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ABSTRACT

Homogeneous difference schemes, suitable for transforming differential equations whose
coefficients belong to certain classes of function into difference equations, are defined and discussed.
The main points which arise are, first, whether the solution of the resulting difference equation
converges to that of the original differential equation in the given class of coefficients, and of what
order the convergence is, if it exists; and, secondly, how the “best” scheme, giving a high degree
of accuracy in the widest class of coefficients and stability with respect to computing errors, can
be selected. A basic lemma concerning the necessary condition for convergence is proved.

Examples are given of a difference scheme for Sturm-Liouville type operators in the class of
sufficiently smooth coefficients, of a scheme for the first boundary problem in the class of smooth
coefficients and in the class of discontinuous coefficients, as well as in the class of piece-wise contin-
uous coefficients. The latter is the basic class of coefficients which is discussed in the article.

Green’s function for the difference operator is constructed, and bounds are found for it and for
its first difference ratios.
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INTRODUCTION

THROUGH the wide-scale use of high-speed electronic computers there has arisen
the need to develop homogeneous computing methods suitable for solving definite
classes of mathematical problems.

The method of finite differences is often used to find approximate solutions
of the differential equations Lu = 0 with certain supplementary conditions lu = 0,
the unknown function u being replaced by the net function »" defined on the differ-
ence net Sy, and the differential operator Lu by the differential operator L,u"
[1-10].

The approximate solution of the initial problem is defined as the solution of the
system of difference equations L,u" = 0 with the corresponding difference con-
ditions lu"* = 0.

Computer experience has demonstrated that it is less convenient to find a nu-
merical method suitable for one particular problem alone, than to develop numerical
algorithms suitable for solving certain classes of problem. Consider for example
the class of differential equations L™y = 0 with the supplementary conditions
I®y = 0, characterised by the type of the operators L® and /®» and by the functional
space K from which the vector coefficients are drawn. The difference scheme
is the rule according to which the difference equations for any coefficients k(x)
of the functional space k& are written down. The difference scheme Lfu", together
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with /54", is the computing algorithm for the solution of any problem from the given
class of problems.

The following questions then arisc.

(1) Does the solution of the difference problem with the difference scheme we
have chosen converge to the solution of the initial problem of a differential equation
in the given class of coefficients, and what is the asymptotic order of the convergence
as h— 0?

(2) If we think of some family of “admissible”” schemes rather than of one fixed
scheme, in what way should we select the “best” schemes, which give a high degree
of accuracy in the widest class of coefficients and are stable with respect to disturb-
ances caused by computing errors?

Section 1 of the Introduction is devoted to a discussion of the concept of homo-
geneous difference schemes. The structure of the initial classes of schemes must be
studied, since the basic problem in the theory of difference schemes consists in
finding a relation between the structure of a scheme and the accuracy it provides.
A large amount of work concerned with particular difference schemes has been
published.

We give an example in Section 2 of a difference scheme for differential oper-
ators of the Sturm-Liouville type giving high accuracy in the class of sufficiently
smooth coefficients, but not even giving convergence in the class of discontinuous
coefficients. As it happens, the class of equations of this type, with discontinuous
coefficients, proves to be of great scientific and practical interest,

“Open” families of difference schemes are of great value, in that they enable
us to solve problems with either continuous or discontinuous coefficients by a single
method, without having to exclude the points of discontinuity. (It is a complicated
procedure to find these points when the coefficients are obtained from the approx-
imate solution of other equations.)

In Section 3 we give a second example which is essential in a discussion of what
questions should be posed.

Section 4 summarises the results of the whole article.

This work is a revision of the results published by the authors in 1956-1960
{11-19]. While summarising them we have essentially reworked them.

1. Homogeneous difference schemes. The need for uniformity or homogeneity
in computation, which is especially important in constructing programming cycles,
puts certain requirements on the families of difference operators and schemes.
First we define homogeneity of difference operators and schemes, restricting our-
selves to the case of one variable; our definitions can be extended without difficulty
to the case of many variables.

Let us consider some examples. For a differential operator with constant co-
efficients

d*u

Luz—d;;—qu, g=const, O <x<1,
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the simplest difference operator (three-point) is determined by what pattern ™0,
consisting of the three points m = —1,0, 1, and producing the functions
_ U_,—2y+4a _ _ .
O*a] = "‘1—’_,1‘2‘0‘*'1' — qty = O*a_,, @, ).
This function can be thought of as a functional given on the net function #, defined

on the pattern
# = {am), meN,{~—-1,0,1}.

The value of the difference operator L,u" at the point x; of the net S,{x, = ik,
h=1/N, i=0,1, ..., N} for 1 <i<<N—1 is defined as the value of the generating
function of the operator ®* whose arguments are the values of the net function
u* = {uf} at the points of the pattern W} taken to the point x;:

‘))I’;iz{xi—l—mh}, meMW,, ie.

wfy — 2uf+u
(Lyu); = =1~ X -

— quf = O*[u"(x;+ mh)] .

Difference operators for the case of many variables are defined similarly (for
example, for Laplace’s equation) (see [1]).

Let us discuss the concept of the homogeneous difference operator Lu* = U”.

First, we introduce some definitions.

A finite set of points of an integial net W, = {—m,, —m+1,...,0,1,...,m,}
will be called an operator pattern, and the function CD"(ﬂ_,,,l, W41 -oos Ugys By eny
T,) = Q"] of m,+my-+1 variables depending on # and on a parameter will
be called the generating function (functional) of the difference operator. The
function @" is an h-parameter functional of the net function # = {d,,, me M)
given on W,.

The transformation of variables

X=X+ sh
called a shift transformation, maps the pattern Y, (with s =m, me W) on to
the set of points ‘J)IE_, which we call the transformed A-pattern at the point X.
If X = x;, m; << i< N—m, is an interpolation point of the net S, and % = A, then
the transformed A-pattern at the point x; is part of the net S,,.

The net function 4" given on the base net S, with the help of the transformed

h-pattern at the point x;, induces the function ﬁﬁi, defined on Wi,:
@y = {u"(x+mh), me Mo}, if only M%,CS,, ie. m <i<N-—m,.

The difference operator Lyu" = U* is said to be homogeneous if there exists
a generating function (functional) ®*[i), @@ = {d,,,meM,} defined for net functions
given on the pattern M,, such that the values of the operator at the point x; are
equal to

Ul = O'ah, — O [ (x,-tmb)],
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where 1, is the function induced on the pattern M, by the net function u* using the
transformed h-pattern at the point x;. Such an operator L, transforms the net function
u", given on S, , into a net function U*, defined on the net S;{x;, m; <i < N—m,}
which is part of the net S),.

Consider now some examples of difference schemes for the class of differential
operators

d 0
LPy = d—x[kl(x) %:I‘-kz(x)u +k3(x),

where the coefficients k(x) = (kl(x), ky(x), ka(x)) belong to some functional space K.
For example, consider the scheme

(L(k)“h) = Ugh’ s %‘[Bi(utb—f-l——'ut!l)—_'Ai(u?_'utb——l)]—Di u+F;,

0 <i <N,
where
, Xi 0
A — (__1__ —dx )_1 _ j‘._____és__.__. N >
Pi= hx~ lkl(x) - - ky(x;-+sh)
1
; ds -t
B; = [J k_l(*xl_%_;h‘):l = A1,
,xi-}-O-Sh 03
: !

05

Fi= | ky(xitshyds, x;=ih, i=1,2,...N—1, h=1/N.

- 05

This scheme has a number of advantages.
The value of (L{®u"); can be determined using the generating functional

_ | Y e T
Oz, k()] = 5 [B®) (d,—itg) — A“ (@ — )] — DWVity +F ™,

where

— T : d B
A% — A[kl(s)] = [ fI_CIZS')] ’

B® — Bk (s)] :[ —,;%]_ = Alk,(1+5)],
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05 0-5
D® — Dlkys)] = [ Ko()ds,  F® = Flkys)] = [ ko(s)ds,
10:5 —05

defined for the net function # = {i,; given on the three-point pattern M, (m
= —1,0,1) and functions k(s) = {%l(s), ky(s), l?s(s)}, given on the segment
Zo(—1 <s 1), which we shall call the coefficient pattern, if we put

Uy = Uy, meWy, k) =ki(xitsh), j=123 se5%,.

We define the concept of the homogeneous difference scheme L¥Mu*. We first
give some other definitions.

The finite set of points of an integral net, My{m = —m;, —m -1, ...
ey 0,1, ..., my} is said to be a net set, and the segment Zo{ —m; <s <IM,) will be
called a coefficient pattern. The functional ®*[#, k(s)], defined for the net function
w{u,, me My} and coefficients k(s) (seZ,) on the corresponding patterns, and
depending on & and a parameter, will be called a generating functional.

In our definition of the net pattern M, and the coefficient pattern X,, we can,
without loss of generality, take m; and m, as identical. In the case of many variables
we can make the pattern X, independent of W, the set of vectors joining the origin
of coordinates to the points of the integral net.

The shift transformation x = X-+sh maps the pattern M, and %, on the sets
of points M2 and X%, which we shall call transformed hA-pattern at the point X.

We consider the functions u” and k(x) as given, respectively, on the base net S,
and on X, the base region of change in x. These functions together with the trans-
formed pattern M%, and %, at the point x; induce the functions 4%, and h_,’;i(s) de-
fined on My and Zy:

@ = u(x,+mh), meWM,,  ki(s)=k(x;+sh), seZ,,

provided that %, and Z% belong to S, and I respectively.

The difference scheme L%u", corresponding to the differential operator L™u,
will be said to be a homogeneous difference scheme in the class of coefficients k(x)e K
if there exists a generating functional ®"[a@,k(s)] such that the values (LPu"); can
be found from the formula:

(L), = O [k, kE ()] = O [u"(x;+-mh) , k(x;+-sh)].

For any choice of k(x) € K the difference scheme L{® defines an operator which
transforms the function u", given on the net S, into the function L{Pu*, given on
the net S, (x;, m, < i <N—m,), which is part of the net S,.

