds: 

0 < rss < A4 or c, = 00 (boundary condition of the first kind). 

(25) 

(26) 

(27) 

(28) 

(29) 
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THEOREM 6. Z_f z(x, t) is a solution of problem (25)-(29) 
have for sujiciently small T < T,,: 

ll40 G M{ll W 0 IIs*+ II 4JN 0) II a+ 
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and 0.5 < a1 < 1, we 

where G = 0 for b s 0. 

We write z as the sum z = o+w, where w is the solution of problem (l.l)-(1.4) 
for d z 0, and v is defined from the conditions: 

per;---(a~;)~’ = Q’“‘(w)-[r;w;- Q@)(w)], 

(a(+‘bx)(a~ = &v;+ (o1w)(a)+ c,w,- for x = 0, 

-@v;;)(Q) = ezoi +(a,v)‘~+)+&sw~ for x = 1, 

D(X, 0) = - w(x, 0). I 

(31) 

By Theorem 1 and Lemma 5: 

II w Ilo G ~11 Jc ii6.r II W; II1 G M 11 9 Ilsr, ii wi‘ iI0 G M(li Ma-+ 11 9 ila8). (32) 

On now using Lemma 4, we find that 

II QW II2 <Bll w; lld-4 w II2 < %ll+ Iia+W + lb. (33) 

We make use of inequality (21) for estimating the solution of problem (31). 
The norm 

appears on the right-hand side of (21), and we estimate this with the aid of ine- 
qualities (32) and (33). This leads us to (30), in view of (21) and the inequality 

112 II0 G IIU Ilo+ lb 110. 
Direct use is made of Theorem 6 in proving a theorem on the convergence of 

homogeneous difference schemes for an equation of the parabolic type in the case 
of fixed discontinuities of the heat conduction coefficient. 

Distinguishing the solution of the “stationary” problem (l.l)-(1.4) by the root 
method improves the a priori estimate for our problem, by enabling us to introduce 

the norms lid, II5 and II+ I&+ 
It must be mentioned that the most accurate estimate is obtained when 

b(x, f) = 0 and $(x, 0) = 0, since only II 9 &,. appears on the right-hand side of 
inequality (30) : 

I’=1 

II 2 110 G q II 4Jb t) lls*+rp II w7 0 IIS+ II fIJi@, 0 Iii*]‘). (34) 

We illustrated the merit of the norm I] $ /16. with the aid of an example in 0 1, 
Section 2. 
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To prove theorems on convergence and accuracy, we write the solution of problem 
(l)-(4) as the sum Z+?, where Z is the solution of the same problem with homo- 
geneous boundary conditions and a good right-hand side $ (i.e. having a high 
order of smallness with respect to_h and T), whilst g is the solution of problem (25)- 

(29) with a poor right-hand side $ -@). The function Z is estimated with the aid of 
inequality (6), whilst Theorem 6 is used for estimating z. 

We must also mention an a priori estimate (in the mean), obtained in [12] for 
a six-point scheme with the sole assumption that a(x, t) is bounded. If Z(X, t) is 
a solution of equation (25) with the conditions 

5. Systems of equations. We now take a system of equations which is the difference 
analogue of a system of linear equations of the parabolic type. Let z = {S, j 
= 1, 2, . ..) r} be a vector function given on the net fi and satisfying the conditions 

pz;-(q)1p) z y(a) on CL , z=o forx=O,x=l andr=O, (36) 

where a = (ail) is a symmetric positive definite matrix; (, = (prj) is a positive defi- 

nite matrix, i.e. to be precise, 

~j are any real numbers; p1 and. p2 are constants independent of h and 7; 

Y = Q@>++, Q(z) = k+b(+l’z,+dz 3 

b = (bij), d = (dij) is a matrix, 9 = ($3, z = (zJ) are vectors. 
In addition, the following conditions are satisfied: 

(37) 

I aij 1 < M, [ bij I < M, 1 di, I < M, I (atjk j <’ Ma (38) 

To simplify the treatment, we shall confine ourselves to the case of the first 
boundary problem, although the results below can be extended to the case of bound- 
ary conditions of a more general type, analogous to conditions (2) for a single 
equation (1). We have. 

