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THERE is an extensive literature on difference methods of solving equations of the 
parabolic type. A considerable proportion of the studies concerns equations with 
constant coefficients. In a number of papers (see, for example, [l]-[6]) the stability 
and convergence of schemes with continuous and sufficiently smooth coefficients 
are studied. For example, in [4] the convergence and stability in the mean are proved 
(see Q 1, Section 2), while uniform stability and convergence are proved in [l]-[3] 
and [6]. 

Extension to the case of discontinuous coefficients entails major difficulties, 
since in the vicinity of the discontinuity the difference scheme does not in general 
approximate the differential operator [7]. It is only possible to overcome these 
difficulties for the heat-conduction equation if use is made of the special a priori 

estimates obtained in [8]. 
In [7], [9] and [lo] the concept is introduced of homogeneous difference schemes 

having one and the same computational algorithm at all points of the difference 
mesh for any coefficients of a differential equation drawn from some class of func- 
tions. In this paper we consider homogeneous through-computation schemes for 
solving linear equations of the parabolic type with discontinuous coefficients with- 
out separating out explicitly of the lines of discontinuity-more accurately, without 
any modifications of the scheme near the lines of discontinuity of the coefficients. 
Our attention is therefore mainly turned to the question of the convergence of 
through-computation schemes in the class of discontinuous coefficients. 

This question was studied for a quasilinear equation in [l 11, where proof was 
given of the convergence of the scheme Fiz) (see 0 1, Section 3) for the case of moving 
(“oblique”) discontinuities of the heat-conduction coefficient, on the assumption 
that h2/7 + 0 when h + 0 and T --f 0 (See also [12]). In this paper this assumption 
is copied for the linear heat-conduction equation. 

We shall briefly describe the contents of the present paper. 
In 0 1 we introduce the initial family of homogeneous difference schemes p$,$ 

and formulate the mixed difference problem. 

* Zh. vych. mat. 1: No. 5, 806-824, 1961. 
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Convergence of difference schemes 963 

In 0 2, with the aid of a priori estimates [8] and the maximum principle, a study 
is made of the stability of schemes with respect to the right-hand side using various 

norms. 
Of especial interest is the case of the symmetrical six-point scheme 

( : : : I:::) (a = 04), 

for which proof has been given of the stability in the mean with respect to initial 

data 
1/412 G W0112 

(see (lo), 0 2, Section 2) and also of the stability with respect to the right-hand 
side Y: 

1142 G wYl2* 

These estimates are valid for the case when the lines of discontinuity of the 
coefficients are the straight lines x = const. (“stationary discontinuities”), and the 
coefficient of heat conduction k(x, t) and thermal capacity c(x) t) satisfy with respect 
to t the Lipschits condition. 

For the case of an oblique discontinuity use is made of the Q priori estimate [8] 
with respect to the norm (z~, I)+“, where n = 1,2,3, . . . . 

In $3 proof is given of the convergence of the family under consideration in the 
class of discontinuous coefficients, and estimates are given of the rate of convergence 
(order of accuracy) with respect to h and 7. It is shown that the scheme 9g) with 
standard functionals 

0 -1 0.5 

’ D 19 (41 = I$[+ WI = R NJ @)I = 1 9 (4 ds (4 
-1 -0.5 

possesses better accuracy than other schemes from the family under considera- 
tion [lo]. 

4 1. HOMOGENEOUS DIFFERENCE SCHEMES 

1. Initial problem. In the rectangle D (0 < x < 1,O < t < T) we shall find 
the function u(x, t) satisfying the diferential equation 

90~ = Ltk,qJ) U- c (x, t) $ = 0 in the domain ,@ (1) 

with additional conditions 

where 
fJ (& 0) = uo (x), u (0, t) = u, (t), II (1, t) = 242 (t), (2) 

L’“d)u = .q&x, tq -q(x, t)u+f(x,f). 
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We shall assume that the coefficients of equation (1) are piecewise-continuous 
and satisfy the condition 

O<k,<k(x,t)<k*, O<c,<c(x,t)<c*, O<q(x,f)<q* in z (3) 

where k,, k*, c*, c* and q* are constants. 
If the coefficient k(x, t) experiences a discontinuity on a finite number of curves 

r”,Y= 1,2 ,..., v,, then on each of these curves the solution of equation (1) satisfies 
the continuity conditions 

[ul~r”=o,p~]~rv=O, v=1,2 ,..., v,, 

where [u] Ir, = u,- u, is the difference of the right- and left-hand limit values on 
the curve I’“. The problem defined by conditions (l)-(4) will henceforward be called 

problem (I). 
The curves l?,, which are defined for the range 0 < t < T by the equations 

x = q,(t), will be relabelled so that q”,(t) < q”,(t), v < v 1 , 2; we assume, moreover, 
that the curves I’,(v = 0, 1,2, . . . , vo, vo+ 1; qo(t) = 0, yVstl = 1) are differentiable 
when 0 < t < T and do not intersect in pairs in z We shall write 

A” = (G (0 < x < y~v+l (0, 0 < t < T), A = “gO A”. 