If the difference scheme L{Pu* is linear with respect to the net function u* = {uf},
then

(L) = 3 k()] +bf k()]
[]
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where the summation is taken, generally speaking, over the whole net S,. The co-
efficients o [k(x)] and b![k(x)] are functionals of the coefficients of the differential
operator L™®u, depending on the parameter 4. Being given L{®u" is equivalent to being
given the matrix-functional (af[k(x)]) and the vector-functional b}[k(x)]. If the
linear scheme L{u" is homogeneous, then

TPy = D BIEG1ul, BRG], (R = kCrit-sh),

j=—mm
where 4% [k(s)] and B*[k(s)] are parametric functionals, defined for vector-functions
k(s) given on the coefficient pattern Z,(—m,; <s <\m,), where
ailk()] = 4} k(i +sh)], j=1—i, for —m<j<m,,
allk(x)1=0 for j<<—my and j >m,,
bt Tk(x)] = B"[k(x;+sh)].
The generating functional of this linear homogeneous scheme is equal to

O, k() = D) Ak(s)1E;+ B k)],
j=—m
where k(s) is a function defined on the pattern So(—m, <s<m;).
The difference scheme is said to be symmetric if the expression L¥u" is unchanged
when the direction of the x-axis changes. The symmetry condition for a homogeneous
scheme is of the form

(Dh[ui+j, k(x;+-sh)] = (Dh[ui—ja k(x;—sh)],
j=0,+1,+2,...,4m (mM=my=m), —m<s<m.
The symmetry of a linear homogeneous scheme is defined by the equalities
A(s) = A4 K(—9)], j=0,%1 ., tm (m=m=m),
BHk(5)] = B'[k(—5)].

When solving systems of differential equations dY/dx = k(x, Y(x)) the class
of equations is not simply defined by the coefficients k(x)} depending on the variable x,
but also by the “coefficients” k(x,Y), depending on the required vector-func-

tions Y(x). The concept of homogeneous difference schemes can be extended to this
case also, and includes schemes used in the Euler and Adams-Stermer methods*.

2. Some examples. To clarify the questions posed in Section 1, we consider
some examples.
Example 1. Consider the first boundary problem

d du
hy, — ¢ @l . - —
LW®y dx[k (x) dx] 0, O<x<l,u®)=1, u(l)=0.

* The Runge-Kutta scheme goes outside this definition of homogeneous schemes. However, it is
not difficult to extend the concept of homogeneity of difference schemes to inctude this scheme too.
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Consider the homogeneous difference scheme defined by the generating
functional
— 2y iy k()—k(=1) #—i,

P2 22 2
which leads to the system of difference equations

(LPut), = OMul(x, +mh), k(x;+sh)]

O [, k()] = (02

. ufpn—2uf uly  kip—kiy ufa—ul, _
=k h? T 2h

m=—1,0,1, 0<i<N, h=IJN,

or
LIBOAY — AV =0, 0<i<N, ub=1, ub=0,
h2

where

Auy = gy —u;, Vu; = u;—u;,, B® =k; +%(ki+1—"ki—1) ,

A =k (ki — ki)
As we shall show below (see § 2, Section 4), this scheme gives second order
accuracy in the class of smooth coefficients k(x) (ke C®)
' —u(x) = 0Ok?.

We show that this scheme does not even give convergence in the class of discon-
tinuous coefficients. Consider the piece-wise constant function

. ki, 0<x<g,
(x): kﬁs E.»<x<19

where £ is an irrational number. Let £ belong to the interval (x,, x,+,) of the net S,
£ =x,+0kh 0 <0 <1. The difference equations for i==n, i n-+1 give

Au,?‘ = Vu!'+1’
i.e. u! is linear with respect to the suffix i for i <n and i >n+1

o

l—x, W <i,
u!’ - B
LA=x), X >E.
The coefficients % and —§~ are determined from the equations for i = n, n4-1:
3+4x . _3_14 +1 ks,

o = ®

5=’ PTE 1 TR
A = of +8(1—E)+ h[l — (5—o) (1—0)].
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Introducing the polygonal function #"(x, h) stretching along the net function u!
and passing to the limit as A — 0 we see that the limit function

it(x):}lin;ﬁ"(x,h): {5(1 ) :
> —Aﬁo —Xx), x<

(89 = aZ+B(1--5)
is different from the solution of the original problem, which is equal to

X
wE+1-—8"
L A=x
xE4+1—8"
when %7 1. Indeed, comparing the expressions for #(x) and u(x) we can show that
equality #(x) = u(x) holds only when » = 1. For some x and £ we have A, =0
and in general the limit function #(x) does not exist.
Thus, when using difference schemes, it is necessary to find the class of coeffi-

cients in which they give convergence.
Example 2. Consider the first boundary problem

1 x <k,

u(x) =
x>E,

d du
ke, < du | e .
L&ka Dy dx[k(x)dx] g(u Ff(x) =0, 0<x<1,
u@ =14, u(l)=i,,

for the class of differential equations characterised by the coefficients %, ¢, f € Q@
(i.e. by piece-wise continuous coefficients on the segment 0 < x < 1). We shall
assume that k(x) > M; >0, q(x) > 0.

It is obvious that in the interval (x;, x;4,)

u(x) = Pl(x)u;_+ Q¥ (X) w1+ RI(X),

where P!(x) and Q(x) are found in terms of the solution #V(x) and #®(x) of
the homogeneous equation

d du
(k.q) —_ RGO I —
Lty = [k(x). dx] 9(x)u =0,
satisfying the conditions
ul(x_) =0, ki uP(xiy) = %, uB(x;44) =0, ki uP(xi4) = ——% ¥

* The normalisation of the derivative is arbitrary. The initial values of the derivatives are chosen
for convenience in the subsequent calculations.



14 A. N. TiIKHONOV AND A. A. SAMARSKII

where
u®(x) u(x)
Pi(x) = ©D(x, ) Qh(x) = WDk ) uP(x;0) #0,  u®P(x_)#0
(¢=>0

and R}(x) is found in terms of the solution #‘®(x) of the initial non-homogeneous
equation L*®%7) y = 0 satisfying the conditions

UO(x ) = U (x0) =0, RAx) = uO(x).

Thus, the exact solution at interpolation points of the net coincides with the
solution of the difference equations

Vi=Plyi + 0+ R, yvo=dh,  yy =i,
whose coefficients
Pt = Pih(xi) s Q? = Q?(xi)w Rt = R?(xi)

are functionals of k(x), g(x) and f(x).
We transform the conditions defining P!, Q" and R". The transformation

xX—Xx
§=- =k
h

transforms #®(x) and u®(x) into the solutions #®(s) and #®(s) of the equation
d (-, du
R ™) _rasyas) =0, —l<se
ds( (s) ds) hq(s)a(s) = 0, 1<s<I,

k(s) = k(x;+ sh), q(s) = q(x;+ sh),
satisfying the conditions
(1) =0, k(=Da—)=1, a®1)=0, kO)a®1)=—I,
and #®(x) into the solution #®(s) of the non-homogeneous equation
-(j’?(zsz’;‘;?) — RG(sya(s)+hf(s) = 0, [(8) = f(xi+sh),
defined by the conditions
A0 (—1) = a¥(1) = 0.

Consider the functionals

e (())

» - 7(1)
PHEG), 400 = gy 'R G0 = ©

RU[K(s), G(s), f(9)] = a®(0),
depending on IE(s), q(s), ().
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The exact difference scheme is a homogeneous scheme and is defined by the
characteristic functional

O — @y — P'a ,— Q"4 — R".

However, in practice, the exact scheme is not used due to the complexity of the
determination of its coefficients. To solve this boundary problem we make use of
various families of “admissible” schemes, whose coefficients are calculated quite
simply.

In particular, discrete schemes, defined by the values of the coefficients of the
equation at the interpolation points of the net only. are widely used (see, for example,
the scheme of example 1).

To construct the theory of homogeneous difference schemes we must choose an
initial family of schemes, find a functional class of coefficients of a differential
equation in which the schemes from the original family converge, and also discuss
the accuracy of the separate schemes.

3. The approximation and accuracy of difference schemes [6]. We consider the
class of differential equations L™y = 0 defined for k(x) € K, and the homogenecous
difference scheme L{Pu" defined for the same class of coefficients.

Let

D*[i, k(s))
be the generating functional of the scheme L{Mu*, defined on the patterns My (— m,
<m<Im,) and Zy(— m, <s<m,). Let X be a fixed point in the region of defi-

nition of the operator L®v and let v(x) be some function given in a neighbourhood
of this point. With the pattern

WL = (X mh, me,)

the function z(x) induces the net function
o2 = {v(X-+mh), me N}
on the pattern i,
Consider the quantity
L},"’v’% = Of[p(X+ mh), k(X} sh),

and the difference
@(X, v, h) = Loz — (LW 2), _5,

where ky(x) is some fixed coefficient of the class K; we call the function ¢ the
approximation error at the point X due to approximating to the operator L)
by the operator L*J, or the approximation error of the operator L{*,

We shall say that the difference operator L¥’ has an approximation of the
nth order as /i — 0 at the point X with respect to the differential operator L&*» if
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we can find m such that for any function v(x) e C™, which is differentiable m times.

o(X,v,h) = 00" or |eE.v, < Mh,

where M is a constant depending on X, v(x) and k,(x).

We shall say that the difference scheme L{® at the point X is of nth order approx-
imation to L™ in the class K of coefficients if for any fixed coefficient ky(x)eK the
difference operator L{* is of nth order approximation at the point X.

Let u(x) be a solution of the equation

L®y =0,

satisfying some supplementary conditions /u = 0 (problem I), and let " = {uf}
be a solution of the difference equation

L¥y =0

with corresponding supplementary conditions /,u" = 0 (problem 11).

The difference z! = uf —u(x;) is the error in the solution of the initial problem;
in future we shall evaluate this difference according to the norm | z!'|;, = max |z}|
where the maximum is taken over all the points of the net on which the fu'nction
z! is given.