THEOREM 7. If a1 2 0.5 and T < TV is su_@ciently small, the solution of problem 
(36)-(38) satisfies the inequality 
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where 

llzllo=y~ 
J 

(40) 

The theorem is proved by analogy with Theorem 3. We form the scalar product 
of equation (36) with the vector h+q and sum over the net {X = h, 2h, . . . . (N- 1)h 
= l-h}: 

where 
~(p4, zT)+aJ= aJ+@a), z;)+((a,a-a&)i)z;, ;;;1, (41) 

We transform the expression 

((ala-a&z;, f] = 6 ((CCl@j-aa,&j)Zi, g!J 

= (2a,-- 1) C (@jZj . &]+a27 C ((aij);Zf, i k]. 
i. j i. j 

We can write, by analogy with Section 2: 

for j < i, 

for j > i, 

fZiiZ$~ = Q[aii (Zi;)2+i;ic(&)2] - &T2aii(Z~;)2 + ;(a&&)’ 

On using the symmetry of the matrix (aij), we get 

for j = i. 

(42) 

Returning to (41), we derive the integral identity 

s(pz;, z;]+0*51+(a,-O.S)(az;;, z;i] 

= 0.5i+(a,-0.5)7(~,-i-,,H,j+cr,r(a~z~, &] 7(Y, q). 

Proceeding now as in Section 2, and taking into account 

II z 110 G M II z, II2 Y 
we arrive at inequality (39). 

(43) 

(44) 

THEOREM 8. If a1 > 0.5 and T is sufficiently small (T < ‘F,,), then 

where%= 0 for b = 0. 
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This theorem is similar to Theorem 5. The proof of it uses Theorem 2 and Lem- 

ma 7. 

6. Difirential-difference equations. Analogous a priori estimates hold for the 
solutions of a differential equation of the parabolic type and differential-difference 
equations obtained from it by Rothe’s method [lOI (replacement of the derivative 
with respect to t by a difference quotient) and by the straight-line method (replace- 
ment of the operator with respect to x by a difference expression). 

A. Rothe’s method. Let z(x, t) (netted with respect to t), defined in the domain 
(0 < x < 1) x UT = {tj = j,, 0 \<j < L), be a solution of the differential-difference 

equation 

p(x,t)ri--& a(x,t)-$ =Q<4+9 (O<X<L 
( 1 

I = T,2T, . ..) L7) (46) 

with the conditions 

z(x, 0) = 0, k $ = C’,z; + a,z -VI(t) for x = 0, 

(47) 

-_k$ &zzr3_ a,z - v,(t) for x = 1, 

Q(Z) = -& (bd + dz, (48) 

a>M>O, p>M>O, Ibl<M Idl,<M L,>O, 

a, > 0, a,Sa,>M>O, s= 1,2. 
(49 

If, in addition, conditions (5) are fulfilled, where we have to write Idb/dxl < M 
instead of lb,,/ < M, the following inequalities hold for the solution of problem 
(46)-(49) when 7 < Q: 

t,=t 

II z 110 < “<,Z, 7 II $(x9 t’) 16 1’7 

II~II,~~(llICl(~,~)lls*+II~(x~O)II,~ 

t,=t 

where 

+. 

(50) 

I’=I 
M[ c d~w’)lla,l*~ (51) 

tj=r 

m= 1,2, M=O for bz0 
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If we have only conditions (49) and Ipi/ < M, \&,rl < MC,, an analogue of Theorem 
4 holds. 

