
THE STURM-LIOUVILLE DIFFERENCE PROBLEM* 

N. A. TIKHONOV and A. A. SAMARSKII 

Moscow 

(Received 14 May 1961) 

THE solution of the Sturm-Liouville problem for the equation 

LCk*q) u+ Ar (x) u = 0, O<x<l, L(Q)U= -& k(x): -q(x)u(x) (1) 
[ 1 

by the method of finite differences has been the subject of a great many studies. 
The question of convergence and accuracy in the class of smooth coefficients 
for difference schemes of a particular form were considered in [l]-[3]. 

In this paper we employ the homogeneous difference schemes, studied in [4], 
for solving the Sturm-Liouville problem in the class of discontinuous coefficients 
Q(“). The formulation of the problem and the characteristics of the initial family 
of difference schemes are given in 0 1. In 0 2 the convergence of the difference method 
is proved. In 0 3, with the aid of a priori estimates we establish the order of accuracy 
in Q(mP1) of the solution of the difference problem when h + 0. It is shown that the 
difference scheme 

where 
Liks4.hr)y = (ay;;),--dy+Apy, 

ensures the second order of accuracy in the class of discontinuous coefficients. 

5 1. DIFFERENCE BOUNDARY-VALUE PROBLEM 

1. Sturm-LiouviZle problem. We shall consider the homogeneous differential 
equation (1) with homogeneous boundary conditions 

k(O)u’(O)+o,u(O)=0, k(l)u’(l)-o,u(l)=O, (2) 

where cl and o, are some constants. 
The Sturm-Liouville problem, or the eigenvalues problem, consists in finding 

those values of the parameter A (eigenvalues) at which there exist non-trivial solu- 
tions (eigenfunctions) of the problem (l)-(2) and also in finding the eigenfunctions. 

Henceforward we shall everywhere assume that the coefficients 
equation (1) and the condition (2) satisfy the conditions 

* Zh. vych. mat. 1: No. 5, 784-805, 1961. 

939 

entering into 
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O<c,<k(x)<c2, O<c,,<r(x)<c4, O<q(x)-Gc,, 

01 a 0, %! > 0, q+ b2 > 0, 
(3) 

where cj(.i= 1, . . . . 5) are some constants. 
If k(x) has a discontinuity of the first kind at the point x = <(O < E < l), then 

at this point the conditions of conjugation (continuity of u (x) and k(x) u’(x)) 

must be satisfied: 

where 
[u] = 0, [ku’] = 0 when x = 5, (4) 

VI =fi-fl, fl=f('-Q _A =f(E+Q 
The problem defined by condition (l)-(4) will henceforward be termed prob- 

lem (I). 
We shall use the following notations: Qm [1r, I21 is a class of functions which 

are piecewise-continuous on the line segment [I,, 12] together with their derivatives 
to the mth order inclusive; Qcmn,y) [Ii, 12] (0 < y < 1) is a class of functions from 
Q@“) [II, /J, the mth derivatives of which satisfy on the intervals of their continuity 
the HGlder condition of the order y; Urn) [1r, I,] is, as usual, a class of functions 
having an mth continuous derivative. 

As we know, problem (I) is equivalent to the variation problem: 
(1) In the class of piecewise-smooth comparison functions ‘p(x), satisfying the 

conditions 

H[?]=iq2(x)r(x)dx= 1, 
0 

k@)cp’(O)--a,rp(O) = 0, k(1)$u)+~,cp(1) =o, 

find the minimum of the functional 

D [cp] = I: k (x) (cp’)2dx+ iq 6) q2 (4 dx+vp2 (O)+wpz (1). (5) 

This minimum determines the first eigenvalue 

A1 = minD b+] = D [$I 

(2) The remaining eigenvalues A,(n > 1) are found as the minimum of functional 
(5) in the class of piecewise-smooth comparison functions y(x) satisfying the ad- 
ditional conditions 

H[cpl= 1, J&p, u,,,l = 5 ‘p (4 u,,, (xl r (-4 dx = 0 when m-=cn, 
0 

where u,(x) is the eigenfunction of the number m. This minimum determines the 
nth eigenvalue 

A, = min D k+] = D [II,,] 

and is reached at the nth eigenfunction u, (x). 
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The Sturm-Liouville problem (I) for piecewise-continuous coefficients k, q, 

r E Q(O) has the denumerable set of eigenvalues h, < h, < . . . < h, < . . . , to which 

there correspond the eigenfunctions ul(x), uz(x), . . . , u.(x), . . . . (see [5]). 
We shall indicate certain known [5] properties of eigenfunctions and eigenvalues. 
1. To each eigenvalue there corresponds only one eigenfunction. 
Let us assume that to A, there correspond two eigenfunctions U,,(x) and Z” (x). 

Then their linear combination ii, (x) = ??,, (O)ii, (x)-U, (O)U, (x) satisfies the condi- 
tion G,, (0) = 0 and is also the eigenfunction corresponding to A,. From the condi- 
tion k (0) ii’(O)--a$ (0) = 0 for cl # 00 we obtain ii’(O) = 0. It follows from this 
that ii,(x) z 0. In the case of the condition of the first kind (ci = 00) one can select 

ii, (x) = z; (0) u, (x)- I&(O) TT, (x). We can therefore write A, < A, < . . . < A, < . . . . 

2. Eigenfunctions {t&(x)> form an orthogonal system normalized with weight 

r(x): 
H[u,, u,,,] = 0 when m# n, H[u,] = 1. 