We shall say that the solution of the difference problem 11 converges to that of
problem I in the class K if

zEl, ~"e(W) >0 as h-0

for any coefficient k(x) € K.

Further, if ||z7]l; = O(") or || z!'|l, < Mh", where M is a constant depending
only on the choice of the coefficient k(x), then we shall say that problem II is of nth
order accuracy.

The accuracy of the difference problem depends both on the choice of the differ-
ence scheme and on the choice of the difference boundary conditions. If the bound-
ary conditions for problems I and II are the same (as, for example, in the first
boundary problem, in the introduction, section 4) then the accuracy of the difference
boundary problem is completely determined by the choice of difference scheme.
In this case we can say that “the difference scheme converges”’, or “the difference
scheme has nth order accuracy”.

If the scheme L{¥ is linear, then the equation for the function z? is

Lozt = —gh,  where o} = LPu- (L),

is the approximation error at the point x; for the difference operator L taken
over the solution u(x) of the differential equation L**'u = 0.

The orders of approximation considered over the family of sufficiently smooth
functions 2(x)e C™ and over the family of solutions of the equations L™y = 0
may differ essentially.
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We shall say that the homogeneous difference schemes L& and L_,_f,") defined in
the same class K are nth order equivalent as regards approximation at the point
x =X if, for any k(x)e K

(%05 B) = (L), . — (L{0) o5 = O,

where v(x) is any sufficiently smooth function, i.e. |®(X,v; k) < MA", where M is
a constant depending on the choice of k(x), v(x) and X. B
Let ¥ and ! be solutions of the equations L&Yt = 0 and L¥Y = 0 with the
supplementary conditions 5" = 0 and I®3" = 0 (problems 11’ and 11").
We shall say that the difference boundary problems 11" and II"’ are nth order
equivalent in the class K if for any k(x) e K
17— yilli= MR,

where M is a constant depending on the choice of k(x) and independent of A.

It is clear that we can always replace difference problems by their equivalents
and select the structurally simplest difference schemes from the class of equivalent
problems.

4. Basic results. In this article we study homogeneous schemes for the solution
of the first boundary problem

d
[%a Dy — —%[k(x) (z‘:]_q(x)u+f(x) =0 ©O<x<<),

u(O) = 121, u(l) = ﬂz’ (I)
whose coefficients k, g, f are piece-wise continuous functions k, ¢, fe 09, where
kx) =M >0, g(x) > 0.

In § 1 we take as our initial family of difference schemes the three-point homogene-
" ous difference schemes L{% " characterised by the linear generating functional

OH L), K(s), (), TN = i [BOP (it~ A Dty i)~ DDty 4 FO-D,

each coefficients of which is a functional of only one coefficient of the differential
equation (1):
ARD = AE(s)),  B*P = Bk(s)],
DUD = D'(g(s)l.  F D = P'(f ()]
Here D" and F* are linear functionals. Such schemes are commonly used in practice,
and we call them standard schemes.
The value of a scheme can be characterised by its approximation error

P(E, w5 h) = (L D)oz — (L& D), 5,
where u(x) is a solution of equation (I).

2 Polymer 1
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To find the order of approximation as 4 — O the function (X, u; &) must be
expanded in the parameter /& and the coefficients of powers of 4 up to the rth must
be calculated. It is possible to do this if the pattern functionals 4*, B, D* and F"
have derivatives of the corresponding order both with respect to the parameter %
and with respect to their functional argument.

We define the rank of a functional, including in our definition the requirements
of homogeneity, monotonicity and normalisation as well as differentiability.

Using the concept of the rank of template functionals, we consider the different
classes .2(n,, ny, ny) of schemes whose functionals 4* and B" have rank n,, and D"
and F" have rank n,, n; and are defined on the segment —0-5 <s < 0-5.

If n, = n, = ny = n then we shall say that L{**/) is a scheme of the nth rank.

We consider special families of schemes: those which are conservative, or self-
conjugate (B" [kd(s)] = A"[k(1+5)]), those which are discrete and those which are
canonical, their pattern functionals not dependent on the parameter A.

Having found necessary and sufficient conditions for the scheme L* %9 (n=1,2)
to have nth order approximation, in the form of a number of relations (A.C.n) between
the moments of the functionals of the scheme, we pass in § 2 to a study of the questions
of convergence and accuracy of the original schemes in some class of mooth coef-
ficients C™*, It is proved that in order that the original scheme L{* %) of the class
Ln+1,n,n) with coefficients k(x)e C™, m; >n-+1, g(x)e C™, my, > n;
f(x)e C™, m; > n shall be accurate to the nth order, it is both necessary and
sufficient that it has nth order approximation (Theorem 1!).

To prove this theorem we make use of Green'’s difference function of the opera-
tor L9, In Section 2 we give the construction of Green’s function, and in Section 3
we give uniform upper and lower bounds for Green’s function and also for its first
difference ratios.

We note that in studying the convergence and accuracy of schemes in the class
of smooth coefficients, we use the norm

9l = max |g,],

0Ti<N
and in the class of discontinuous coefficients, of the norms

N—-1 i

N—1
Il= D [l and (bl =D k| 4.
i=1 i=1 s=1

Although in the class C™ the order of accuracy of the scheme L{*¢ ) is the same

as the order of approximation, there is no such connection in the class of discontin-

uous coefficients. 1t is sufficient to recall Example 1 given above. The scheme

there has second order approximation in the class C™ (m > 3) (this can easily be

verified) and yet diverges in the class of discontinuous coefficients k(x) e Q™ (for
any m > 0).

* See Section 1, § 1 for the definitions of Cm and Q™.
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We find, by studying the function ¢(x, u; ) at points of the net adjacent to a
point of discontinuity £ (x, <& <x,4,) of the coefficient k(x), that the approxi-
mation error for ¢} and ¢f,;, when x = x, and x = x,., in general tends to infinity
as h— 0. However, there is still a possibility that the solution of the difference
equation converges to the solution of equation (I). We can then ask what properties
the scheme L{ 79 must possess for there to convergence in the class Q™.

In § 3 we prove a basic lemma giving the necessary condition which the scheme
L{29 must satisfy for convergence in the class Q™. This condition has the form

AE. h) = h(Bioy 1+ Anaen) = p(h) > 0 (b)
or
BiBy,  AnAn
ke k.
where k_ = k(E—0), k. = k(E +0).

If we require the scheme L{%/) in Q'™ to have 2nd order accuracy, then the two

conditions:

=p(M)—»0 as h-0, (b")

Rt = O(h®),  hel = O(), (a,)
AE By = O(R). (by)
must be satisfied.

It should be noted that any conservative scheme of zero rank satisfies the necessary
condition for convergence.

It is proved that condition (b) is not only necessary for a scheme of type 1’(1, 0, 0)
but also sufficient for convergence of the scheme L{*¢/ in the class of coefficients
k(x)eQW, q, fe Q9 (Theorem 3, § 3).

A certain error is always admissible, generally speaking, in calculating the coef-
ficients of the difference scheme. This can occur because of insufficient information
about the coefficients k, ¢, /' of equation (I): for example, the functions k(x), g(x)
and f(x) may have to be determined approximately (using some computing algo-
rithm) on a discrete set of points. Moreover, it can happen that the pattern
functionals of the scheme are only approximate.

It is therefore clear why the problem of schemes with disturbed coefficients
1s s0 important,

In § 4 we introduce the norm of the disturbance of coefficients of a scheme, and
using it we give a definition of coefficient-stable (co-stable) difference schemes.
For a small distortion in the coefficients of the scheme the “disturbed” scheme must
converge as /i = 0in QU ie. ||y —ul, = (k) > O as h— 0 if

N-1
| Ar— g = D) | A=Al h=p(h). | B"— B, = p(h);
i=t
1D —D"|s = p(h). ' F'—F"ly=po(h),
(all the p(h) — 0 as & — 0) where y; is a solution of the difference boundary problem
with disturbed coefficients A, B D* F' and u(x) is a solution of problem I.

b
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It is proved that the necessary and sufficient condition for the coefficient-stabil-
ity of a canonical scheme is that it shall be conservative. In the subsequent sections
we only consider conservative schemes.

In§ 5 we study questions of the convergence and accuracy of conservative differ-
ence schemes. It is proved that a conservative scheme of zero rank converges in
the class of piece-wise continuous coefficients (k, g, fe Q™); any conservative scheme
of the first rank has first order accuracy in the class of coefficients Q™ (m > 1); any
conservative scheme L{* % /) of the second rank, satisfying the conditions for second
order approximation (A.C.2) has second order accuracy in the class C®, and,
generally speaking, first order accuracy in the class Q™ (for any m > 1).

It should be noted that in proving these theorems of theé convergence and accuracy
of difference schemes we make use of the a priori estimate established in § 2:

hzl, <‘—MH(PH:23

where z is the error of the solution of the difference boundary problem, and ¢ is the
approximation error of the scheme L{ %/ over the solution of problem (I).

The estimate of the approximation error ¢ accordingto the norm || ||, allows us,
moreover, to lower the rank of the pattern functionals and the order m of the
classes C™ or Q™ of coefficients of equation (I).

Thus, the results we have listed answer the question we posed above concern-
ing “open’’ computing schemes, suitable for solving boundary problems for equation
(D) in the class Q™ (m > 0) of discontinuous coefficients without explicitly
finding the points of discontinuity. As we show open computing schemes belong
to the family of conservative difference schemes.

The results we obtain are used to construct open computing difference schemes
for solving parabolic type equations with discontinuous coefficients (see [20]).

In conclusion, we mention some questions which go beyond the present article.
Our results can be applied without essential change to the class of boundary problems
corresponding to the boundary conditions of the third kind. We shall not consider
here the very important questions regarding schemes of second order accuracy in
the class of discontinuous coefficients, the best canonical scheme of second order
accuracy, the accuracy of difference methods for solving the Sturm~Liouville problem
in the class of discontinuous coefficients, or homogeneous difference schemes on
non-uniform nets.