Proved in [13] is the theorem of the existence and uniqueness of a 
problem (l)-(4) possessing in A the derivatives au/&, a2u/ax2, which 
the domains A, satisfy HSlder’s conditions with respect to x and t. 

solution of 
in each of 

We shall henceforward assume the existence of the solution u(x, t) of problem 
(I), without dealing with the question of the conditions which ensure the necessary 
degree of differentiability in ,Q of the function u(x, t). 

2. Notations. For solving problem (I) by the method of finite differences we shall 
introduce into n the difference mesh a, i.e., the set of points (Xi, ‘j) with coordinates 
Xi= ih, i = 0, 1,2, . . . . N,h=l/N and tj=jT, j=O,1,2 ,..., L,T=T/L. We 
shall denote by Cl the set of internal points (Xi, tj) of the mesh a, for which 0 < i < N, 
0 < j < L. The function y{, defined on fi will be termed the mesh function. 

For convenience we shall as a rule use the index-less notation and instead of 
yi will write simply y or y(x, t), putting 

y =ui, 
c+ 1) 
Y =Y!+1, 

(- 1) 
y =y;_l, j&y;-', &-y/-2, 

t-0 c+ 1) 

Jp=y!LI.z_, 
I 

y =Y-_ 
h * h 

y;=0*5(y;+y,), y;=y+, 

so that 
c+ 1) u-1) (fl) 
a YX--ay;; 

@A = h 
= a (Y -YheY--(a 

h2 
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We shall employ the following sums and norms : 

N-l N-l 

[Y, z, = izo Yizih; 

llyllo = max (Yi>9 IIYllm = (IV lo9 1P 
O<igN 

(0 = 1,2), 

llJll3=11~113~ IV114 11~111~ j.ickiIh_Yk, 11j11, =OGrGT max lb Ilo o = 0,1,2,3,4. 

We shall also use the notation: 

Ilu;;llo = oy~NIYsi Is IlvdJ = (lu;; y, 11”” (a = 1,2). 

It is easy to see that 

llvll4 G Ilrl13 G Ilull G llvllz G Ilullo~ 
With the aid of these notations the first Green’s difference formula may be written 
in the form 

(+I) 
((%),,r) = -(a9YXl+ @*Y,*& - (a *L*Z),. 

We shall designate by w: the set of points (x, t’) of the difference mesh, for 
which t’ = T, 27, . . . , t ; and by w; the set of points (x’, t) of the mesh for which 
x’= h,2h, . . . . x ; thus for example 

Ipll~ =j$,llv.il (t = tj). 
% 

3. Diflerence schemes. A study is made in [7] of the homogeneous difference 
schemes Lj,kPqPf) for the stationary heat-conduction equation L(kPq*f) = 0. We shall 
make use of these schemes. 

We shall select as the initial family of difference schemes for problem (I) a family 
of six-point schemes : 

$D91pllv = tCL~fw.fQ,, + (I_-) ~$bidjL~~~~~~ 
( : : : j ,_:)v 

where 0 < LX < 1 is a numerical parameter, qca) = aq+(l -a) i, 

Lp 4, f’ y = (aJ-& - dy + 0 

is a conservative three-point homogeneous scheme, the coefficients of which are 
defined by the standard functionals 

Ah L4J (41, -1<S<0, 

Dk [4~ WI, -0.5 < s < 0.5, 

Fk [dJ (41, -0.5 < s < 0.5, 

in accordance with the formulae 

a = A” [k (x+sh, t)], d = Dk [q (x+sh, t)], @ = Fk [f(x+sh, t)]. 
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The coefficient p is computed with the aid of the standard functional Rh[+(s)], 
-0.5 < s < 0.5 in accordance with the formula 

p = Rh [c (x+sh, t)]. 

The relationship of a, p, d and @ to the steps of the mesh h and T is not indi- 

cated. 
The family of difference schemes Pi;) is defined, if a class of standard functionals 

Ah, Dh, Fh and Rh is prescribed. 
In the general case, as is shown by the example of the accurate scheme formulated 

for the stationary heat-conduction equation in [9], the coefficients of the scheme 
can depend on all the coefficients of the differential equation. To facilitate our 
exposition we consider here schemes of the standard type, each coefficient of which 
depends only on one coefficient of the differential equation. However, as will be 
seen later, in the majority of cases the structure of the standard functionals does 
not figure explicitly. 

We shall employ the concept, first introduced in [8], of the rank of the functional 
to characterize the class of standard functionals. Some functional Ah[$], dependent 
on the parameter h, has a rank r on the following conditions. 

i. Ah[#] has a differential of order r with respect to h: 

Ah[$]-A(0)[~] + hA(l’[#] + . . . + h’A(“[+] + h’p(h), 

and each of the functionals A(“) [+I, CT = 1, 2, . . . , r has a differential of order r--b 
with respect to the argument +: 

A’“‘[$+~.(P] = A(“‘[+]+&AI”‘[~,rp] + . . . + 6’-“A!?&,(P’] + 8’-*p (6). 