B. Method 0-f struaight lines. Let z(x, t) denote a function defined in the domain 
(0 < t < T)x 6&$(x = 0, 12, 2h, . ..) Nh = l} (i.e. netted with respect to X) and 

satisfying the equation 

p(x, t) g - (az;)x = Jr-t Q(Z) e Q(z) = (b~z*)x+&,.+dz, (52) 
t 

and the conditions 

z(X, 0) = 0, a(,+l)z, = 61% +cr,z-v, for x = 0, 

(53) 
dz 

-az, = &2- +a*~-vv, 
dt 

for x = 1. 

If conditions (4) are fulfilled, ‘together with jda/dtj d M,I da,/dtl < Ma1/6,, 

I&.\ < M, we have 

where all the norms have the same meaning as in Section 2. 
There is no difficulty in writing down the other a priori estimates, obtained 

above for problem (l)-(4), and also estimates for the solutions of the system of 
differential-difference and differential equations. 

All these estimates enable us to prove the convergence of Rothe’s method and 
of the straight line method in the class of discontinuous coefficients, both for the 
case of fixed and for the case of moving discontinuities. 

REMARK. All the results of this section can be carried over to the case of non- 
uniform nets if, as indicated in 5 1, account is taken of the alteration in a non-uni- 
form net of the meaning of the norms appearing in the CI priori estimates. For in- 
stance, in inequality (30) we have to replace I# II6 and II+ 11: by the norms I@ [I: 
and I# jj*6., which are defined in Section 3. Introduction, and we have to remember 
that 7 is a net function in the sum over the time net. 

5 3. EQUATIONS OF THE HYPERBOLIC TYPE 

1. The difference problem. A differential equation of the hyperbolic type 

O<x<l,O<t<T), 

au au 
Q(u) = b ax+q+q” 

has the following equation as its difference analogue: 

92~ = ~~~<-(uz~)~)-Q(z) = $ 

Q(Z) = (bz,. + dz)(“) + gz; + &- t, 

on G, 1 

(1) 

(2) 

(3) 
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where the index cc indicates summation over the three rows t, t-T, t-27 of the 

net Q, with weighting factors ar, %, u3, such that 

?+a)= crr~+a,r;+&, cI1 z 0, a2>0, a3 > 0, Cr,+cC2+cC3 = 1. 

Let the function Z(X, t), defined on a, be a solution of the problem 

YZz = + on Q2, (4) 

z,z = (u(+l)zJ(a)- e,(t) (z;;_t c,z; + z,;;> - (qz)(Q) = -VI 

for x = 0, t = 27, . . . . T, 

I 

(5) 

Z,z = (az;;)@)+ C,(t) (q;+ c,z; + Z,.&)+ (02z)(OL) = v2 for x = 1, 

Z(X,O = y@), Zt(%O) = @(-), (6) 

O<S <a< Ml, O<&<P jaiIof9 IPt)<M, 

pIof, Idl<W lgj<W 

2. An integral inequality. TO simplify the discussion we present an analysis 
for boundary conditions of the 1st kind z,-, = 0, zN = 0. The transformation for 
boundary conditions (5) is carried out by analogy with [4] and Section 2 $ 2. 

We multiply equation (3) by h~(z;+P&), where p is a parameter, and we sum 
over the net {X = h, 2h, . . ., (IV- 1)h = l--h}. On using Green’s first formula 

(B. 22) and taking the boundary conditions into account (z,, = z, = 0), and also 

we get the identity 

T2 ($9 ZF)i+y 1+P 
7; (p, zf i) + a,Z- a,(1 - p)i-- f3a3i 

where 

z = (a, ZZ]. ‘I! = Q(z)++. (9) 

Suppose now that p = 1, a8 = 0, a1 > 0.5. Identity (8) can now be written 
in the form 

7(p, z9;+0*5z+4?(a,- 0.5) (a, zI,*l = 0*5i+ 

?;2 
+(k- 1)Tk z;l+2 a 7 3 ( at*,Z-~~]+~~,Zi+~;)-7(Pi, ZF), (10) 

where 
* 

a-6 -. 
at* = 27 

= 0’5(U,+ ii). 
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On observing that 

/ (a,*, &I j < M(l+& 

we have for sufficiently small T < T,,: 

where 
E~(l+Mr)CB+MrllYII:), 

E = (p, z;)+O+(I+i. 