Our results also pose a number of similar questions for the case of many unknowns.
These questions will be considered in later articles.

§ 1. THE INITIAL FAMILY OF DIFFERENCE SCHEMES

In § 1 we discuss the characteristics of families of difference schemes for the
differential equation (I) in the class O of piece-wise continuous coefficients. We
consider difference schemes from this family, including canonical, discrete and con-
servative schemes which are of value for the subsequent theory.
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1. The boundary problem for the differential equation. To amplify the questions
posed in the Introduction about homogeneous difference schemes we take the example
of an ordinary differential equation

L&Dy = [Wy —_gx)u+f(x) =0, 0<x<I, m
d du
&) = —— —_—
where L®y g [k(x) e ]

We shall consider the first boundary problem
Leahy =0, O<x<l, u@=du, u(l)= ayl). M

The class of boundary problems (I) is defined if we can find the families of
functions to which the coefficients k(x), g(x) and f(x) belong.

Let C™[a, b} be the class of functions with a continuous derivative on the seg-
ment 2 <x <(h, and let Q™[q, b] be the class of functions which are piece-wise
continuous on the segment [a, b] with piece-wise continuous derivatives up to the n
order inclusive on this segment. We shall denote the class of functions C™]0, 1],
(Q°[0, 1)) by €™ (Q™).

We shall always assume that the coefficients of equation (I) satisfy the condi-
tions

0< M <k(x)< M, 0<qgx)<M,;, [f(x) <M, ()

where M;(j=1,2,3,4) are positive constants. We include the conditions («) in
our statement of problem (I).

We require the solution of problem (I) to have the following properties:
(D if k(x)eCtD, g(x)eC?, f(x)eC® then u(x)eCr+? (r>0); (if
k(x)eQ'™ (m > 0) and there is a discontinuity at the point x =§ (k_ #k,
where k_ =k(E—0), k, =k(E+0)) then the solution of equation (1) satisfies
the conjugacy conditions u(E—0)=uE-+0)=uE@), k_u_ =k u'. or [u]=0,
[k#']=0 when x = %.

2. The initial family of homogeneo‘us difference schemes. Consider, on 0 < x <1,
the net S,={xo=0, x,=h,...,x;=1ih, ..., xy=Nh=1} and let y; be a
net function.

We set the boundary problem (I) in correspondence with the difference boundary
problem

LkeDy, =0, O0<i<N, yy=1u,, Yy=1is, an

where L{%/) is a homogeneous standard three-point difference scheme defined by
the formulae
Lt Dy, = Ly — D0y + F&D, @

1
LPy, = W [B"BAy; — A" 0Vy] Ay, = Yier—Yis VVi=Yi—Yi1). 3)

The schemes we are considering are peculliar in that each of the coefficient of
the difference scheme L% /) is a functional of only one coefficient of the differen-
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tial equation (1). We assume that the standard three-point difference scheme is
homogeneous. This means that it has a generating function of the form

D [00m), k(). 4(5), Fis)] = g [BIAD, — ATVE] — DGy L 0D, ()

where
m=—1,0,1,

A®D = grk(s)].  B®P = Brk(s)], )
DD = D)),  F*D=FHf@),

the pattern functionals A*[{(s)), B*[{(s)], D*[Y(s)], F*[{(s)] being defined for
piece-wise continuous functions ¢ (s) € Q@[—1,1] given for —1<s <1 and
depending, generally speaking, on the parameter A.

The coefficients of the difference scheme are calculated at each point according
to the formulae

APR = Ak(s), B0 = B9, ki(s) = k(x;+ sh), (6)
D = DM[Gis)). Gu(s) = q(xi+sh);  F®D = FAfs)l,  fi(s) = f(x;+ sh)
where fi(s) = f(x;- sh).

From the definition of a homogeneous scheme we have
Lif @ Doy = QMo (x+mh), k(x;+ sh), q(x;+ sh), f(x;+sh)], ()

where m = —1,0,1, —1<{s< 1.

It should be noted that the fact that the considered difference scheme is three-point
is a consequence of its homogeneity.

The difference boundary problem reduces to the solution of a system of linear
algebraic equations in the unknowns y,, ¥,, ..., Yy_;. One can easily verify (see
§ 2) that this problem is always soluble if the conditions

APP=0. BFH=0, D90,

hold at all point i= 1,2, ..., N—1.

When we use the term “the initial family of difference schemes” we shall mean
homogeneous three-point standard schemes defined by formulae (2), (3) and (6).

3. Functionals of the rth rank. For more detailed characteristics of the initial
family of difference schemes we must know the class of its pattern functionals
A*, B*, D" and F". We shall need to expand the coefficients of the scheme (for example
AP"® — 4Pk (x;4-sh)]) in powers of h; it is possible to do this if the pattern functionals
themselves possess some properties of differentiability both with respect to their
functional argument and with respect to the parameter A.

AM] is called a functional of the rth rank (r > 0) if the following conditions
hold:
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1.0 There is an expansion

A = D AW Holh, ), ®)

a=

where |p(h, )| <p()*, if [{|<M (M is a positive constant), Each of the
functionals A@[{] (6 =0, 1,2, ..., r) has a differential**, of order r—¢ for any
function § € Q9; this means, for example, that for 4@ [{] we can write

AO[Y+3. o] = AO[Y]+ 3. AP, o]+ ...+ 3 AP, 9]+ 870(3, b, 9),  (9)

where |p|<p(®) if | |< M (p(3) — 0 as § - 0).
IL." The functional A"[{] and, therefore, all the functionals A'®[{] (¢ =0,
1, ..., r) are homogeneous functionals of the first degree:

Aled) = cA' Y], A@[ed] = A, (10)

where ¢ is a positive constant.
ITL." The functionals 4*[{] and A®’[Y] (=0, 1, ..., r) are non-decreasing, i.e.

Ao > AP, O 4y > s (11)
where A"[{] is a normalised functional, i.e.
A} =1. (12)

If A"[{] is a linear functional, then all the functionals A®[}] are also linear.
Therefore the differentiability requirement in condition 1¢? is automatically satisfied.
Moreover, condition 11¢) is an immediate consequence of the linearity.

If A*[{] is a functional of the rth rank, then

A9 =1, AO®[}1=0 for o=1,2,..,r. (13)
We shall use the notation
AP = AP[1, 9] @ =1). (14)

Let 4*[{] be a functional of the rth rank. From 1) and I1¢? we know that for
any k(x) e C satisfying the condition k(x) >> M; > 0 there is an expansion
(ki)

AR — A+ k)] = kit Bk AQ ] 4 e {k:AP Isl+ 2 AP+

+k2" A(1°)[s'2]}+... + o). (15)

* o(h) will in future be used to denote quantities which tend to zero as # — 0. We can use the
same symbol in the case of several arguments to denote an expression which tends uniformly to zero
as h—0.

** Cf. M. A. Lavrent’ev and L. A. Lyusternik, “Osnovy variatsionnogo ischisleniya’’ (The
Essentials of Variational Calculus), Vol. 1, part II. M.-L. (1935), Ch. VI.
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For from 11"

Ah — A"[ki(l + l((;\"j—s}t) _ji):l

k;

' R, . ki's -
=k;A [1+-E(k,-s—|— > h+ ... +h p(h))]. (16)
Now using the expansions of I) and taking into account the linear property of
AO[)], the quadratic property of A®[{], and so on we arrive at (15).

We note some properties of homogeneous functionals of the first degree,
omitting proofs.

LeMMA 1. Any homogeneous functional A[Y] of the first degree having a differen-
tial of the first order A,[f, @], can be put in the form

Alf]= Alf, f1.

This lemma is the analogue of Euler’s well known theorem on homogeneous
functions.

LemMmA 2. If A[f] is a homogeneous functional of the first degree, and Ai[f, ¢]
is its kth order differential, then

1
Ak[cf5 ‘P]:EﬁAk[fs(?], k= ls 25"'9 (17)
where ¢ it any positive constant. In particular, A,[cf, ¢] is independent of c:

Ailef, o] = AlSf, 9].

LEMMA 3. The differential A,[f, ¢] of a non-decreasing normalised homogeneous
functional of the first degree, A[f], is a linear positive functional in the argument .

LemMA 4. If A[f] is a non-decreasing normalised homogeneous functional of the
first degree, having a first order differential, then

A LS, 9] ) _ .
0<\\T[f]&v'§1’ if 0<(P\f9 f>¢->0 (18)

These lemmas will be used below (for example in § 4, § 6 and elsewhere).

4. The classes 2(n,, ny, ny) of difference schemes. Consider the difference
boundary problem (II) and compare its solution ¥ with the solution u(x) of
problem (I). The accuracy of the solution of problem (I1) is characterised by the
difference

Z?ZY?“‘“(X.‘), (19)
which, as can easily be observed, is defined by the conditions
L¥90 = —of, 0<i<N, z=0, zt=0, (I

where
L9zt = [P — D0z}, (20)
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and
o = Lt Duy— (L% V), @)
denotes the approximation error of the scheme L{*%/) at the nodal point x = x;
of the net S, taken over the solution u(x) of problem (I).
Due to the homogeneity of the scheme, the approximation error can be con-
sidered at any fixed point x = X of the interval 0 <<x << 1:

o(x,v; h) = (L4 D0),; — (LP 2D o), 3,
where v(x) is any sufficiently smooth function, i < hy <C 1, A, is the distance between

the point x = X and the boundary of the segment [0, 1].

In order to go into the question of the order of approximation of the scheme
we must have an expansion of the function ¢(x,v; A) in a series of powers of A.
To do this we must formulate the differentiability properties of pattern functionals,
using the definition of the rank of a functional.

We shall say that the difference scheme L{*'%*? from the initial family belongs
to the class of schemes . (n,, ny, n,) if the functionals B*[{] and 4*[{] are of rank
ny, and the functionals D*[{(s)] and F*[{(s)] are of rank n, and rank ng respectively,
and are linear and defined for functions of Q'® given on the segment —0-5 <{s </ 0'5,
(Y € Q[—0'5, 0-5]).