3. All eigenvalues are positive: A,, > 0, n = 1,2, . . . . 
4. Eigenvalues A, + 00 when n + 00, or, more accurately, 

where c6 and c, are positive constants independent of the number n and dependent 

solely on Cj(j= 1, . . . . 5). 
5. Eigenfunctions and their first derivatives are bounded - more accurately, 

I%(91 < C89 l~;(~)i<c;lK<cc,~, (7) 

where c8 and c9 are positive constants dependent solely on cj(j = 1, . . . , 5). 
For the case k, q, r E C@) proof of (7) is given in [5]. This proof may also 

be transferred, with certain changes, to the case k, q, I E Q(O). 
x 

Let us introduce the new variable t = [r(x) dx. Then equation (1) takes the 
0 

form 

-$ k (f)$ -@(t)ii+hZi = 0, 
[ -1 

o<t<1, 

where 

k (t) = k (x) r(x), i(t) = q (x)/r(x), ii(t) = u (x), I = 5 r (x) dx. 
0 

We multiply equation (1’) by U’(t) and integrate from 0 to ?: 

k (0) [il’ (o)]“+ tiB (0) = k (t) [ti’ (r)18+ ATi* (1) - 2 5 @Z-i’ dt,. 
0 

(8) 

We integrate once more with respect to t from 0 to 1, and bear in mind that 
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I 

s z (r) [ii (r)]” dt < A, 
0 

As a result we will have 

E (0) lji’ (o)]“+G2 (0) < ? + CIOfx (10) 

Returning now to (8) and bearing in mind inequalities (9) and (10) we obtain 

k(t) F’ (t)]“+liiii” (q < + + Cl0 fx 
From this, and from (6) there follow estimates (7). 

Problem (I) is equivalent to an integral equation with 

U(X)=h3G(X,DrOU(S)dE, 
0 

synthetizable kernel : 

(11) 

where G(x, E) is Green’s function for the operator L(**4) with boundary con- 
ditions (2), and also to the integral e;quation 

u (x) = 5 Go (x, 5) (hr (0 - 4 (E)) u (E) d<, (12) 
0 

where Go@, E) is Green’s function for the operator Lck)u = (ku’)’ with boundary 
conditions (2). 

2. Notdions. Let us consider on the line segment [O,l] the difference mesh 

a,, = {x0 = 0, . . . . x, = i . h, . . . . xN = N * h = l}. 

The mesh function yt, defined by ah, will henceforward be designated by y or y(x), 
when this will not give rise to misunderstanding. We shall also write 

(Y) (- 1) 
=yi+17 Y =yi-1, y; = (y-‘;‘)/h, yx = (‘$y)/h. 

Let v be some mesh function defined on wh. We shall introduce the notations 
N-l N-l 

b’, ‘1 = ,C, YtVih, [I’, V) = CYiVih> (J’s V] = ?_YiVih, [up V] - t yiVih* 
i-0 i-1 i=O 

We shall use the following norms: 

llvllo=y/viI~ Ilvllcr =~lvI",lll'b (a = l., 2), 

N-l I 

I148=ippq’ 

llv 114 = lb%+ 16% 1) l + l Vo 1 * h+ l vN I h. 

(13) 

(14) 
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It may be found that the function o is defined not on the whole mesh, but on part 
of it. For example, the function y, is defined at the points xi for i = 1,2, . . . , N, 

and the function y,-for i = 0, 1,2, . . . . N-l. In this case 

We shall also write 

Iv9 $1 = (us 4J>+YoY1+Y&, (15) 

where # is a function defined at the points Xi, i = 1,2, . . . , N- 1, if we formally 
put h+,, = i$, h+N = Vs. 

The difference operator (ui+l(Yi+l-YJ-ui(Yi-Yi_J)/h” with the aid of the 
notations introduced, will be written in the form (a~;),. 

We shall need henceforward: 
(1) the formula of summation by parts: 

[y, %) = - (% u;] + b>N - hv>o : 

(2) Green’s difference formulae 

(16) 

(@r;)X, u) = -(a,r;v~l++urrv),-(ac+l’u, ~0)09 (17) 

(h;),, VI = ((av;),,y)+aN(I;,v-yv,)N--a,(y,v--yv,),. (18) 

We shall not deal with the derivation of these formulae, since it is elementary. We 
shall designate by p(h) any expression, uniformly converging to zero when K+ 0. 

All constants independent of h will be designated by the letter M, without, as 
a rule, indicating their structure or their relationship to other constants. 

3. Difference schemes. In deriving a difference scheme for the solution of prob- 
lem (I) we shall use the results of [4]. We shall introduce the notations 

Sk* q* Ar’U = (ku’)‘--qu+hrU, Lf.9 41 Ar)Y = (uu;;>X - dY + Apy. 

We shall assume that Llk*q*)v) is a homogeneous conservative scheme of the stand- 
ard type [4]. Its coefficients a, d and p are expressed with the aid of the standard 
functionals 

A” if(s)], f E Q’O’ [- 1; 01; D” [f(s)], f E Q(O) [-O-5; O-51; 

Rh [f (s)], f E Q(O) [-O-5; O-51, 

defined in the class Q(O)(~E Q(O)), in terms of the coefficients k, q , r of the differential 
equation (1). Each coefficient of the scheme depends on only one coefficient of the 
differential equation (standard-type scheme) : 

u=A*[k(x+sh)], -I<S<OI d=Dh[q(x+sh)], -o.s<s<o.~; 

p = R*[r(x+ph)], -o.s<s<o.5. 

(The dependence of the coefficients a, d and p on h is not explicitly indicated). 
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As the initial family of schemes we shall consider conservative schemes, since, 
as shown in [4], non-conservative schemes 

do not give convergence in Q@“). In the class of smooth coefficients the scheme 
zik*@ can be transformed into the conservative scheme 

L(hk’ ‘)yi = PiZp’ ‘)yj = (&Z),, i-_diy,, 
where 

i-l 

Pi = n (bk/ak+lh ai = aivi, 6 = dipt 

k-l 

(see 141). 
If the scheme zi k* 4) has an mth (m = 1,2) order of approximation and 

k(x) E Ctm+l), then pi = 1+0(/P). From this it follows that the results obtained 
henceforth for k(x) E Um+l), q , r E Cc”) will also be transferable to non-conservative 
schemes. 

We note that the authors of [l]-[3] only studied discrete schemes of a particular 
form (e.g., a = k(x -h), a = k(x - 03), d = q , p = r(x)), whilst in addition discrete 
schemes of the fourth order in C(“) were studied in [3]. 