In view of conditions (7), it may easily be shown that 

II y 11: c M{lI 4J lli+(ll z; I!+ II z IW’+ II zt II;+11 f, II3 

< M[IS j+ (p, z:)+(p*, 531. 

As a result, we arrive at the following integral (energy) inequality (cf. [13]): 

(11) 

(12) 

E < (~+MT) <h-T (I $11;). (13) 

For the general boundary conditions (5), we obtain the analogous inequality 

K(l+M&+rII$II;), (14) 
in which 

E = tp,z$I+@5V+~), Ip,z:l= (p,&-k~&o+Czzf,~, 

I = (a, z&l+a,z;+ozz::, 
- - 

II + I12 = II 4J IL+ I Vl I I I/G +I v!2 I I -r/e2 * 
(15) 

or 
Inserting p = 0, cc3 = 0 in identity (5) we obtain the integral inequality (13) 
(14), in which 

E = [p, z:]+O*5Z. (16) 

3. A priori estimates. We make use of inequality (14) to estimate llz1\,,. Ine- 
quality (1.16a) is required here. On solving (14), we get 

E(t) G M(E(;)+~;~2;rJl+(T OIIZ). 

We have from this, along with (6): 

(17) 

THEOREM 8. If ar, = 0, a1 > 0.5 (or a3 = 0, a1 > 0*5), given sufficiently small 
-c 5 T,,, we have the following estimate for the solution of problem (4)-(7): 

where i@ = 14, if z,, = 0 or Z, = 0, 

Ilzl17=llzl12+11~112+~~zr112+11z;;~12+~l~~~lz, zO=rp, zl=‘p+q. (19) 

In the case a3 = 0, a1 > O-5, we have 

II zll7 = II z IL+ I/ z_, ll2+ll zi 112. 



1162 A. A. SAMARSKII 

It may easily be observed that (18) implies the inequality 

We now take the problem 

Ppz.z = 9’“) on Q,, (21) 

Z,z= -Y$@ for x=0; Z$=vp) for x=1; = = V(X), 2, = y(X) for t = 0 

(22) 
with conditions (7), where 

a, < A4 or u, = 00 (boundary condition of first kind). (23) 

THEOREM 9. If a2 = 0, a1 > 0.5 (or a3 = 0, a1 > 0.5) and the conditions aii 
< M, I(o&;l < M, s = 1, 2, are satisfied, we have for the solution of problem 
(21)-(23), given suficiently small T < T,,: 

II = 110 G Wlzll7 G ~Wll7+ll a, t> Ils*+Il WT t) IIs*+ll Jl(x, 0) lb+ 

+I1 44X, 0) li,,[~~~~~(ll 44% 0 ll6*+11 w, t’) 115*+11 +?dx, f>115*YltJ+ 

whereil?=Ofor bz0. 

+ %Tg’ 7 II +(x, t’) W (24) 
2’=5 

To prove the theorem, we write z as the sum z = wfw, where w is the solution 
of problem (l.lt(1.4) for d = 0, and make use of Lemma 6 and Theorem 8. 