(Here and henceforward P(E) denotes an expression tending uniformly to zero 
when E + 0.) 

ii. The functional Ah[$], and hence A(@ [#I for all cs = 1, 2, . . . , r are homogeneous 
fimctionals of the first degree 

Ah [c+] z= cAh [+I, A(“) [c()] = CA(“) [+I, 

where c is a positive constant. 
iii. The functionals Ah[$] and A(“)[$] are non-decreasing: 

Ah IhI 2 Ah NJ9 if h 2 h 
where Ah[$] is a normalized functional: 

Ah [I] = 1 \A(O)[l] = 1, A@ [l] = 0 when (r > 1). 

If Ah [+I is a linear functional then all A@) [JI] are also linear. Therefore condition 
ii and the requirement of differentiability with respect to $J are satisfied automati- 
cally. 

We shall assume the following: 
(1) the standard functionals Rh[$], Dh[$] and Fh[$] are linear, and have rank 

2 and a second order of approximation, i.e. 

Rh [c (iv+ sh, r)] - c (x, t) = 0 (h’) 
etc. : 
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(2) the standard functional Ah[+] has rank 3 and a second order of approxima- 
tion : 

Ah [k (x+ sh, b)] - k (3, t) = 0 (h’). x = x - O.Sh. 

From the conditions 3” and (3) it follows that 

0 < k, < a < k*, 0 < c* < p < c*, 0 < d < q*. 

From condition (2) there follows especially the feasibility of the expression 

a = Ah [k (x + sh, t)] = k (5, r) + hk’ (T, r) (05 + A$@ [s]) + 

+ h2 {k” (2, t) (4 + 0.5 Alo) [s] + 0.5 Ap’ [s”]) + k’ (Z, t) Ail) [s] + 

+ (W4)2 
k CC0 

A&“)[sl -t 0 (h3>, 

where the accent denotes differentiation with respect to x, X = x-05h, 

A!,? Cl, ‘p ($1 = A$? [‘p ($1. 

From (1) it follows that 

etc. 

p = Rh [c (x + sh, t)] = c (x, 2) + hc’ (x, t) R(O) [s] + 0 (ha); 

The requirements of the second order of approximation 

a =k (x-O.5 h,z) + 0 (h’), p = c (XJ) + 0 (he), d = q (XJ) + 0 (h’), 

@ == f(x, t) + 0 (P) 

will be satisfied, if 

Ap) [s] - - 0.5, R(O) [s] = D(O) [s] = F(O) [s] = 0. 

For example, conditions (1) and (2) are satisfied by schemes in which 

a = ki_+, a = 0.5 (kit_ ki_,), a = 2kiki-1 
ki+ ki-1 ’ 

d= qi, d = 0.5 (qi+t + qi-t), @ = r;:, CD = 0.5 (fi-, +ft+*). 

p = ci, p = 0.5 (ci+t + cl_+), where Ei*+ = 6 (Xi f 0*5h; t). 

From conditions (1) and (2) it follows in particular that the scheme Lf,ksqJ ) 
and the scheme 9k) have a second order of approximation with respect to h. 

The question of the order of approximation of the scheme with respect to 7 will 
be considered below. Conditions (1) and (2). and the parameter a determine the 
initial class of schemes. 

If two schemes have an identical order of approximation (order of accuracy) 
then it is said [7], that these schemes are equivalent with respect to the order of 
approximation (accuracy). 

If the standard functionals of a scheme do not depend on h, then such a scheme 
is termed canonical. 

It is not difficult to show that any scheme Pe), satisfying (1) and (2) is equi- 
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valent to its canonical part, i.e., to a scheme with standard functionals A(O), D(O), 
F(O), R(O). It is therefore possible to confine ourselves to studying canonical schemes, 
to which group there belongs, in particular, the scheme (A) cited in the introduc- 
tion. 

4. Diflzrence 
a the following 

boundary-value problem. We shall correspond to problem (1) in 
difference problem (II) : 

L?fi)y = 0 on Q 

y” = %J (x), YO = %(t>, YN = U2(t). 
(11) 

The conditions of continuity (4) are not formulated. 
The main quantity characterizing the quality of the difference scheme is z= y--u, 

where y is the ‘solution of problem (II) and u the solution of the corresponding 
problem (I). 

The mesh function z obviously satisfies the equation 

IpIp,)z=-Y on !A 

and the homogeneous conditions 

1 
(III) 

z==O when t=O, x=0, x=1, 

where 
gj$z= orQk9)z+ (l-++bf_p(“)zy, 

Y = 9)Ip7)u- a?~- (l--or)& is the error of approximation of the scheme CP,$) 
in the class of solutions of equation (1). 

We shall represent Y” in the form of a sum: 

Y = afp+(l-a)++aX+(l-a)ji+r, 
where 

‘p _ ,rik. 4, f 1 u- L(k, 99 f) u, 
au 

x = (C-P)x3 

It is obvious from this that the order of approximation with respect to h of the 
scheme ??,Ip,) is determined by the order of approximation of the scheme Lj,k3q*‘) 
and the functional R”[#(s)]. 

Requirements (1) and (2) secure a second order of approximation with respect 
to h for the scheme 9$. 
It is easy to see, further, that r = O(T~E), where mar = 1 when cc # 4, rnt = 2 
and hence 

Y = 0 (h2) + 0 (?a). 