The difference scheme L$,kpq*hr) is characterized by an approximation error 
in the class of differentiable coefficients 

where u is any function differentiable a sufficient number of times. 
In studying convergence and accuracy, we shall be dealing with the approxima- 

tion error on the solution u(x) of equation (1). 
In [5] the concept of the rank of standard functionals was introduced. 
If all the standard functionals have a rank m(m = 0, 1,2), we say that Lj,kBqvhr) 

is a scheme of mth rank. The requirement of definiteness of the order of approxima- 
tion leads to certain conditions (which will not be written out here) to be satisfied 
by the standard functionals and their differentials with respect to h and with respect 
to the functional argument. We shall indicate two properties of standard functionals 
which are fulfilled for schemes of all ranks, beginning with a scheme of zero rank: 

(a) Ah[l] = Dh[l] = R*[l] = 1 (normalization condition) 
(b) the functionals A”Lf], Dh[l] and Rh[f] are non-decreasing: Ah[fJ 2 Ah[fi] 

if fi 3 fi, and so on. 
Moreover, we assume that Dh[f] and Rh[f] are linear functionals. 
From this, and from (3) in particular it follows that the coefficients a, d and p 

satisfy the conditions 

O<c,<a<c,, O<c,<p<c,, O<d<c,, (1% 

where cj(j= 1, . . . . 5) are constants entering into condition (3) 
As the initial class of difference schemes L(f@h’) we shall consider in 8 2 schemes 

of zero rank. 
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In 0 3 we shall also examine the family of difference schemes of the second rank 

satisfying the conditions of the second order of approximation (see [4]). This family 
belongs to the initial class, and we shall call it the initial family of schemes of the 
second order. 

If the standard functionals are canonical, i.e., do not depend on the parameter 
h, the difference scheme is called canonical. 

Two schemes are termed equivalent with respect to the order of approximation 
(accuracy) if they have an identical order of approximation (accuracy). It is not 
difficult to see that any scheme of mth rank is equivalent to its canonical part [4], 
i.e., to a scheme with canonical standard functionals A(O), D(O) and R(O) which are the 
main terms in the expansion of Ah, Dh and RF with respect to h. 

It follows from this that the entire exposition may be made for cannonical schemes. 
We shall give more detailed characteristics of the properties of the canonical 

standard functionals A [j’], D[f] and R[f]. 
The linear canonical functionals D[f] and R[f] ,. satisfying conditions (a) and 

(b) have any rank, as high as one wishes. 
The canonical functional A[f], which is generally speaking mon-linear, has 

mth rank if, apart from conditions (a) and (b), it satisfies two further requirements: 
(c) A[f] is an homogeneous functional of the first degree, i.e., 

where c is any positive number: 
(d) _4[f] has an mth differential, so that in particular we may write 

AU+6 *_a= l+p@) (ifIfj<M) when m=O, 

Au+6 *j-l= ~+~~,[fl-t~p(q when m = 1, 

A[1+6 *fl= l+6A,[fl+62A,[f]+~2p(~) when m=2, 

where p(6) -+ 0 when 6 + 0, Al[f] is a linear functional and A2[f] a quadratic func- 
tional. 

The necessary conditions for the mth order of approximation of the scheme 
@,qSAr) have the form (k, 4, r E C(“)[O,l]) 

a=k~+O(h’“), d=q(x)+O(h”), p=r(x)+O(h”), X=X-0*5h, (20) 
M = 1,2. 

Any canonical scheme of the first rank satisfies these conditions when m = 1. 
A canonical scheme of second rank satisfies the conditions (20) when m = 2, if 

A, [s] = -0.5, D [s] = 0, R[s] = 0.5. (21) 

It is easy to show that for any symmetrical scheme of the second rank condi- 
tions (21) are satisfied. 

4. Difference boundary-value problem. Before formulating the difference 
analogue of problem (1) we have to formulate difference boundary conditions corre- 
sponding to conditions (2). 
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We shall consider the boundary operator 

I(%= k(O)u’(O)-crlu(0) 

and its difference analogue 

2xf’Y = UlY,, 0 - two . 

It is easy to show that the operator 1, -u) has only a first order of approximation. 
In fact, let @) be a scheme of second rank, satisfying the conditions (21) for the 
second order of approximation, so that a = k(x-0*5h)+O(h*) for k E CJ2). 

Weshall then have 

a, = k (0)+0*5hk’ (0)+ 0 (h2), u,, o = u’ (0)+0.5hu” (0)+ 0 (h2), 

@‘u-l% = 0.5h (ku’)’ Ix=o+O (ha, = 0.5h (q (0)--hr (0)) u (O)+O (ha), 

where u(x) is a solution of equation (1). 
It follows from this that the difference operator 

V’Y = wx, o- &y+ 0*5& (0) Yo , where bl = al+03hq(0), 

has a second order of approximation in the class of solutions of equation (1). 
The same property is possessed by the operator 

1PY = aNfi, N -k 0zYN - 0’5hhr(l)Y,, where & = ap+03tq (I), 

which corresponds to the operator 

C2)u = k(l)u’(l)+a,u(l). 

The Sturm-Liouville difference problem will be formulated as follows. 
We are required to find those values of the parameter Ah (eigenvalues) to which 

there correspond non-trivial solutions (eigenfunctions) of the homogeneous equation 

(uy&-dy+A”py = 0 at the points x = xi, i = 1,2, . . . . N-l, (22) 

with homogeneous boundary conditions 

QYx, o--a,Y,+h~hP,Y, = 0, aNy% N fE2yN-hhhhp~YN = 0, 

where 

p. = 0*5r(0), PN = 0*5r (1), El = o,+O.Shq (0), E2 = a,+0*5hq (l), (23) 

and also to find these non-trivial solutions (eigenfunctions). 
The coefficients of the problem satisfy the conditions 

O<c,<a<c,, o<c,<p<cp, O<d<c,, qZ0, a2>0, 

al+a2 > 0. (24) 

In the neighbourhood of discontinuity of the coefficient k, the conditions of 
continuity, like conditions (4), are absent, since we are considering homogeneous 
schemes, which do not envisage the explicit isolation of the points of discontinuity 
of the coefficients of equation (1) (schemes of through-computation). 