So far we have actually considered a seven-point difference equation of the form 

An a priori estimate will be obtained in the next section for the solution of the 
nine-point difference equation 

* * * 0.25 
***0*5 . I i * * l 0.25 

4. An a priori estimate for the nine-point difference equation. We consider the 
following problem : 

P3,z = +ta) on Qa(ctl = a3 = 0.25, a2 = O-5), 

z0 = ZN = 0; z(x, 0) = CPW, Zt(X, 0) = (P(x), I 
(25) 

O<M,<a<M,, O<M,<p<M,, jai)<M, )pij<M, 

;bI<M, ldl<M, lgj<M. (26) 

We rewrite the difference equation Pzz = 4 in the form 



where 
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JpZi- O-25 RT = Fiji $0.25 pi 
1/ 

;+?W, I/p, (27) 

R= + W~L+(~W, Y? = Q(Z)++. (28) 

On squaring (27), multiplying by h and summing over the net {x = h, 2h, . . . , 
(N-1)/z}, we find 

+0.57(ui,z;;i;]-~5’c(iii.,i-j;ix], (29) 
where 

r=(u,z;]. (30) 

For future transformations, we make use of (26), together with the inequalities 

7 1 (a,, &I [ < Mr(z+l), .$-fYM)~ ~~~T’II~llaa+TllYll3, 

7 11 y [ii G MT {Z+i+i+l\ $ll2a+(p, $I+& $)}. 
As a result, we obtain for sufficiently small T < T,, the following energy ine- 

quality : 

where 
E~(l+M7)(~+M7II~II~), 

1 
E = (p, z9sO.5 V+i)+ -+ II R 11:. 

An immediate consequence of (31) is 

LEMMA 8. The integral inequality 

E(t) < M (E($+t;g;~ II W, t’) II:) for IF<T~, 

holds for fhe solution of problem (25), (26), where 

E(T) = (P(X, 4, (p3+ O-5 {(4X, O>, G 1+ (4% $, cP;+ 6%)+ 

+ ; 11 (a@, 0) ff;>x+(& 7) %>x+ d&, ~>;)x~~~* 

It is easily seen that we can write, by (26), 

E(T) < M{IIIIl~+(jlcp,II~+TaII~;II:)(l+Y)} 
or 

E(T) < M(II~Il~+ll~,I/:)(I+y). 
We have thus proved 

(31) 

(32) 

(33) 

(34) 
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THEOREM 10. Given suficiently small T > T,,, the solution of problem (25), (26) 
satisfies 

or 

where 

II z 117 = II 2 IL+11 z’l1z+ II =; lb+ II ‘;5 112+11 =i I/2. 

An analogue of Theorem 9 holds for problem (25), (26). 

5. Some remarks 
1) If the initial data are zero (9 = (p = 0), the requirement in Theorems 8 

and 10 that a and p be bounded from above becomes unnecessary. 
2) Estimate (8) was obtained in [9] for the particular case CC~ = 1 (aZ = a3 = 0) 

with the subsidiary assumption that laxI < M and p = 1 for the first boundary 
problem (zO = z, = 0). 

3) We saw in 0 2 that a priori estimates of the same kind hold for difference, 
differential and differential-difference (Rothe’s method and the straight-line method) 
equations. A similar situation is observed in the case of equations of the hyperbolic 
type. There is therefore no need to write out the a priori estimates for differential- 
difference equations. 

4) If the difference net G is non-uniform, the difference equation PZz = $J has 
to be written in the form 

p& -(az;)F-- Q(z) = 9. 

All the estimates obtained in this section retain their force for this equation, 
if we everywhere changes all the norms I\$ I/ to 114 II*. 

5) Similar results are obtained for a system of equations 

pq; -- (az$$--- Q(z) = 9, 

where a = (ail), p = (pi,) are positive definite matrices (aij = ajr>, z = {zi}, 

(CI = {+I} are net vector functions. 

5 4. FOURTH ORDER EQUATIONS 

1. Difference equations. We consider the following problem: 

PSz -= pzi;+(az;,)$+ Q(z) = 4 on a,, 

z = z,,o , ZpJ = z;,; = 0, 

4x, 0) = Y(X), m, 0) = T(x), 
where 

Q(z) = ((bz;),+cz;+d~)(“)+~z,+~~~; 

7W = a,o+a,i+a,~, a1 > 0, az > 0, a3 > 0, al+a2+a3 = 1. 