We define similarly the classes .2(n,) and (n,, n,) for schemes L{ and L{*?
respectively.

The schemes L2 of the class 2(n,, n,, ny) are called schemes of the nth rank
(all the pattern functions are of rank n). Any scheme L{ of [’(n) is a scheme of
the nth rank.

5. The error of approximation. We now proceed to the calculation of the approx-
imation error for schemes from the class .2 (n, ny, ny) (usually n, = ny).

We consider the scheme L{*%%) of the class [2(n-+1, n, n) and assume that
k(x)e C*D, g(x)e C™, f(x) e C™ and the function v(x) e C*+? where n > 0;
the solution u(x) of equation (1), in particular, belongs to C®*%_ if k, g, f satisfy
the requirements given above in Section 1; therefore we can take v = u(x).

We use the expansions of 4™"® and B®® given by formula (15) for r = n+1,
and for D*9 (and F®* ) we use the expansion in powers of &:

D= DHg(xi-+ shl = ) D lq(xi-+sh)] i+ o (h)

o=0

=qi+hg; D'V [s]+ ... +Hp(h). (22)

Then, using the expansion of the function (x) in the neighbourhood of the
point x = X
(X +sh) = v(X)-+sho' (D + ... qL—(i@i o™ A(x) + I o (h) 23)
(n-+2)! ’

we obtain
(v, v Mx_z = o0 -FhoW - kg™ L Ko (h).
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The coefficients ¢ = ¢ (x,2)|,—z (=0, |, —n) of the powers 4/ depend on
the functions v, k, ¢, f and their derivatives. We shall need expressions for ¢!®
and oM

¢ = agk’(¥)v'(%), 249
k’ i 2 1 1 = = e
EV o )+ ()0 k(D)9 )+

+b4' @R +eaf' (®), (25

oM = aik' (X) V' (X)+-a.

where
a = BOlsi—APl1— 1, a, = BM[s}—A{[s],
a, = B [s]—A"[s),  ay = O-S(B{V[s7]— A" [s%]), (26)
a, = 0-5(B{[s] +AO[s]), b, = — D], ¢ = F9[s].

6. The order of approximation. We shall say that the homogeneous difference
L&+ has nth order approximation of if the approximation error

p(x.w; h) = (LEPD0)ez — (L0 D)oz
for this scheme is of the nth order of smallness in 4:
o(x,v; h) = O(h")

for sufficiently smooth functions ©(x), k(x), g(x) and f(x) (in particular for
k(x)e C"D, g(x)e C™, f(x)e C™, v(x)e C™, m = n+2).

From the series (23) it follows that the necessary and sufficient conditions (A.C.)
for the scheme L% %% from the class C(n-+1,#, n) to have nth order approximation
are as follows for moments of the pattern functionals:

(1) for a scheme of the first order (n = 1)

BO[s] —AP[s]=1. BO[1}= AV[1] = D[] = FO[]] =1 (A.C.])
(the normalisation condition of the pattern functionals is automatically satisfied

for schemes of this class):
(2) for a scheme of the second order (n = 2)

BO[) = 05, AP[s] =05, BO[] = AP[s,
BO[s] = 4§"[s], l
B{[s] = A{"[s], D©[s]= F®[s]=0,
AP = BO[1] = DO = FO[] =0

(A.C.2)

(the last four conditions are a consequence of the normalisation of the pattern
functionals).

7. Canonical schemes. If the pattern functionals of the scheme L{%7/) do not
depend on the parameter h, then we call them canonical functionals, and call the
scheme a canonical scheme.
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_ To each scheme L{&9D of the initial type there corresponds a cannonical scheme
L« of the same rank

Lk Ny, = LPy,— DD x y,+ F*9,
where

1 .
LPy; = e [BO9Ay, — A"PVy],
BOP = BOR(xiHsh], ALY = AV k(x4 sh],
D = DOlg(xi+sh)],  F® = FO[f(xi+ sh)].

If L{¢) has nth order approximation (n=1,2) then L% % also (from
(A.C.1) and (A.C.2)) has the nth order approximation and these schemes are equiv-
alent as far as approximation is concerned.

When discussing canonical schemes we shall omit the zero index in their pattern

functionals A[{], B[{], D[{] and F[{]. Then the conditions for second order approx-
imation, for example, take the form:

B,[s] = —A,[s] = 05, B,[s%] = 4,[*], DI[s]= F[s]=0. (A.C.20)

8. Conservative difference schemes. We consider the difference scheme L{¥
= L% Fixing k(x), we obtain the difference operator

1
Lyy; = ™ [B:Ay,—A;Vy], 0<i<N.

By analogy with the differential operator of the second order, we call the differ-
ence operator L, self-conjugate if the expression u; L,v;—7;L,u; can be put in the
form of some difference AQ; = Q;+;—Q; for any u;, v; at each point i. It is not
difficult to show that the necessary and sufficient condition for the self-conjugacy
of a difference operator L, is the relation B; = A4;,, forall 1 <{i < N—1, so that we
can write

1 1
Ly = = A(4;Vy) or Lyyi= W A(4;Ay;) . (27)

We have the identity
u; Ly, — = ;1 A —
1 LpT; 'Z’iLhui hz [Ai(ui_l?),- u; ;. _1)],

where u; and v; are arbitrary net functions.
This leads at once to Green’s second difference formula

\ 1 y
ey (u; Lyv; —v; Lyu) h = " [A: (v —v; u]ly.

i=1

We call the difference operator (27) a conservative operator. This term expresses
the physical meaning of the difference equation L,y; = ——F; which can be treated
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as the equation for the stationary temperature distribution y; in the presence of
heat sources.

Introducing the difference analogue of heat flow w; = —A4,Vy,/h at the point
x = x;_1, and rewriting the equation L,y; = — F; in the form
wip — Wi = — Fh,

we see that it expresses the law of the conservation of heat on the interval (x;-y;,,
X;+y,) of length A. On the left we have the heat flow difference at the ends of the
interval, and on the right we have the amount of heat which produced in the interval
due to the sources.

Let us return now to the difference scheme

1
LiPy; = i (B PAy,— A VVyy) .
The difference scheme L{P is said to be conservative if, for any function k(x) € Q®
the corresponding difference operator is conservative, i.e.

B — Afhp

and, therefore

By = A"[Y(1+35)] () e Q™).

It follows that the functional A*[{(s)] is independent of the values of the function
Y(s) for 0 <s <1, and the functional B"[{(s)] is independent of the values of
P(s) for —1 <s <0.

If the scheme L is conservative, then, clearly, the corresponding cannonical
scheme is conservative too.

The difference scheme L{%/) is said to be conservative if the scheme L{ is
conservative.

The following method, which we call the integro-interpolation method (I.1. M),
can be used to obtain difference schemes.when solving different physical problems.
In place of the differential equation we write an integral relation expressing the
conservation law (balance) for an elementary cell in the net. To substitute for the
derivatives and integrals appearing in the balance equation we interpolate for the
required function and the coefficients in the neighbourhood of a node. As a result
we obtain a difference equation whose coefficients depend essentially on the char-
acter of the interpolation used both for the required function and for the coeffi-
cients of the initial equation.

We illustrate this method using the example of the equation L* ¢y — 0 and
we show that it produces conservative schemes. We write the heat balance equation
for the interval (x;—vy,, Xjiy,):

Xty Xy,
Wy, — Wigy, — l (N u(x)dy = — l F(xX)dx, (28)

%1, oty
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where w(x) = —k(x)u'(x) is the heat flow at the point x. Therefore
) — W)
u'(x) = k()

Integrating with respect to u from x;_; to x; we shall have

e
| ¥ =) dx. (29)

2

U— U, = —

Equations (28) and (29) are exact.
Assuming, for example, that w(x) = const = w;_y, for x;_, < x << x; we obtain

p.d

Vu; 1 fi dx |7

i—

If g(x) =0, then we can obtain by this method the best canonical scheme
L _To obtain the best canonical scheme L{* /) we assume that u = const = y;
for x;_y, < x-<Xx;4vy,, so that

Xitly *i+l
’ g(xX)u(x)dx ~ u; [ g(x)dx .

Xj—1q Xi—tiy

It must be noted that the interpolations w == const for x € (x;_,, x;) and n = const
for x € (x;~1,, X;41,) are not consistent with one another. However, the subsequent
use of the same interpolation w = w;_y, for xe(x;—;, x;) leads to a noticeable
complication in the difference scheme without increasing its accuracy.

Other interpolations are also possible; for instance

% = (%) = const for xe(x;_,, x;), which gives 4; = k;_v,.
i—',

With this method we obtain conservative schemes of the form

1

F AH"" Ve T Dlgh' ? Wit —Jf_ th’ D »

k.q. 1) —
l (’ I yi =
thrt

i = — AP 400 k(o) —1< <0,

DD = D'g(x;+sh),  F"D) o F'[f(xi+sh),  —0-5<s<05,

D" and F* being linear functionals.

The integro-interpolation method was also used in [10] by G.I. Marchuk to
construct discrete schemes (see Section 10) for open computing, in connection with
the calculation of the critical dimensions of nuclear reactors.
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We consider now the conservative scheme L%/ of 2 (n+1,n, n) and take
k(x) e C™Y, q(x), f(x) € C™ (n=0,1). If n = 0, then the approximation error

o(x, u, ) = ¢O(x, u)+p(h) .
If n=1, then

o(x, u, B) = ¢O(x, )+ Oh),

where ¢© is given by formula (24).

We show that the condition for first order approximation B{”[s]—A{®[s] =1
" (a, = 0) is satisfied for any conservative scheme of .C(1,0, 0). For B"[{(s)]
= A"[{(1+5)] and, therefore B{®[s] = AP[(1-+5)] = 1+ A@[s]. Therefore for
a conservative scheme ¢ (x, u) = 0. We thus proved

LeMMA 4. Any conservative scheme L{%7) of the family (1,0, 0) satisfies
the conditions for first order approximation, and a conservative scheme of type L(2, 1, 1)
has first order approximation.