Henceforth the difference boundary-value problem (22)-(24) will be termed 
problem (II). 
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5. Difference variational problem. Let y and hh be the eigenfunction and the 

corresponding eigenvalue of problem (II). Putting o = y in formula (17) and using 

conditions (23) we find 

Ah = DN [dHN [Y], (25) 
where 

DN [J’] = kYa;l +Ti,Y:+%Y$ (8 = (“ii)‘), (26) 

HN [yl = ipd”], PO = @5r (o), pN = o+(l). (27) 

Using Green’s formula, it is easy to see that difference boundary-value problem 
(II) is equivalent to the following variational problem: 

(1) find the minimum of the functional DN [(p] in the class of mesh functions ‘p, 
satisfying the conditions 

%(Px,o --olqoi-hD, [IsI PO'PO = 0, aN~~,N+~m-hDN [d PNQN = 0, 

Hv[(Pl= 1; 
and 

1: = DN[yJ= min DN[(P] 

is the least eigenvalue and y1 the corresponding eigenfunction of problem (II) ; 

(2) find the minimum of DN [(p] in the class of comparison functions satisfying 
the conditions 

HN [‘d = l, ffN [%Yml = [p%Yml = o for m=1,2 ,..., n-l, 

6% o-%cpo+hDN [rpl PO’s0 = 0, aN%i, N+%~N--hDN kd PN(PN = 0, 

where y is the eigenfunction of the number m: moreover 

is 

is 

min DN[(P]= DN[yn] = 1: 

the nth eigenvalue and y,(x) its eigenfunction. 

6. Integral relation. Let us examine Green’s difference function Gh(x, E), which 
definable from the conditions: 

(aGk),-&h = _ E$_Q, where 6 (x, E) = I 1, x = 4, 
0, x # E, 

al@, o- blG; = 0, UN&, N+&G$ = 0. 

Introducing the functions ah and ph which are solutions of the homogeneous 
equation 

(ay&-dy = 0, 
satisfying the initial conditions 

alai,0 = 4 
h - a,ax o- qai = 0; aNf$i,N = M-1, aN$i,N+bZ~i = 0, 

we represent Green’s function, by 

Gh (x, Q = 

analogy with [4], in the form 

& ah (x) fib (0, x < E, 

$ ah (9 Fh (x), x > E, 
(28) 
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* = 4 + & [I+ (4 ah)1 = pi + $ [I +(d, ph)] = c0nst. 

BY 
Gg 

From this there immediately follows the symmetry of Green’s function 

G” (x, E) = G* (F, x). 

analogy with [4] it is easy to show that Gh and its difference derivatives Gi and 

are bounded : 

O<Gh<Ml, IIG% < &IIG& < M2, 

where MI and M, are positive constants independent of h. 

If d = 0, then ah and ph have the form 

A = $ + 4 + (I, I/U]. 

If, moreover, C& = 0, then ah(x) z 1, A = 1 
From now on we shall require 

LEMMA 1. Let Gi(x, 6) be Green’s function of the difirence operator (UK), with 

boundary conditions (23), and G,(x, EJ Green’s function of the differential operator 

(ku’)’ with conditions (2). If k(x) E Q” and ][a--k& = p(h), then IjG~-GoIjo = p(h), 
where p(h) + 0 when h + 0. 

In fact, noting that 

II ah-aol10 = P UO, II Ph--Poll~ = P VO, 
where 

we find 

1 
1 * dt 

a”(x)=&+ ko’ S 1 
P”(x)=~+ k(t)’ S dt 

0 x 

II’+-0110 G ~lla-~jl, = p(h), 

since Go is defined by the same formula (23), in which ah and ph are replaced by the 
functions a0 and PO. 

Using the second Green’s formula (18) it is easy to see that the Sturm-Liouville 
difference problem is equivalent to the difference analogue of the integral equa- 
tion 

Y = Ah IG*, PA, (29) 

which, with the aid of the substitution 

‘p (x) = JP (9 Y (x)9 Kh (~3 4) = dp (x) P (4) Gh (~7 6) 

is reduced to the equation 

‘9 = Ah Wh, yl 
with symmetrical kernel Kh(x, 5). 

(30) 
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If we use Green’s function Gi of the operator Lik), instead of (30) we obtain 

the equation 

Y = IG:, O*p-4~1, (31) 

where d,, = 05q (0), dN = 0.5q (l), p0 = 0.5r (O), PN = O-5,. (1). 

7. Properties of eigenfunctions and eigenvalues. The Sturm-Liouville difference 
problem (II) is a purely algebraic problem. It is therefore not difficult to prove the 

following propositions : 

(1) there exist N real eigenvalues A:, A;, . . . , A:, to which there correspond the 

eigenfunctions y,, y,, . . . , ye ; 

(2) to each eigenvalue there corresponds only one eigenfunction (this is proved 
in the same way as for problem (I) in Section l), so that we can write A,h < Ai . . . 
<AI:< . ..<?&. 

(3) all eigenvalues are positive (this follows from (25)) ; 
(4) eigenfunctions form an orthogonal system normalized with weight p 

(5) Ml2 < ?t < M2n2 (n = 1,2, . . . . N), (32) 

where M, and M2 are positive constants independent of both h and n. 
LEMMA 2. Let y,, At be the n-th normalized eigenfunction and the n-th eigenvalue 

of problem (II). Then the functions yn and (yJ; are uniformly bounded: 

llyn/IO G M,n+, II(y.);l10 < M,n+ (33) 

where MI and M2 are constants independent of both h and n. 
Let x and x’ be any two points of the mesh w,,. Let us examine the two obvious 

identities : 
s=x 3=X 

(34) 

s=x-h 

s=x-h 

= c (aW~~ts))x - [ats>u;;(s)+a(s+h)y,(s>l - h 
s=x’ 

sax-h 

= sz, (d(s)-~*~(~))[~(~)~(s)+ats+h)y,(s>lv(~) . h 

(x > 0, x’ > 0) (35) 

(the index n is dropped for the time being). 
From the condition of normalization [p, y*] = 1 it follows that there exists at 

least one point x’, at which p (x’) y2 (x’) < 1 and hence, y2 (x’) < l/c,. Using the 
Cauchy-Bunyakovskii inequality for transformation of the right-hand side of (34) 
and bearing (32) in mind, we shall obtain 
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Y2 (4 < -L+ 2 [p,y2]) * (a,y$ < -!- $ 4 < Mfn. 
2fl 

cs Jws c3 vb3 

(36) 

Further from the condition (a, y$ \< A* it follows that there exists a point x’, at 
which 

a (X’) y; (X’) < Ah, 
i.e. 