Thus the scheme YE) has a second order of approximation with respect to h and 
an order m, with respect to 7. 

Differentiability is here assumed to the necessary number of times, both of the 
coefficients k, q, c and f and also the function u. 
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In the case of discontinuous coefficients it turns out that the scheme YE) does 
not approximate the operator L&J near the line of discontinuity (this is dealt with in 

greater detail in 8 3). 
The question of the convergence when h + 0 and ‘c + 0 of the solution of the 

difference problem (11) (scheme ‘J$$) to the solution of problem (I) has been reduced 
to study of the asymptotic behaviour when h 4 0 and 7 4 0 of the solution of problem 
(III) and its dependence on the magnitude of the error of approximation Y. For 
proof of convergence we require a priori estimates of the solution of problem (III). 

In passing we shall examine the question of the stability of our scheme with 
respect to initial data and the right-hand side. Henceforward we shall denote con- 
stants independent of h and 7 by M, without, as a rule, indicating their structure. 

5 2. ON THE STABILITY OF DIFFERENCE SCHEMES 

We shall consider the question of the stability of difference schemes. 
In the case of constant (or x-dependent) coefficients for schemes 9,lp? in [14] 

and [15] it is shown that the requirement of stability in the mean of the scheme when 
?J < cc < 1 does not impose limitations on the ratio of the steps y = -r/h2 or on 

8 = r/h. In the case when 0 < a < 4 the requirement of stability of the scheme 
leads to the condition 

+ < -- 
2(* :la)k*’ 

It is natural to expect analogous results in the case of time-dependent coefficients 
as well. 

Stability in the mean for smooth coefficients, dependent on time, was examined 
earlier for somewhat different schemes when a = !J in [4]. 

Stability question will be examined by the method of integral estimates, on the 
assumption that 

Iail, IPil C9 

are limited. This requirement does not exclude the possibility of stationary discon- 
tinuities. We shall also refer to uniform stability. 

1. Principle of the maximum. We know [16] that for four-point schemes 

(*: l 1;) and (*: l 1;) 
one can apply the principle of the maximum: 

11~110 G ~~llz”llo+q~llo+ 
% 

where 
\r = -g&, z,, = ZN = 0, Z]+,, = z”. 

For the scheme 

(*: .I:) 

(5) 

(6) 
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the preceding inequality takes place when y = T/h2 < c,/2k*. Let d > 0. We shall 
show that estimate (5) is also satisfied for the scheme 

(: : : ll”a) 

on the condition y < c,/2(1-a)k* (see also [5]). 
We shall consider the six-point scheme ??$$ and write it in the form 

aT[(az;;),-dz]--pp’“‘z =-{i[p(a)-y(l-a)(‘~+;i)- 
” 

--s(l-a)~]+y(l-a)((~!(~l)+iic?))}-Y 

when z,, = zN = 0, zll=,, = z”. 
We shall first consider the problem for Z corresponding to the initial function 

1201, the right-hand part ]Y] and the zero boundary conditions. 
Then, when y < c,/2(1-a)k*, from the negativity of the right-hand part of (7) 

when t = 0, it follows easily that I?{ > 0. Continuing the reasoning, we obtain 
6’ b 0. 

For (7) for 5 we have 

and 

IMIO G ~(llz”llLl+y~llo~). 
% 

Considering now the problem for Z= Z- z with the same limitation on y, analo- 
gously to the foregoing we obtain 

Noting that z = Z-z’, and bearing in mind the estimates for Z and Z=, we obtain the 
desired estimate (5). 

From the principle of the maximum for the scheme 

(: : : I;_,) 

there follows uniform stability with respect to initial data and to the right-hand 
side. For the implicit scheme 

(’ : l 1:) (a=11 

stability with respect to the norm Ij Ijo takes place at any h and 7. The requirement 

d 2 0 is not a limitation, since with the aid of the transformations z{ = Sj W:’ and the 
corresponding choice of sj it is always possible to achieve satisfaction of the condi- 
tion d > 0. 
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2. Stability in the mean with respect to initial data. We shall deal with the question 
of the stability of difference schemes in the norm 11 II2 with respect to initial data. 
For this purpose we shall obtain the integral identity 

T(P (a), Z2)T + V) (p @), z~)+0*5Z+((0~5-a)(1+~)+0~5~)~+ 

+ (a-O-5)3 (a, z2;i] +((2a- l+ap) a+(l- a) ii,z&] - 

l+P --7(a-O.5)(a~,i~] = (z+@,Y)+~((P~), F)- 

-a(d,z’)-(l-a)f3(2,?)-(a$d+(l-a)$zi), (8) 

where Z = (a, zz], p@$o = &co, 2: = (Z&)2. 

We shall multiply equation (6) by z+@; summing with respect to wi and using, 
by analogy with [8] the first Green’s formula, in the case of the first boundary-value 
problem 

From this, bearing in mind the transformations 

aZ+(1-a)~~=~51+(a--0~5)(Z+~)+((0~5--a)(1+~)+0~5~)j, 

Z+ i- 2 (a, z; ?;I = 72 (a,z$] - T (UT, $1, 

we obtain the integral identity (8). 
We shall consider the question of stability with respect to initial data for the 

case a = 3. 