If the conservative scheme L{ %/) is symmetric, then
AY(—9)] = AP +9],  DY(— )] = DY),

FY(—5)] = FY()].
This leads to

LEMMA 5. Any conservative symmetric scheme L% of (2(2,1,1) satisfies
(A.C.2); if such a scheme belongs to the family 12(3, 2, 2), then it has second order
approximation.

Let us now discuss the procedure of making the operator

1
Lyy, = 'I_Ig—(BiAyi —A;Ay)

conservative.

We multiply it by some function A; and require that the operator L = AL,
shall be conservative, i.e. B;A; = Af;, A;A; = A'. From this we have

Aoy = M(Bi/4i4y) = [] (By/A;41)
s=1
if we put A, = 1. Thus, we obtain the conservative operator
1
Liy: = MLy, = FA(A?VJ%) s A= A\

If the initial scheme L{® is homogeneous, then the conservative scheme L;®
= A;L{P is not homogeneous.
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9. Linear schemes. 1f A*[{] and B*[{] are linear functionals with respect to ¢,
then we can call the scheme L{*%/) a k-linear scheme,
In addition to k-linear schemes, we can consider the so-called p-linear schemes

1 1 1
LiPy; = F[E(;.,T)'Ayl'- 2 V)’i:l,

where b("P = b'[p(x;+sh)], a"P = d"{p(x;+sh)], with @*[p(s)] and B*[p(s)]
being linear functionals, p(s)eQ® [—1,1]. This form corresponds to the
differential operator

d 1 du 1
Py —— T T —_
Lu dx[p(x) dx] (” k)'
The study of linear schemes in the class of discontinuous coefficients is made
easier by the fact that there is in 0‘© and integral representation for linear functionals

using characteristic functions (see Section 11).
We note that the best canonical scheme L{¥, obtained in § 4, for which

X

R N S I f -1
B, = A1, Ai"‘[“ﬁ fm)] *[h‘ ' p(x)dx:| ,

i—1

is a canonical conservative p-linear scheme in which
9
bIEE) = alp(+9),  alp)] = | 56)ds.
-1
10. Discrete schemes. If the pattern functionals A*[{(s)] and B"[{(s)] depend
on the values of the function {(s) on a discrete set of points, then they are called
discrete functionals, and the corresponding scheme L) is a discrete scheme. When
P e Q9 the discrete functional can depend not only on the values of § at separate
points, but also on the left- and right-hand limit values of the functions ¢ at these
points,
As an example we consider the canonical discrete scheme L{® whose coefficients
are three-point discrete functionals:
A= filkioys kiy kv, Bi=falkia, ki ki) (k= k(x),
where f,(x,y,z) and fy(x, y,z) are some functions of three variables.
It follows from the condition (IT1") for the pattern A[I;(s)] and B[k(s)] that

LGy, 2) =ye(X,2), falx,y,2) = yp(X,2) (X = x/y, 2 =2z[y),

where o(1, 1) =1, ¢(1,1) = L.
The scheme mentioned in section 2 of the Introduction (Example 1) is discrete:

1 1
A; = ki—z(ki+1—ki—l) ’ B; = ki+ 1 Kivr—kia) .
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If the scheme is conservative, then

kl' k,'_

B; = kiqp(‘k:—l) == Ax’+1 ’ A; = ki(b('—kf‘) .
since, for conservative schemes ¢(X, z) = O(xX) is independent of Z, and (X, )
= ¢(Z) is independent of x.

It follows therefore that
[
V() =E®(€), Oy =1.

If the scheme L{¥ is also symmetric then LL_ (§) = ®(£) and we obtain the functional
equation

o) =20}

2
for ®(&). The general solution of this equation has the form ®E) =) Lo (in )

where w(f) is an arbitrary even function satisfying the condition w(0) = 1*.
We give two examples of the function ®(£):

1. ®E€) =05(1+8), A4, =05k +k), B= Aigy -

28 2k 1 k;
_Zs A, = T = .
l+g’ i ki—-l—i—ki B Ai+1
11. Linear functionals in the class of discontinuous functions. As we know, the
linear functional A[f] is defined by the conditions

1% Alfi+/fd = Alfi+/]; 2% [Alf]l <Msup|f]. (30)
Consider the linear functional A[f], defined for piece-wise continuous functions

on the segment [a, b].
Due to the fact that the representation of a linear functional in the class C(®

[a, b] using Stieltjes’s integral

), (1) = 1 (29

2. ©@) =

b

A[f]= [ f(9)dx(s)  (Riesz’s theorem)

is not continued uniquely in the class 0 we must find a representation for A[f’)
in 0©W[a, b]. Such a representation is given in [12]. It is proved (Theorem 1) that
the linear functional A[f(s)] where f(s) € Q[a, b] is uniquely defined by the two
characteristic functions:

(X)) = A[ra(s)], o(d) = A[m(s)], 3bH
where
1, s <Ix, |1, s =A,
mw:{o s>, D=0 . (32)

* M. V. Maslennikov has pointed out the existence of a general solution for equation (29°).
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If o(A)=0 for A€ [a, b], then the functional is said to be regular; while,
if «(3)=0 for 7€ [a, b] it is called a point functional.

We give here the properties of linear functionals and their characteristic func-
tions which we shail heed below; for the proofs reference should be made to [12].

(1) There exists not morc than a denumerable number of points &, Z,, ...,
;s .... at which a({;)# 0, where

o0
\
N M.
i
(2) Any linear functional A can be put in the form of the sum of a reqular
linear functional 4 and a point linear functional A*

Alf1="A[f11- A*[/].

where

GEPXIEY O}

The regular functional A[f]is wholly defined by the characteristic function

&) = A = 2 — > 6(Z).

F.<A
%

(3) (@) The function a(3) is of bounded variation;
(b) there exists not more than a denumerable number of points 2, A,
. A, ., at which & ()52 a(d) or a(A) £ a. (), s=1,2,...;
(c) the function

T =7 ) — D, [@4 () —7 )]

7.‘.'\7\

is a continuous function on {a, b].
(4) We have

THEOREM 1. Any linear functional A[f}, defined in the class Q'{a, b], can be
put in the form

AL = [ £©)da©) + D Q)+ ) — 2] 1= CE ) — 3= O]} +
i=1

[a %)

+ D e CNIE). ()

j=1

If it follows from f =0 that A[f]> 0. then the linear functional A[f] is said
to be non-negative.

3 Polymer |
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THEOREM 2. In order that the linear functional A[f] shall be non-negative it is
necessary and sufficient that these two conditions are satisfied:

(1) the characteristic function %(\) of the regular part A of the functional A
is a non-decreasing function;

2 o€)=0 for all j=1,2,..

That these conditions are sufficient follows from (33). We prove that they are
necessary. Let A[f] be a non-decreasing functional. Taking

fie) ==, ©6)>0
we shall have o(8,) = A[f;(s)] = 0 for any j = 1,2,.
Introducing the function

f® = — M7 (9> 0

$.<h
&<

we note that

AL — 2 — ¥ o) = 2. (34)

J<)

Let 2, and A, == A, be any points of the segment [a, b].
From the inequality
fu()—f.(5) > 0
and formula (34) it follows that
Alf&)—h 6] = 200)—a() >0 when N>,
i.e. z(d) is a non-decreasing function.

In other words, the necessary and sufficient conditions for the linear functional
A[f] to be non-negative are the conditions for its regular and point components
A[f] and A*[f] to be non-negative.

The homogeneous functional of the first degree, A[f], is completely determined

by its first differential 4,[f, ¢], which is a linear functional with respect to it second
argument ¢; we have the equality

Alfl= 4/ f] (Lemma I). (39)

§ 2. HOMOGENEOUS DIFFERENCE SCHEMES IN THE CLASS OF SMOOTH
COEFFICIENTS

In this paragraph we show that the order of approximation of a homogeneous
scheme from the initial family .2(n,, n,, n5) in the class of sufficiently smooth coef-
ficients is the same as the order of accuracy of this scheme.

1. The accuracy of difference schemes in the class of smooth coefficients. In § 1,
when considering the question of the accuracy of the solution y} of the difference
boundary problem (I1) with respect to the solution # = u(x) of the initial problem (I)
we obtained the following conditions for the net function z! = yf —u(x):

LD — b 0<i<N, =0, z4=0, (1)
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where
Lkt = —-hlz—[Bi("’ DAzl — A OV~ DO D 2t (N

is the initial scheme and
of = Lo Ny, — (L& Dy), 2

is the approximation error of the scheme L{* % /) over the solution u(x) of the bounda-
ry problem (I).

Let R, be an operator giving the solution of problem (III):
2t = Ry}. (3)

We introduce the norm for the net function z!:

12 ]l = max |z]'| 4
0<i<N

and some norm [¢"||, for the function ¢f. If, for fixed k and g the norm of the
operator R, is uniformly bounded with respect to /4:

22l = | Rt I < Mi*Pgfla, M0 <MED, &)

then the uniform convergence (see [6]) of the solutions of the difference boundary
problem (IT) to the solutien of problem (I) will follow from the smallness of the
approximation error according to the norm || |k.

In considering the convergence of difference schemes in the class of smooth
coefficients the same norm can be taken for ¢f and z{:

oo = llgllh = max |gf] (o=1).
0<i<N

In Section 3 we consider Green'’s difference function for problem (IT1) and show
that the operators R, giving a solution of (I11) are uniformly bounded with respect to
h for any scheme L®*® (from the class .2(2, 1)), if k(x) e C® and g(x)e C®
(Lemma 2).

If k(x)e C™D 4(x)e C™, f(x)e C™ (n=1, 2), and the scheme L2 from
the class L2 (n41,n,n) has nth order approximation, i.e. satisfies the conditions
(ACl), n=1 or (A.C2), n=2 (see § 1, Section 6) then we have the uniform
estimate

@'l =0t or |lo"lh <MxHh, ©

for the error'cp? where M is a positive constant depending on the choice of &, ¢q, f
and independent of A.