(1) 
(2) 
(3) 

(4) 
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By hypothesis, the coefficients of the problem satisfy the conditions: 

O<M<a, O<M<p, jb[<M, [“[GM, Id/GM, [al.j<M, [&[<X 

(5) 

All the results obtained below for problem (l)-(5) retain their force if we take 
instead of (2) any of the pairs of boundary conditions: 

1) z=z,=o for x = 0; z;; = (a(-l)z;;); = 0 for x = 1; 

2) Z, = (dtl)Z,,), = 0 for x = 0; z = 0, 2; = 0 for x = 1; 

3) z = z, = 0 for x = 0; z; = 0 , (d-‘)Z;;); = 0 for x = 1; 

4) z, = (u(+l) zxx)x = 0 for x = 0; z z= z; = 0 for x = 1, 

Equation (1) is the difference analogue of the fourth order linear parabolic 

equation 

(6) 
2. An integral inequality. A priori estimates for the solution of problem (l)-(5) 

may be obtained with the aid of integral relationships by analogy with 3 3. 
We multiply (1) by IZT(G+ pe), sum over the net (x = 2h, 3h, . . . , (N-22)/2) 

and make use of Green’s formula (B. i6). By virtue of boundary conditions (2) 
the substitutions vanish, and we obtain an identity, which becomes with p = 1, 

c$= 0: 

ap, &);+“I~ = %z+dcr, z;+%))+(“la--3& GA*)- a?;, +, (7) 

where 

Y? = Q(z)+$, z = (a, &). (8) 

On proceeding by analogy with Section 2, 0 3, we obtain from this the integral 

inequality for sufficiently small T 5 TV,: 

~~(1+~7)(~i-~~II~II~), jlY1122=((‘r,Y)), (9) 
where 

E = ((p, z;))+@5 (I+ i). t10 

We have, by conditions (2) and (5): 

P < u+w 6, 7 1 ((P,, $1) 1 G MdG, @J>, (12) 

11 y 11: < 44 {((P, zb+(G, ~3~+z+~+ll Ic IID. (13) 

On now returning to identity (8) and taking (12), (13) into account we find 
the required integral (“energy”) inequality: 

E < (~+MT) (IZ+MT 11 Jo 11:) for T <TV, a1 > 0.5. (14) 
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The same inequality is got with p = 0, a3 = 0, a1 > O-5. In this case 

E = ((P, z:)) + 1. 

3. A priori estimates 

THEOREM 11. If z(x, t) is a solution of problem (l)-(5) and a2 = 0, a1 3 O-5, 

we have for sufficiently small 7 < TV: 

II z I18 = II z IL+11 z ll2+:I zi lb+ II 5s IL+11 ZG llz+ II %;, 112+ I/ zs l12. 
If a3 = 0, this estimate retains its force with the condition that 

II z II* = /I z Ila+li z; 112+11 GX llz+li z; 112. 

To prove the theorem, we solve inequality (14) and at the same time take (11) and 
(5) into account. 

Theorems analogous to Theorems 9 and 10 hold for our problem (l)-(5). We 
shall omit their statement, so as not to overload the discussion. Also, their proofs 
give rise to no new factors. 

There is no difficulty about writing down corresponding estimates for differential 
and differential-difference equations. 

We omit here the case of boundary conditions of a higher order of accuracy, 
since this substantially increases the complexity of the treatment. 

Transition to a system of equations also presents no difficulty. 
The method developed here enables estimates to be obtained (and hence con- 

vergence theorems to be proved in a class of discontinuous coefficients) for higher 
order equations. 

A study of difference schemes for fourth order equations on a non-uniform 
net deserves attention. 

In conclusion, the author takes the opportunity to thank A. N. Tikhonov for 
a discussion of the results obtained. 

1. 
2. 

3. 

4. 
5. 

Translated by D. E. BROWN 
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