By putting in (8) p = 1, a = 4, Y = 0 we shall obtain 
” 

(p@), z2)i+ 0.5 (I+ Z) + 0.5 (a + ii, z;&] 

=-+(d,z2)-&((d:ie)--(d+d:zi)+(pF’,fa), 

Using the estimate from [8]: 

Z< MP'"', 21 It=ci, where p’@ It=,, = p ItcO, 

(9) 

and using the inequalities 
” 

*< l+MT,(l,zB) < MZ, 
2J&i 

- MP (p(b), z”) It =0 < - AIra (If i) < 0.5 (I+ i) + 0.5 (a+ 6 z&], 

we obtain from (9) 
(l--MT) w < (l_tMT) ~+TMPwo, 

where w = (p(@, z~), 6 = E/h. 
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From this there follows 
W < M(l+P) W0 

and 

llzllz < Wl + +0112Y (10) 

From the preceding inequality, by virtue of [14] there follows. 

THEOREM 1. If condition (S) is satisfied, then fhe scheme 2?,$) when cc = + is stable 

in the mean with respect to initial data for an arbitrary 6 = -r/h --) CO. 

Note. Using the integral identity (8) when S = 0 and Y = 0, it is easy to obtain 
for 0 ,< a < 4, 4 < a < 1 the following estimates: 

IIz~~~<M~(Y)I[z~I/~ for +< a< 1 and any y, 

where E is any number from the interval 0 < E < 1 (in the case tc = 1 the constant 
M2 does not depend on y). 

There follows from this, in accordance with [14], stability with respect to the 
norm II 112, stability in the mean with respect to initial data when u # $ and at 
an arbitrary y + co with satisfaction of condition (S). 

If we reject the requirement to limit the difference ratios (e.g., in the case of 
an oblique discontinuity) ai and di then, by using the method of integral inequali- 
ties, we can obtain the following estimate: 

ljzllZ G Ml/l+(l-~rw)8y2~~z0~j,+M{~~~~Y~~~}* WGaGOo). (10’) 
WT 

The estimate is obtained on the assumption of the limitation of pi. 

3. A priori estimates and stability with respect to initial data and the right-hand 

side. In [8], to solve the problem 

P&=--Y, z,=zN=o, z!J=o=zO, o-5 < a < 1. 

the following a priori estimates were derived: 

/Izoll~ 11412+11~i112 G ~(I/~OIl~+/l~~ll~+(CII~II~~)fJ~ 
4 

(1, zsm+ < cmlp?l~s. 

qz+=G cmljq3, a= 1, z, = 0, 

% 

(11) 

(12) 
(13) 

where C, = M2mmeM2mm. Estimate (11) was obtained with the condition 

Iail G M, Ipi1 G M, and (12) and (13) on the assumption that only lpi] is bounded. 
Estimates (12) and (13) will be used to study convergence in the case of moving 
discontinuities. 

Using formula (8) when S = - 1, we can obtain, by a method analogous to [8], 
an a priori estimate when 0 < a < 4, z” = 0 and on condition (S): 
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From formulae (11) and (14) there follows the stability with respect to the right-hand 
side (ze = 0) : 

MO G gaper)” G qIl~ll:7)t~ 
% 

and also with respect to initial data (Y = 0): 

IkIlo c Il4l2+Il4 G wllz”l12+Ilz~l12~~ 

5 3. CONVERGENCE OF DIFFERENCE SCHEMES IN THE CLASS OF 
DISCONTINUOUS COEFFICIENTS 

In this section we shall prove a number of theorems concerning the convergence 

(and accuracy) of the solution of difference problem (11) to the solution of problem 
(I) when h + 0 and 7 + 0. Two cases are considered individually: 

(a) moving discontinuities (the lines of discontinuity k (x, t) are straight, 

x = const.), 
(b) oblique or moving discontinuities on the curves x = q,(r), v = 1,2, . . . , v. 

and 7$(t) f 0 at least for one v. 
An especial part is played by the scheme Y,$, which is defined by the standard 

functionals 
0 

R t $ (41 = D t 1$, WI = I: iI+ WI = OS’ -1 
4 (4 ds, A rJc ($1 = 

-0.5 [S 1 & ’ 
-1 

so that 

~=[~~(xzr~~,n]l. _@: 

0.5 

d = 1 q (x+sh, t)ds, p = s c (x+sh, t)ds, 
-0.5 

@ = of f(x+sh, t) ds. 
-0.5 

Henceforward we shall call it scheme (A) 
Let us formulate condition, which is to be used below. Condition A,. The func- 

tions k’, k”, c’ q’, f’, u” (ku’)” satisfy the Lipschits condition with respect to x, and 
the functions 

k, c, ama-- ’ c/3tma- ‘, ama u/8tmu 

the Lipschits condition with respect to t (m, = 1 when a # #, rnb = 2) either in 

the whole domain 8 or in each of the subdomains A, (v = 0, 1,2, . . . , vo) (hence- 
forward this will always be indicated). 