(a (X’) yi (X’)) 2 < c2 hh. 

Then, by using the Cauchy-Bunyakovskii inequality for the transformation 
of the right-hand side of (35) and bearing in mind (25) and (32), we shall have 

From the inequalities (36) and (37), by virtue of the arbitrary nature of x, the 
estimates (33) follow. 

Estimates (33) are rougher in comparison with estimates (7) for problem (I). 
However, so as not to complicate the exposition, we shall not deal with their refine- 
ment, all the more since for our purposes there is no need to do so. 

The condition of normalization HN[y] = 1 determines the eigenfunction y with 
accuracy except for the sign. For unambiguous definition of the eigenfunction we 
must introduce a further condition to select the sign. In the case of a boundary 
condition when x = 0 of the second or third kind, we may require for this purpose 
that y(0) > 0, and in the case of a boundary condition of the first kind, (y(0) = 0), 
require that y,, > 0. An analogous selection of the sign may also be made for the 
eigenfunctions u(x) of the initial problem (I). Henceforward normalization of the 
eigenfunctions, side by side with the conditions HNb] = 1 and H[u] = 1, will 
also include selection of the sign by the method indicated above. 

9 2. CONVERGENCE OF SOLUTIONS OF THE DIFFERfNCE PROBLEM 

The convergence of the eigenvalues and eigenfunctions of the difference problem 
(II) to the eigenvalues and functions of the initial Sturm-Lioville problem (1) when 
N + 00 (h + 0) was proved by Courant [l] for the simplest scheme a = k(x--h), 
d = q(x), p = r(x) in the class of smooth coefficients. In this section, we shall use 
Courant’s method to prove convergence for problem (II) in the class of piecewise- 
continuous coefficients (k, q , r E Q(O)). 

We shall prove the following 

THEOREM 1. If the scheme Lj,k*q*Ar) has zero rank, then the solution (h!!,y,(x)) 
of problem (II) converges on any sequence of meshes when h + 0 to the correspond- 
ing solution (A,,, u,(x)) of problem (I) 

G--A, = p(h), llvn--lmllo = P (4 

for any piecewise-continuous cocficients k, q, r E Q(O), satisfying condition (3). 
We shall consider the case of the first eigenvalue (n = 1). 
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Let cp(x) be any piecewise-smooth function. It is not difficult to see that 

lim DN [yl = D [yl, lim HN [cp] = H [cp]. 
N-WC0 N-b00 

It follows from this, that D,[(p] < M, where M is a constant independent of N (or 
h = l/N). 

Let y = y(x) h) be a mesh function which realizes the minimum of the functional 

Wd: 
Ah = DN b’l 

with the condition of normalization HN[y] = 1. 
We shall consider the sequence of mesh functions (y(x, h)) on some sequence 

of meshes. 

LEMMA 3. The sequence of functions (y(x, h)) is equally continuous and uniformly 

bounded. 
If x’, x” are mesh points, then 

sex”-h 

y (x”, h)-_y (x’, h) = c h - yx (~3 4. 
s-x’ 

Then, using the Cauchy-Bunyakovskii inequality and the limitation on D,[y] 

we obtain 

jy(x”,h)--y(x), h) 1 < I/(l,yz;J . &dt--x’( < MI/jdkdI. (38) 

From the condition of normalization HN[y] = 1 it follows that at least at one 
point x = x’ the inequality 

p (x’) ya (x’, h) < 1, i. e. 
is satisfied. 

I Y W, h) I < Q’cs. 

From this, and from (38) there follows the uniform bounding of 

(~6, h)}: 
I Y W’, 4 I < I Y (x”, h) -Y (~‘3 4 I+ 1 Y (x’> h> 1 < M. 

the sequence 

According to Artzel’s theorem, which is used for the sequence of mesh functions, 
there exists some sub-sequence {y(x) h,)) which converges uniformly to some function 
z?(x), which is continuous on the line segment [O, l] : 

llv(MJ-u”(x)I/o = PVO 

We shall assume that the sequence (hk} is such that the numerical sequence 
(1% = A(h,)) converges to some limit i : 

tz h (hk) = i;. 
k 

Otherwise we would have selected from it a convergent subsequence and would 
have considered only those numbers li which correspond to this subsequence. 

LEMMA 4. For some sequence 

then i; < A. 

lim h (hk) = “A, 
hk+O 
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Let u*(x) be some piecewise-smooth function, for which 

A* = D [u*]/H[u*] < A+ E, E > 0, 

and let 

A*(k) = DN~ [U*]/~N,[~+] (Nk = l/hk). 

By virtue of the principle of the minimum A(&) < A*&) and A*&) + A* when 
hk 4 0. In the limit when hk + 0, we obtain 

From this, by virtue of the arbitrary nature of E, it follows that “h < A. 
Our immediate aim is to show that the limit function satisfies conditions (1) 

and (2) when A = 5\. 
As was shown in 0 1, Section 6, difference problem (II) is equivalent to the equa- 

tion 

Y = 1% Ohp--d)~l, (31) 

where Gi is Green’s function for the operator (ay;), with conditions (23). We shall 
now perform the limit transition to (31) when h, + 0 and use Lemma 1. We shall 
then obtain 

u”(x) = SGo(x,F)(lhr(~)-_q(~))~(~)d~, 
0 

where G,(x, E) is Green’s function for the operator (ku’)’ with conditions (2). 
From this, by the definition of Green’s function, it follows that the solution 

C(x) of the integral equation (39) satisfies the differential equation 

L@* 4); + j$u” = 0 

and the boundary conditions 

k(O)ri’(O)-ea,z7(0) = 0, k(l)z7(1)$o,~(l) = 0. 