This, together with Lemma 2, leads to
LeMMA 3. If the initial scheme L{%9) of (>(n4-1,n,n) has nth (n = 1,2) order

approximation, then the solution of the boundary problem (II) has nth order accuracy
in the class k(x)e C"+V, g(x)e C*™, f{x)e C™.

3¢
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When discussing the accuracy of the solution of the boundary problem (II) in
the class of discontinuous coefficients we require that the operator R, shall be bounded
according to the norm

N-1 i
|

o= S b)Y Bl
=1 s=1

i

(7

It will be shown in Section 3 that the operators R, are uniformly bounded with
respect to h in this norm.

2. Green’s difference function. We come now to the question of the existence and
boundedness of the operator R,, defined with the use of Green’s difference function.
We consider the difference boundary problem

Lyzt = —n;, O0<i<N, zt=0 =0, (8)

where L, is a difference operator defined by the expression
1
Lyz; = 2 (BIAz;— A'Vz)— Diz;. )

We shall assume that the coefficients of the operator L, satisfy the conditions
O<M, <A'<M,, O<M <B'<<M, 0Z<DI<M, @O<i<N), (®

where M,, M, and M, are positive constants independent of 4.
The solution of this problem can be put in the form

N—-1
2= Rygl = ) Gyolh (10)
i=1

with the help of Green’s difference function. In particular, if the boundary conditions
are non-homogeneous, then

ALG; - BY .G,
,{h,'lzg ﬁ";lh"”:lz{'v' (1

N-1
!
~ho__ h
5= _5_, Gijoih—
=

We define Green’s difference function G;; of the problem (8) using the con-
ditions:
(a) G;; satisfies the equation

LGy — — ith 0<i<N h 3 L= (12)
n Uiy = P - with <t-<N, where ij = lO, i'—}é_i'.
for variable i and fixed j (0 <(j <IN).
(b) G;; satisfies the homogeneous boundary conditions
Glj ::—'0, GNj :-70. (13)

We show that the function G;; exists if conditions («) are satisfied. We consider
two cases.
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A. The difference operator L, is conservative, i.e. B = A%, and L,z
= h[2 A(ANz)—Dlz;.
By analogy with differential equations, we shall look for G;; in the form

aﬂ{;, l<j,
ij =

biw,, i>], (14

where a; and b; are factors to be determined, and v; and w; are the solutions of the
homogeneous equation L,z; = 0 satisfying the conditions

. A Ag h
Liv;=0, 0<i~N, v,=0, ZVZ°0 | o g,=20;  (15)
A.
Lywi =0, 0<i<N, iwy=0, vA’,’v»—~-‘;1”l‘—:1 or wN-1=;hr- (15"
N

Using Green's second difference formula (see Section 8. § 1) for the functions z;
and w; we see that

Ty == Wy (16)
From the conditions (I15) we obtain
i—1
Vzv'. B ‘1 "
A" ”h" = l’{‘ ‘-7-11 Ds‘v,h . (17)

. .. h )
From this, and from the conditions D! > 0, v, = i >0 it follows thatz; >0
1

when i >0, or more precisely,

3 h X 1

s l —Xi
and, similarly, w; > ST

Thus, Green’s function G;; > 0 (0 <{i, j <N).
From the condition a;v; = b;w, and from equation (12) for i = j we find that

= — ‘L ). = ,";
’ ==

1
A= 'l; Ai(‘l'i"v,-dl*‘7,',',_1‘1';)4 = const .

From conditions (15) and (15’) for the functions v; and w; it follows that

A=vy=w,.
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As a result we obtain the following expression for Green’s difference function:

fowifen, 1 <TJ,

G," = . .
! l Wi‘vj/‘UN » 1>].

(18)

We obtain at once the symmetry property of Green's function: G;; = G; .
B. If the difference operator L, is not conservative, i.e.

i
Ly = ’h‘z"(BihAyi_A?Vyi)'—D? is

then, multiplying it by the factor

i- 1
I B
e
s=1 A’s’.H

according to Section 6 of § 1 we obtain the conservative operator
1
Lyy; = e A(4™"Vy)—D!"y;,
2

where A}" = A"A;. To the operator L; corresponds Green’s difference function
G;, which is constructed as in case A.
From the equations for G;; and Gf; we see that

3. Estimates of Green’s difference function. When deriving uniform estimates
(uniform with respect to k) for Green’s function, we shall assume that, together
with the condition («), the inequality

B!
et -2t leth, 0 <i <<N-1, ®

AH 1
is satisfied, where b is a positive constant independent of the parameter 4.

Consider first the case A.

It follows from formula (18), and the inequality v; > x;/M,, w; > (1 — x;)/M,
that

Yij < o
My = Cu = (19
.X,(l“xj') i<J,

where ¢;; = {xj(l—-xi) when P>,

We see from this that to obtain a two-sided estimate for Green’s function it is
sufficient to find an upper estimate for vy. To do this we need

LeMMA 1. Let v; be a solution of problem (15), and v; a solution of the problem

- _ - _ ~ 1 — =
L’l‘vl =0 H Vo = 0 s ‘417]1 =h ) L)Pvi = FA(A;V”;) ""ngg .
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If the conditions A; < 4;, D, > D,, together with the conditions (), hold for the
coefficients of the operators I, and L,, then o, >v
For, the function z; = 7;—v; satisfies the conditions

4 /1 1)\
ot i ~— 1 i
L,,zi ESS -']iz' A[(A,—‘AI)VWJ‘{"(D,'— D;)‘Ui s Zy = 0 R oy = h(“ -_— —2‘1 ’ > 0
We obtain
Az, O ) ; & =
AiV4i 4 : D,
h ﬁ)( N Do k) + \ wsht (D= D)o.h >
1 s=1 §== l

s

‘\/

1. z; 2 i 22 2y = 0_ or 7, >z v;.
Putting 4; = M,, D;= M, we obtain an equation for ¥, with constant coef-

ficients
A2'Z’—i¥1 - y'2h2€}’i = 0 s M-z == M3/M1 Py

. - - h
whose solution, when v, =0, 7, =2v, takes the form
1

sh OX;

A N%N(uh)

»h . .
~ - such that sin o <sin x.

where o is the root of the equation sh 5 =
Therefore, we obtain the estimate
_oshx sh l/ ‘Mrl»
Ty < (20)
M1 l/ M, 1 M 3

for vy, for any values of A > 0.
We arrive at the following upper and lower bounds for Green’s function

sh M,

vt/ Mo M. A
28,91 = bV MM, <Gy M @

Mishy/ s VM M,

2 M,
If D! =0 then formula (21) gives
M. I ,
“jglg g <G < M, (22)
Gy (M3 =0).

for the corresponding Green's function
From the inequality G,; < G (with the condition D}
can use the simpler upper bound for Green’s function

1
Gi' < -—A—,Il— = gl . (23)

> 0) it follows that we

4
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For the first difference ratio of Green’s function we have

1',- AM, P 7
1, 1 -],
G =Gy oA
i widn
o T 1>,
From the inequality
Vo; -
h jﬁ ) Z Dgvgh -~ T ']TI%WN < MMy, My),
we obtain
1_(2‘11_"_'1,,_(_2! : ‘\/ Mﬁs (24)

‘ h ‘
i |
where My, = My(M,, M;) is a positive constant, depending only on M, and M,

Taking, for example, i = j =i, = I:szjl, we obtain from (21)

i MM,
P g= (25)
2M2 Shl" M3/M1
If the operator L, is not conscrvative, and satisfies the conditions (o) and (2),
then we shall have

G

0 < M{<A'<.M;, 0-ID} <M, (26)
for the cocfficients of the conservative operator L = A;L,, where M; =M, é’,
My = Mye®, My = M,e".
We have the two-sided estimate
<A e, 0PN (27
for the factor .\;.

To estimate Gj; we can use (21), replacing the constants ME(k =1, 2, 3) by the
constants M,. We obtain an estimate for G;; if we use relation (27) and the formula
Gi; = NG

We return now to the formula
N1

\G

j*—l

ij f‘J

Using (23) we have

1 1
R - M < B
2t = max 2t < Mt (28)

From this we have

li~’”’1 “-_’ ”9 lo, o=123 (29)
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1 . . .
Thus, the constant W also gives a uniform estimate of the operator R,.

LEMMA 2. The operators R,, which give the solution of problem (111) (z" = Ryg")
for any scheme L{¥® of the class 2(2, 1) and for k(x)eCV, q, feC® are uniformly
bounded both accotding to the norm || |, and according to the norm || |, i.e.

12" < goll9" ey 6 — 1,2,
where g, and g, are positive constants depending only on My, My, M and b
N-—1 i
’hl zmaX’!’, :”hl‘): \whi ,V‘(shi'
(H ?'lh = maxiofl, [, e o

Thus conditions («) will be satisfied if
0 <M, <k(x) <M,, O0=<.g(x)<M,,

since the pattern functionals of the scheme are normalised and are non-decreasing.

If k(¥)eCW, then AM = k;+hk| AV [s] ho(h) .
BMR ki - bk BV [s]-+-he(h)

'Y )
B0 AND = | "f”(i?).- ay-Hho(h), @y = B{O[s] — AL[s]— |

We see from this that we can always choose the constant » so that condition
(4) is satisfied. For cxample

: k"‘
b= (l+1a0,) max |- -
0<x<1 \k |
When considering the convergence of our schemes in the class of discontinuous
coefficients we need a more exact estimate, as well as the estimate (29). Putting
z; in the form
it

ot \ OA(\ q;ﬁh)

j~1 s=1
and using the identity k;A7; = —v;,Au; +-A(y;v;) we obtain
N1
(G, \1
- (AR v
SRR R [N
=1 -

From this follows the inequality

[‘ h (< max ) _GL‘_.I + lh_ 1 i \1

ogi,jgNul |

s:l K
which takes the form
2", < M3ll@"[l,, where Mg = eMy(M;, M;), (30)

if we use the uniform estimate (24) for the difference ratio of Green’s function.
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NOTE. If condition (B) is satisfied everywhere apart from a finite number of points
Jj=12,..., jo then all the estimates obtained above are still valid if, instead of b,

. .. . M, -
we introduce a new constant b, using the condition b, = b +j, In TR then e - A,
1
e, M= M,, My = e’M, and s0 on. '

4. The order of approximation of convergent schemes. We come now to consider
the relation between the order of approximation and the order of accuracy of a
scheme for problem (II). In Section | we stated Lemma 3. Its proof follows from
inequalities (29) and (5).