We shall consider first the question of convergence in the case of continuous 
coefficients. 
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1. Convergence in the class of continuous coeficients. 

THEOREM 2. If the conditions A, are sati$ed in the domain ,a then any scheme 

9lp,‘from,the initial family of schemes has a second order of accuracy with respect 

to h and an order m, with respect to 7, or more accurately, at a sumiently small 

7 < -rO the estimates 

are satisfied, and in the case a = 0 the requirement, 

must be satisfied. 

As follows from $ 1 (Section 3 and 4) for the right-hand side of problem (III) 

the relation 

l/Y? 110 = .o P2>+ 0 (Pa>. 

is satisfied. 
Using the a,priori estimate given in (8) (see 5 2, Section 3) and bearing in mind 

that Ilyfll, G II’I’X,, we obtain estimate (a). Estimate (b) follows from the principle 
of the maximum (5 Z, Section 1; see also (5)). 

2. Error of approximation in the vicinity of the line of discontinuity. Let thefunc- 
tion k(x, Q and all the remaining coefficients of equation (1) have discontinuities 
of the first kind on a finite number of straight lines x = u], = x,+B,h (x,” 

=n,h,O<O,<l,v=1,2 ,.,., v,,) parallel to the axis t, the limit values on the 
left and right of the functions 

4, f, k’, q’, c’, f, k”, u’, u”, u”’ 

satisfying along each line of discontinuity x = qV the Lipschits condition with 
respect to t for 0 < t d T (condition B). 

If, moreover, in each of the domains A,, condition A, is satisfied, then 

Y = 0 (h’)+ 0 (-f”~) 

at all the points (x, t) of the mesh s2 for which x # x$, x # x,~+~. 
To siniplify the notation we shall deal with one line q = x,+6 h, n = n(h), 

8 = B(h). Transition to the general case v0 of lines of discontinuity does not present 

difficulty. 
We find in [7] the expansion of cp+x = JI in powers of h at the points x = x, 

and x = x,,+~. It turns out that for the scheme (A) described in 3 1, Section 3. 

9% = 0 (l), 'Qn+1= om 

(P"+%+l= (0.5 -e) {(P qn f) u)r -(Ck* 4. f) u),} + 0 (h). (15) 

For any scheme PgJ from the class of schemes under consideration the condi- 
tions 
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h?, = 0 (l), hy,,, = 0 (11, %+‘P”+1= O(l). 
are satisfied. 

We shall calculate x. and xnfl, bearing in mind in the process that 

[$= (-q-(q,=o. 
In the case of scheme (A) we have 

03 

p= i c(x+sh,t)ds. 
-0.5 

Considering separately each of the cases 0 < 8 < O-5 and 0.5 ,< 6 < 1 we find 

X” = 0 (l), Xn+1 = 0 (l), 

au 
xn+xn+1= -(0~5--8)(~-c,)~(~,~)+O(h). 

Combining these results with (15) and bearing in mind the equation PU = 0 and 
also the estimate 

I” = 0 (?a), r,,, = 0 (T%), 

we obtain 

(cp+X)“+((P+X)n+l= (0.5 - 0) { (3.4, - (7%) + 0 (h) = 0 (h) 

and hence for the scheme (A) we have 

4” = 0 (l), +“+I = O(l), where + = cp+x, +n+On+l = 0 (4. 

For any scheme Tg) the conditions 

hlCln = 0 (1)s hL+, = 0 (l), +n+4Jn+1= O(1). 

are satisfied. 
The expressions for $, and #“+$“+r may be represented in the form 

+” = v + Fco,+h$,,,+ 0 (ha), +,++,+I = a(o,+ha(,,+O(P). 

Without writing out the expressions for pf-lj, pcoj, pcl), oco, and CT(~) we shall indicate 

that & depends on 0, J$, k&,4 = k,4), BtO) and o(O) on 0, k,, k,, q, c,,ql,qr, 

fi, fr, k; k:, 4, 4, u;‘, u:’ and the coefficients ptI, and “11j also depend on k;‘, k;, 

4, q:,_fi,_f:, 4, c:, u;“, uy’, the relationship of the coefficients &, pcoJ, P,~,, ocoj 
and e(r) with respect to all arguments except kl and k, being linear. 

For the scheme (A) we have 

PC-I) = 0, a(,) = 0. 

We shall represent 8 = ‘p+x in the form of the sum 

(i, = ;j;+q (16) 
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where 

$ =0 when X+X, and x#x,,+,, 

T” Fbl) = h + P(o,+h?,l,, $n+K!+1 = qo,+hq1,. 

From this and from (16) it is clear that 

II 611 = 0 P2> 
for all schemes ??,lp,,. 

We shall represent the solution of problem (III) as the sum 

z=v+w, 

where w is the solution of the “stationary” problem 

(awJ;>, = - ;i;, wg = 0, WN = 0. 

The right-hand side Y of equation (III) can be represented in the form 

Y = tC++(l-c+j+r = F-fY, 
where 

F= a$+(l-&, Y = fY.T+<1 -ct) $+r. 