Since to each eigenvalue of problem (I) there corresponds only one eigenfunctioa 
u,(x), and h = A, is the least eigenvalue, then 

“h = A, and zz(x)=u,(x). 

It also follows from what has been said that the whole sequence {y(x, h)} con- 
verges uniformly to u(x) and Ai = A,(h) converges to A, when h 4 0 : 

Ibr-1110 = P @I> A:-% = p (h>. 

The reasoning above related to the least eigenvalue A:. 
In the case of other eigenvalues ?$ for n > 1 all the reasoning remains valid, 

if we bear in mind that 1: and A, are defined as the minimums of the functionals 
D&l and, correspondingly, D[v], with the further conditions of the orthogonality 
of H~[cp, y,] = 0 and H [q~ u,,,] = 0 (1 < m < n). Theorem 1 is thus proved. 
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3 3.ON THE ACCURACY OF THE DIFFERENCE METHOD 

1. An equation for eigenfunction error. Let (A”, Y) be the solution of the differ- 
ence proHem (II) and (1 a,) the corresponding solution of the initial Sturm-Liouville 
problem (I). We shall answer the question of the asymptotic order when h + 0 of 
the error z = Y--u in the norm 11 I\,-, and also for the difference Ah = Ah-h. We shall 
first of all formulate the boundary condition for z. We shall substitute Y = z+u 
in equation (22) and bear in mind equation (1) for u ; we shall then obtain for z 
the inhomogeneous difference equation 

@z&-d. z+Pp * z= -Y, (40) 

where 

V = (CI_t(Ah-A) QU, (41) 
,j, = L$k 4. bu) U_ ,+“. 4. Ar) ti = [(au;;)x-(ku’)‘]-(d-q)zf+A(~-r)u. (42) 

Function d, is the error of approximation of the difference scheme on the solu- 
tion of equation (1). 

For function z we obtain the inhomogeneous boundary conditions 

a,zx, 0 --blzo+hhhQozo = VI aNz;,N+ta,zO-hhhpNzN = - v2, (43) 

where 

VI = h (V -A) Qo~of~,, v2 = h @h--A) QNuN+& 

(p. = 0-5r CO)), PN = 0.5 (1)). (44) 

6 = (VX (0)~-bl u (O)$hhpou (0)) -(k (0) u’ (Oh-a,u(O)), (49 

vz=(uNu,(1)+~,u(l)--h~QNu(l))-(k(l)Ic’(I)+a2u(l)). (46) 

Thus to ascertain the accuracy of the solution of the difference problem we have 
to estimate the solution of equation (40) with boundary conditions (43). This problem 
will be called problem (III). 

2. Formula for AA = h h-A. Parameter hh is an eigenvalue. Therefore problem 
(III) is solvable only in the case when the eigenfunction y of problem (II) is ortho- 
gonal to the right-hand side of the equation and the boundary conditions, or more 
accurately: 

IY,Yl = [4J,Yl+(~h-~) [Q&Y1 = 0, (47) 
where 

IkY] = (+,y)+YlyO+YZyN, 

hr)o=%, h$'N =<2, p. = 0.5 (0), pN = O’% (I). 

We shall assume u and y to be normalized functions, such that 

H[u] = 1, ffN[y] = 1. 

By virtue of Theorem 1 I/y-u II,, + 0 when h + 0. Therefore with a sufficiently 
small h < h, we can assert that [QU, y] #O. To the eigenvalue hh there corresponds 
only one eigenfunction, which is definable with accuracy up to the arbitrary factor. 
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We shall select the factor C in such a way that the function u= Cy is orthogonal 
to the difference 2 = 7-u: 

[py, ?] = 0, where Z = y-u. (48) 
Tt follows from this that 

[p, Yl = [P, 3 = c hYal = c, 

[p, u21 = [p,Y21 + [p, j21 = c2+ Ip, N, 

c2 = [p, u”] -[p, Zu] 
or 

l-P= [p,st]-(H,[u]--H[u]>. (4% 

By virtue of Theorem 1 it is clear that C 2 + 1 when h --) 0. We shall assume that 
C > 0, i.e., the signs of u and y are coordinated (see $ 1, Section 7). Formula 

(49) will be needed for the estimate of IC2- 1 I. 
We shall use condition (47) to define 

A?, = h”-I= - [+,y]/[pu,y] = - [+,U]/C2. m 

We shall transform the right-hand side. We introduce the function q with the 
aid of the conditions 

XI=> 

qr= +, To=hdCo=K, -5 (x) = xzO h 9 (x’). 

Applying summation to both sides of (16) 

Ih3 = - bm)+YNUIN, 
and also Lemma 2, we obtain 

I =G w~m#II4~ 
where 

N-l 

II %I14 = ,s h I $,hh I+l~hiiil+~li.l+hl~~l; 

M(n) is a positive constant dependent on the number n of the eigenvalue. 
This proves 

(14) 

LEMMA 5. If the conditions of Theorem 1 are satiF$cd, then 

iC-h”I G Wn)~l~ll*, (51) 

where the function # is dejined by formula (42). 

3. Integral relation for Z = 7-u. For estimating Z we shall reduce problem (III) 
to the “integral” equation 

Z = Ah [G, p4 + IG, VI, (52) 
where G = Gh (x, 5) is Green’s difference function of the operator Liksq)y 

= (ay;),-dy with boundary conditions (23). 
The eigenfunction L of problem (II) satisfies the equation 

U = 1’[G, py]. (29’) 
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We introduce the symmetrical kernel 

K(x, F) = 1/p (x) P (6) G (~3 6) (XEWh, EEah) 

(the dependence of G and K on h will not be indicated) and the new functions 

-u (x) = 1/P (4 2 @I, ‘p w = I/p(x)Y (4 (P > @Se, > 0). 