W) 

It follows from this that the function v is defined by the conditions 

S$$v=--Q on CJ , 
vo = VN = 0, 

00 = - wo 9 I 
where 

09 

Q = ?&A”‘~-ord . w-(~--CC) d’. i. (17) 

3. Theorem concerning convergence in the case of stationary discontinuities. Let 
us turn to the estimation of w and WT. Problem (IV) was investigated in (7), where 
it was shown that 

IIwIJo ~~ll~Ilr~~hX; 

here x = 2 for scheme (A), x = 1 for any scheme 9$) from the class of schemes 
under consideration. 

LEMMA 1. If the conditions B are satisfied, then for the solution of problem (Iv) 
the following estimates are valid: 

a) jjw~ Ijo < Mh”, 

b) IIw;]\~ < Mh”-*. 

In fact, taking into account that (dw;)i = aw;i+a;G;, we obtain, for < = Wi 
the boundary-value problem 

(al;);), = - 8, co = CN = 0, 
where 
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We now take advantage of the a priori estimate [7] 

IKIlo <Mll$lla< wIwla+IIkII1~. 
By virtue of condition B the quantities 

(%,)T, (c&P (P&l))T, . @(-1,>T 

are bounded in absolute magnitude, therefore 

Il$& < Mh”- (18) 

Introducing the Green’s difference function of problem (IV) and representing 

w in the form 

w = (G, $), 

it is not difficult to see that 

w; = 0 (P) when x# x.+1, (Kc)",, - OW1). 

From this there immediately follows 

II&& = O(P), IIW;II, = 0(/z”-*). 

The lemma is this proved. 

THEOREM 3. If condition B and conditions A, are satisfied in each of the domains 
A,(v = 0, 1, . . . . v,,) then the solution of problem (II) converges to the solution of 
problem (I) with the independent approach of h and 7 to zero, so that at a suficiently 
small 7 < 70 for any scheme 9fi’ from the class of schemes under consideration the 
estimates 

IIY-ullo G M(h+T) for a=l, (19) 

Ily-~llo < M(h*+r”a) for 0.5 <a < 1. (20) 

are valid, where ma = 1 when a # 4, mt = 2. 

THEOREM 4. If the conditions of Theorem 3 are satisjied, then for scheme (A) 
the estimates 

Ilv-ullo < M(h2+7) for a=l, (21) 

IIy-ull~ < M(h”*++Q) for 0.5 <a < 1. (22) 
are valid. 

NOTE. For all 0 < a < 1 with the additional conditions 

c* “$< 2(l_a)k* (23) 

the estimate 

is valid. 
(24) 

Theorems 3 and 4 will be proved if we establish that estimates (19)-(22) and 
(24) are satisfied for the function w-the solution of problem (V), since 

Il~l/~~II~II,+lI~Il,~~~x+II~II~. 
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For the estimate of the solution of problem (V) in the case O-5 < a < 1 we shall 
use a priori estimate (11) : 

By virtue of [17] and Lemma 1 we have 

II QII, < Mw+~m+ l/w:112 < lwf+*. 

From this and from (25) there follow inequalities (20) and (22). 
If condition (23) is satisfied, then to obtain estimates (19), (21) and (24) we can 

use the principle of the maximum: 

ll~llo G M{ll~“llo+ ;Mo 1 G MW++“a), 
7 

since 
II fJ” II0 = II wOllo = 0 w>. 

The theorem is thus proved. 
It must be borne in mind here that the a priori estimate (11) applies only if I ai 1 and 

1 pi 1 are bounded (i.e., 1 ki 1 < M, [ c; ! < M). In the case of the moving discontinuity 
under consideration these conditions are satisfied. 

4. Convergence in the case o-f an oblique discontinuity. We now consider the 
case of an “oblique discontinuity”, i.e., the problem formulated in 4 1, Section 1. 

The coefficient k(x, t) has discontinuities on a finite number of curves r,(v 
1, 2, . . . , vo) satisfying the following conditions: 

(1) the curves r, (V = 0, 1, . . . , vo+l) do not intersect in pairs; 
(2) the curves lYy are differentiable. 
The coefficients q(x, t) and f(x, t) are also discontinuous only on the curves 

I?, , while c(x) t) can have discontinuities only on these curves ry, which are parallel 
to the axis t (3; (t)zO). All these conditions relative to the coefficients and the 
curves lYy will be called the conditions K. 

THEOREM 5. If the conditions K and A, are scM$ed in each of the domains A,(v 
= 0, 1, . ..) vo) the solution of problem (II) when a = 1 converges to the solution 

of problem (I) with independent approach of h and 7 to zero, so that at suJqiciently 

small h < ho and 7 < T,-, 

l]y-u Ilo < A4 (hf-pl(Q++-Jl)), 

where p,(h) + 0 when h + 0, pz( +T + 0 when ‘c + 0, in the entire class of initial ) 
schemes. 

THEOREM 6. If the conditions of Theorem 5 are satisfied, then for the scheme 

(A) of the estimate 

Ily-ullo < M(h1-Pl(9++-p,(s)) when ct = 1. 
is valid. 