Then from (52) and (29’) we shall obtain for the mesh functions u(x) and (e(x) 
the equations 

V=P[K,e)]+f, f=[K,\r], F=Y/JP, (53) 

Y=~hIKcpl. (54) 

It is easy to see that the condition of the orthogonal&y of ‘p to the right-hand 
side off is automatically satisfied by virtue of condition (47) and equation (54) 

[cp,fl = IffJ (x), K(x, E), F co11 = IT (0, [K(<, 9, qJ WI1 

Let hh = At be the eigenvalue of number n and y”(x) its normalized eigenfunction 

([rp”, 9.1 = 1). 
Condition [y , p?] = 0 is written in the form 

Moreover, we have 

We shall find the resolvent 
equation (53) is given by the 

From this and from conditions 

to ‘p.: 

k,,4 = 0. (55) 

I%,fl = 0. (56) 

R(x, 5 ; A:), with the aid of which the solution of 
formula 

2, = f+ Aj: IR fl - (57) 

(55) and (56) there follows the orthogonality of R 

IRS cpnl = 0. (58) 

This same property is possessed by the kernel 

N K1 (x, E) = K (x, t) - ? (‘$” (‘) = c (Pk cx) ‘pk <t) 

n k=l 

Ah . 
k 

(k#n) 

The resolvent R is determined from the equation 

R (x, E; A;) = K1 (x, 5) + A; [K, (x, 0, R 0, E; A:)1 

and can be written in the form 

R = KISR,, 
where 
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Kernel K, is bounded by virtue of the limitation of Green’s function and the 
eigenfunction cp,(x) (Lemma 2). We shall therefore have: 

- < IK:: (x9 El, 11 < M, 
(k#n) 

Resorting to formula 

4. A priori estimates 

II R II2 G II 4 IIs+ II& 112 < IIf. 
(57), we obtain 

ll~llo < (1+wwIl_fllo. (59) 

THEOREM 2. Let (A:, y.) be the eigenvalue and the normalized eigenfunction of 
number n of problem (II), and (A,,, u,) the eigenvalue and normalized eigenfuncticn 
of number n of problem (I). 

If the conditions of Theorem 1 are satisfied, then at a suficiently small h < he 
the inequalities 

IZ--h,l < ~dn)/l~ll4, (51) 

ll~~--~Il~ G WW44+~I fh k4-fGl I3 (60) 

are satisfied, where MI (n) and Mz (n) are constants dependent on n and independ- 
ent of h. 

For proof of the theorem it is sufficient to establish inequality (60), since an 
estimate for ?$,--A, has already been obtained in Section 2 (Lemma 5). 

We shall turn to inequality (59) and examine IIf [IO, where, 

f = IK 11 +(Ah-h) k l/id $ = +/fi* 
The second addend, taken with respect to the norm 11 I\,,, is dominated by the 

quantity A4 I Ah--AI, or, in accordance with Lemma 5, the quantity M,(n) 114 II*. 
We shall now transform the expression 

1% $1 = I/p(x) IG (x, E), + @I. 

Introducing the function q, with the aid of the conditions 

we obtain 

UC $I= 1/p (4 {-[GE (~3 0, q (Cs)) + G (x, 1) ji,h- G (x, h-J+ 

From this, by virtue of the boundedness of Green’s function and its first differ- 
ence derivatives (see 0 1, Section 6) there follows 

Thus 

llfll0 G M(n) II + II4 
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and hence 

We are interested in the difference 

2 = y--u, 
which is expressed by Z: 

z 1-C 
z==E+--u, 

c 

c(1+c)//40 c wqo+ / 1-q) when h <h,, 

since C + 1 when h + 0, and llu& is bounded by virtue of (7). 
Turning now to formula (49), we find 

and hence 

Then, bearing in mind estimate (61) for ]I Z [I0 we obtain inequality (60). Theorem 
2 is proved. 

5. The order of accuracy In the class of smooth coeficients. By virtue of Theorem 
2 the order of accuracy of the solution of difference problem (II) depends on the 
error of approximation of the difference scheme, including the boundary conditions, 
and also on the error of approximation of the normalized functional H,, i.e., on 
the magnitude 

X = HN [%I- W"1. 

The estimation of 4 with respect to the norm ]I$ \I4 proves useful even in the 
class Cc”), since it enables us to reduce by one order the requirement of differen- 
tiability of the function k(x), and also the rank of the standard functional A[k(s)]. 
In fact, as a priori estimates (51) and (60) show, for the difference scheme to have 
an mth (m = 1,2) order of accuracy, it is sufficient for the condition 116 \I4 = O(P) 
to be satisfied. At the same time the scheme may also fail to have an mth order of 
approximation, i.e. the condition I$ = O(h”) will not be satisfied. 

It will be shown below that /I+ /I4 = O(hm) in the class k, 4, r E C(m-l*l), if the 
scheme has rank m and satisfies conditions (20) for an mth order of approximation. 

In Q 1, Section 3, we agreed to consider only schemes of the standard type. We 
would also recall that D[f] and R[f] are linear functionals. 

THEOREM 3. If the difldrence scheme L,, (k*qSAr) has 2nd rank and satis$es the con- 
ditions (21) necessary for the second order of approximation, then the solution of 
problem (II) for k, q, r E C@*l) has a second order of accuracy: 

1 Al:--& 1 < M(n) h”, IIY~-%II~ < M(n)h2. 
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For proof of the theorem it is sufficient to estimate 119 llrl and x and use Theorem 2, 
the conditions of which are satisfied. 

We shall consider the error of approximation 

+ = V-(d-q)u+h(p--r)u 

(the index n is dropped), where 

cp = (au&-(ku’)’ = Lo,“+-P)U. 