We shall prove both theorems for the case of one discontinuity: 

? = x.+% x, = nh, o<e<1, 
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where 
n = n (h, t), 8 = e&t). 

Let us consider the error 

y = $+r, + = cp+X, ‘p= ,r~k,UU-LL(k.qJ)~, 

au 
x=(c-P)x) 

au 
‘5p at-- ( 1 

If the conditions A, are satisfied in Av, then + = 0(h2) for x # x,, x# x,+r. Since 
c(x, t) does not have a discontinuity on the line Fy (when q<(t) $ 0) then X. = 0(h2), 

X n+1= 0 @12. 

For (P,, and (P”+~ we obtain the same expressions as in Section 2 but in this case 

even for scheme (A), since on the curve’r, (q, (t) # 0) the derivative au/at is discon- 
tinuous, which follows from the identity 

y,+y,+, = 0 (1) 

au - 
[ II au 

at rv= -4 (0 ax [ II rv - 

In fact, for scheme (A) we have 

%t+‘Pn+1= (0.5-Q c(q (022) g + 0 (4. 
[ 1 

Let us deal in detail with the estimation of the error r. The curve x = q(t) for 
t-7 < t’ < t intersects the straight lines x = ih at the points (xP, ti) where 

P = Pm po+l, **., p,,+Z- 1. At all these points rP = O(1). Let q’(t) > 0. Then 

and hence 

au 
rp= (l--h)Cp at 

[ Ii + 0 (4, rv 

where A is determined from the condition 

XP = -q (t - Ii)-, O<A<l 
so that 

kc = y1’ Q Nz+o (+ 

Let us calculate the number of intersection E. Three cases are possible (see Figure) 
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The number of intersections Z on each line of the mesh satisfies the condition 

LEMMA 2. Let E be the solution of the problem 

pgG=---7 on IR; er, = UN = 0, 50 = 0 , (VI) 

where F= O(1) at one point (xP, t) on each line and F = 0 at all the remaining points 

of the mesh Sz. Then for E when h < ho there is a valid estimate 

j( w [lo < Mhl--p(Q, (26) 
where p(h) + 0 when h + 0. 

We shall use upriori estimate (12). From this estimate there follows the inequality 

jj5jlo < C,,,~/~(~~h-@, m = I, 2, 3, . . . . 
where 

C, = M2mmeM2mm. 

Our calculations give us 

ll:]ls=hI:,I <Mh 
and 

Ij E/lo < C,hl-4“’ 

We shall select the number m dependent on h so as to obtain estimate (26). For 

this we must have 
1 MP 

P(h)++In(lo. 

Selecting, for example 

we obtain 

LEMMA 3. If the function 7 satisyfes the conditions hr,=O(P-1),h7~+1=O(hx-1), 

F,+Y,,+1 = O(1) and? = 0 when x # x,, x# x.+~ (h = n(h, t)) then for the solution 
of problem (VI) when h < h there is valid the estimate 

I( Gil,, < Mhx’*-p(h), 

where p(h) + 0 when h --) 0. 
For proof of the lemma it is sufficient to convince ourselves that 

/[Y/l; < hr7+ha (F,,+Fn+Ja < Mh”, 
i.e., 

j/~/Is < MhKla, 

and then use a priori estimate (12). 



Convergence of difference schemes 981 

LEMMA 4. Let 5 be a solution of problem (VI), where F= O(1) at thepointsp,+l, 

pot2, ***, po+Fi of the line t = Tj and ?= O(T) at the remaining points of the 

line t = Tj, the number of points E satisfying the condition 

ogn+. 

Then for Z when 7 < q, there takes place the estimate 

11 v 110 < M+-p(7), Q (7) + 0 when T --f 0. 

For proof it is sufficient to estimate 

(27) 

and use a priori estimate (13), from which it follows that 

Now, selecting m dependent on T, we arrive, at sufficiently small values of T, at 
estimate (27). 

COROLLARY. If in Lemma 4 Z G Mr/h+l then by virtue of Lemmas 2 and 4 
we will have l$?[j,, < M(hl--p~(h)+?--P~(l) when r < 70 and h < h,. 

We shall now turn to the proof of Theorems 5 and 6. 
We shall represent solution z in the form of the sum 

z = z+z+v, 

where v is the solution of problem (III) with a right-hand side equal to r = p(&t/& 

-UT), and Z is the solution of the same problem, with the right-hand side 

An estimate for k can be obtained with the aid of the maximum principle: 

ll$ < M(hs+r), 

for v with the aid of the corollary of Lemmas 2 and 4, and for z with the aid of 
Lemma 3. 

Collating all the results, and noting that 

Ml0 f II~llo+ll~llo+llvllo~ 

we obtain the desired estimates. 

NOTE. From estimate (10’) there follows the convergence in the mean for the 
six-point scheme (A) (0.5 d a < 1) in the case of an oblique discontinuity. 

In conclusion, the authors take this opportunity to express their gratitude 
to A. N. Tikhonov for discussing the results of this paper. 

Translated by G. K. ELLIOT 
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