If the conditions of the theorem are satisfied, there exist derivatives u” and (ku’)“, 
satisfying the Lipschitz condition. 
We shall therefore have 

--7 (ku’)’ = (ku ), + 0 (ha), 

where the bar above denotes that the expression is taken at the point X = x--0*5/z. 
Let us first consider 

$=x-h x’=x-h 

E, hcp (2) = 

= u(X) U;(X) --k (?) U’ (3 - (U (X’) U,- (X’)- k (z) i’cx’)) Iv’& + 0 (h’). 

By virtue of conditions (21) a = k+O(P). Then, bearing in mind that u; = ti’f 
+O(h2) (since U” satisfies the Lips&&z condition), we obtain au; kzi’ = O(P), and 
hence 

.a’=%-h 

Zh 4 w> = 0 w, II ‘p 113 = 0 w. 

The difference boundary conditions (23), as we saw in Q 1, Section 4, have a second 
order of approximation in the class of solutions of equation (l), i.e., Gi = O(P) 
and ;jz = O(P). It follows from this that 

11 ‘p II4 = 0 (P), more accurately, 11 q2 /I4 < M - h2. 

Then, bearing in mind that by virtue of conditions (20) d-q = O(P), p-r 
= O(P), we shall have 

NIIP < Mooha. 
Noting that H&l is a quadrature formula for H [u] of the second order of 

accuracy in the case r E C(lJ) and u E CPJ) we find 

Theorem 3 is proved. 

x = 0 (P). 

6. The order of accuracy in the class of discontinuous coeficients. We shall 
now assume that k, q, r E Q(lgl)[O,l]; then U’ E QV), (ku’)’ E Q+l). We shall de- 
note Ej = x,+Bih(xy = hn,, 0 < 8j < 1, 0 < El < 1) all the points of disconti- 
nuity of the functions k(x) , q(x) and r(x). The number j, of such discontinuities 
is finite: j = 1,2, . . . . j,. 



The Sturm-Liouville difference problem 959 

In computing Jc in this case we shall refer to !j 3 of the paper [4]. Let Lik*4*Ar) 

be a scheme of 2nd rank, satisfying conditions (21). We shall represent 4 in the 
form of the sum 

+ = $+T, 
where 

j = 1,2, . . . ;jo, Si,& = 
0, i#k 

1, i=k’ 

By the same reasoning as in the proof of Theorem 3, we obtain 

I/ $ Ijrl = 0 (P), more accurately 11 ;i; /I4 < it4 (n) ha. (62) 

It must be borne in mind here that h&, =jr, h$, = Gz. 
We now turn to the computation of II+ &. We shall note first that for every 

scheme of the above-mentioned family, the conditions 

h$nj = O(l), h+,j+l = 0 (l), h (qGj + +“j+l) = 0 (h), 

j= 1,2 )... ,j. 

are satisfied. 
For the difference scheme 

LpS”*b”‘u = @J&-d * y+A * py 

with coefficients 
(63) 

the conditions [4] 

qhj = O(h), qhj+l = O(h), h(+,j++“j+l) = 0(h2), i= 1,2 ,..., A. 

are satisfied. 
It is easy to see that 

LEMMA 6. If 

p = pi = R,[r(x+sh)] = y r(x+sh) ds, 
-0.5 

then for r(x) E Q(OJ) and u E C(l), u’ E Qtlll) the estimate 

x = HN [u] - H [u] = 0 (he). 
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To simplify the notation, without disrupting the generality, we can consider 
that there is only one point 5 = x,+&h of discontinuity of the function r(x). 
We shall represent x in the form of a sum: 

x = i$o Ai . h, 

where 
0.5 

Ai = S r (xi+sh) [U” (xi)-u2(xi+sh)] ds, O<i<N, 
-0.5 

0.5h 

A, - 0*5hr (0) u2 (0)- j r (x) u2 (x) dx, 
0 

AN = 0.5hr (1) u2 (l)- i r(x) u2 (x) dx. 
l-0.5h 

It can immediately be seen that A0 = 0(h2), AN = 0(h2). If i # n, i # n+l, then 

0.5 

Ai = -- S (r (Xi) + shr (Xi) + hp (h)) ((u’): A+ 0 (h2)) ds = 0 (h2). 
-0.5 

We shall now assume that 0 < 0 < 0.5. Then 

A,,= { (rl+O(h))e O(h)ds+‘;(r,+O(h)). O(h)ds=O(h), 
-03 e 

r, = r (F-O), rr = r ([+O), A,,,, = O(h2). 

If, however, 03 < 8 < 1, then 

A,, = 0(h2), A,,fl = O(h). 

In both cases A,+ A,+, = O(h). It follows from this that 

y_=h(A,+A,+,,+O(h2)=O(h2). 

COROLLARY. If R [7(s)] is an arbitrary functional, then 

x = [p- pl, uz] + 0 (h2) for r E Q(O*l). 

NOTE. Using the representation of linear functionals in the class of discontinuous 
coefficients (see $ 1, Section 11, reference [4]) it can be shown that there exists only 
one linear canonical normalized functional, for which x = O(h2) in the class Q(“) 
for any m31. 

We have thus proved the following theorems 

THEOREM 4. For any diff3ence scheme of second rank, satisfying conditions (21) 
in the class Q(lJ) (k, q, r E Q(l,‘)) the relations 

lAj:-A,,[ < M(n)h, Iiy,--u,llo< M(n) - h, 
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are satisfied, where A,, u,(x) are the n-th eigenvalue and the n-th normalized eigen- 
function of problem (1) and hi,y, the n-th eigenvalue and n-th eigenfunction of the 
Sturm-Liouville difference problem (II). 

THEOREM 5. 171e diflerence scheme (63)-(64) ensures in the class of cceficients 

k,q, r E Q(lJ) the second order of accuracy: 

At a later date we shall consider homogeneous difference schemes, giving any 

order of accuracy in the class of piecewise-continuous coefficients of equation (1). 

Separate consideration will also be given to the question of accuracy on non- 

uniform meshes. 
Translated by G. K. ELLIOTT 
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