Can we make the reverse statement? Is the order of approximation of a scheme
determined by its order of accuracy? The answer to this question is given by

LEMMA 4. If the difference scheme L %) of the family 1(n+- 1. n, n) has nth order
accuracy in the class of sufficiently smooth coefficients ‘

k(x) eCmo, q(x)eCimp,  f(x)eC), my>n+1, my>n, m>n,
then it has nth order approximation (n =1, 2).

Thus, suppose z; == O(k") for any coefficients of the given class. We show that
then the conditions for nth order approximation must be satisfied (see (A.C.1) and
(A.C.2) in Section 6, § 1). We can use the inequality

N -1 |
'\ -

12| = &o Ezll "piui'?jhE - 4 8o -
s

In particular, if g; = ¢. A"+ O(h™'") where 3 = const, m > 0 then it follows that

. \z; | _ . N:,l,
1< O O<ByTgy N (30
0 ;:‘l

In Section 5, § 1 we obtained the expansion in powers of /i
9 = O+ heW + 0,

for the approximation error ¢(x, u, ), where ¢® and ¢’ were determined from
formulae (25) and (26), § 1 in terms of the moment of the differentials of the
pattern functionals, the functions k(x), ¢g(x), and f(x) and their derivatives.

We choose the functions u(x), k(x), g(x) and f(x) so that ¢® and ¢‘?) are constant.

Let n=1. Putting k(x) = €, u(x) = e * and using (31) for m =0, we find
that ¢® = —q, = O(h), ie. a,=0.

Consider now a scheme of (3, 2, 2), n= 2. We have ¢ = ¢Wh+ O(h?) since
!9 =0 (m=1). To show that the relations @; =0, j=1,2, 3, 4 are valid we give
the following examples:

M kx)=1, f)=x, qgx)=0 70 =F[s

(the inequality (31) gives ¢ = O(h) ie. F("[s] =0);
Q@ kx)=1, f)=1-x, gx)=1—x, u@x)=1, oV=DO[s]=0;
G kx)=¢€, ux)=e* oV=—a—a—a+a=0;
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@) k(x) =¢€", u(x)=c¢", ?(1):“a1+az+aa—a4:0a a,=0, a,=a,+a,:

therefore ¢ can be rewritten in the form

K\ oK)
'P(l) = aa(—k——) . ku —a4(—7c——).f. u,

if we use the equation ku"+ k'’ = —f;
(5) k(x)=¢€", fx)=-—1, q(x)=0, ¢W=—a,=0;

®) ("'

This proves the lemma.

From Lemmas 3 and 4 we obtain the following:

THEOREM 1. For the difference scheme L{%P of the class {2 (n+1, n, n) for any
coefficients k(x) e C"™D, g(x) e C™ f(x)e C™ (satisfying conditions (x) and (8), see
Section 1, § 1) to have nth order accuracy it is necessary and suffcient that it has nth
order approximation (n = 1, 2).

) ku'=1, oD =gqgy=0.

§ 3. THE NECESSARY CONDITIONS FOR CONVERGENCE IN THE CLASS
OF DISCONTINUOUS COEFFICIENTS

In this paragraph we establish the necessary conditions for the convergence of the
difference scheme L{* /) in the class of discontinuous coefficients.

1. The approximation error in the neighbourhood of a pointof discontinuity of the
coefficients. The error z! = y! —u(x;) of the solution y? of the difference problem
(IT) relative to the solution u(x) of problem (I) is determined, as we have seen, from
the conditions

LikaDzt = o 0<i<N, zt=0, zZ=0. (1)

The right-hand side of the equation g} = L& * )y, — (L& Ny), is the approximation
error of the scheme L% %) over the solution u = u(x) of problem (I).

If the coefficient k(x) of the equation has a first order discontinuity at some
point x = &, then in the neighbourhood of this point the scheme L ¢ /) does not
approximate to the differential operator L% %),

The position of the point x = £ on the difference net S,{x, =0, ..., x; = xA, ...,
xy = Nh = 1} is defined by the two numbers » and 9:

E=x,+0n, 0<O0<1, «x,=nh. (1)
It is obvious that n and 6 are functions of the step 4 or the number N:
n=nh), 06=0®0h). )

At the point x = & the solution u=u(x) of problem (I) satisfies the conjugacy
conditions

uG—0) = uE+0) —u@), k-l =kui (k- —KkE—0), ky =kE+0). @)
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We shall consider the initial scheme L{*%f) of the family of schemes 2(2, 1, 1)
of first order approximation with the coefficients
AP P = A [k(x;+sh)), B = B"[k(x,--sh)],
D" = D'g(x;+ syl F"D = F*[f(x;+sh)],
where D" and F* arc linear functionals. We now assume that k(x)eQ®, ¢(x)e QW,
f(x)e 0D, Since the scheme is three-point
. o =0W), i#n, i#n+l. ' (4)
For the estimates of ¢! and ¢, we expand u(x) in the neighbourhood of the point

x=1%:

Upyj = “(E)"{_(j_'e)hu; “L;(D; kz* “:\’ "" 0(}'3) (j: 2a la Oa —1)'

In future we shall omit the index & in ¢}.
Using the conjugacy conditions (4), when x = £ we obtain

Pn = ,95‘0) Fof4-00),  9u1 = ?So)l + O’Eﬂ)l + 0, (5)

o= [3"( 'k 0 +£«) ~~A',:.7(1~]+;B:[(1_e)zu;_'_ '+

05104 — (k). (6)

1 I— 1 .
P = h[an-l 7( An+1( k+‘+ _)] Aﬁ—{»l[(l'_e)zu-i-_e-u I+

+ (-5 —0)BY qul — (k')
we=k_u =kiu,
oy = (Fy—fo) — (Db~ g)u@),
o = (Fi 1= fos) —(Dhiy - gui)uE). (7N

| - .
We see from this that the terms ¢, and o, arc of the order of A i.c, the differ-

ence operator L{% /) does not approximate to the differential operator L* % /) at
the points x = x,, ¥ = X,;.

If k(x)eQW, g(x)eQW, f(x)eQ® then ¢; =p(h) for i n, n41, 9, = gn+
A on+p(h), Payr = Prr1+ opgy+p(h), where o(h) > 0 as h— 0.

2. Conservative schemes. Suppose now that L7 is a conservative scheme,
i.c. that B"® — 4®®_ In this case formulae (6) take the form

0 160 I 1 gt
'P(u) = 71 [Auﬂ (k -+ ko ) Al % ]’Ir A, (1 —0)%u) — 62} 4
- +

L ARO-54-0)u’ — (LPu)_+-Oh(LPuW).,  (8)
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1 0 1-6 1 2 ey
ot = n [An+2 k —~Ah (E - “I};—)] 5 Ah [(1— 0y — 02 4+
A (15— B — (L®w), —h(1—0) LPu), . (9)
We shall need the sum

1
k.

w

e n (k Ania— Aﬁ) A= AR --0-5)”" + Ao (15— B —

(L®u) —(LDu), +-0y. (10)
If L¥ is the initial scheme of 2nd order approximation, then
Al =k —(0-5-+0)hk’_+0MHD), At =k, +(1-5—0)hk’, +0O(h?)
and therefore

I“Aﬁ;z“l‘/’ﬁ:h[(l'5—0) o (05-+0). "*] 00
k. k.

As a result we obtain
" ¢ = (0-5-0) {(LDu), —(LDu)_} -+ O(h). (1)

Now calculate the sum )+ o), ;. For the sake of simplicity we shall make the
calculations relating to the term containing f.

We must distinguish between two cases:

(a) if 6 << 0-5, then

Fra=fi+0Mh), Fi=FP+0Mm),
ont oy = FO—f 00,  FO® = FO[f(x,+sh)],
(b) if 6 > 05, then
Fion= FO -0k, Fi=f+40W0),
wpF gy = F2+1f++ o).
In the general case of a scheme L{"%/ of second order approximation we obtain:
ntBw = O5=0) [, — (L& D) -, + O = 7,00, (12)
where
#n = F—DPuE)—(0-5-1-6) (f.—q.u@)+(0-5-0) (f. —q,uE)), 6 <05,
= F—DRuuE) +(1-5—0) (f.—q u@)—(1'5-0) (f.—q,u@), 0>05.
We note that when g(x) =0, f(x) =0
PntPnya = O(h). (13)
While in the general case
Pt Pur = O(). (14

3. A basic lemma. Since the difference operator does not approximate to the
differential operator in the neighbourhood of a point of discontinuity of the coeffi-



46 A.N. TIKHONOV AND A. A. SAMARSKII

cients of the equation L*% Ny =0 the question arises as to what necessary condi-
tions a ¢, and ¢,, must satisfy for the scheme L% %/ to converge or have ath order
accuracy (n = 1, 2) on any sequence of nets S, as & — 0 (or N — <).

The answer to this question will be obtained with the help of the basic lemma to
be proved in this section.

Consider the difference operator

- 1 - -
Lyzi = he (BIAz; — AlVz), (15)

defined on any sequence of nets Sh (h: ]:/.)

Let (X, X) be some neighbourhood of the particular point Ze(0, 1), 0 < ¥ <£
< X < 1, where

i'—:~’(r;—1_+-_e'}’5 a::“n—Jrﬂh’ ;2.’(,,:“‘}- h; 0<6909 6.\<]»
and
x; = ih.

We shall be concerned with the operators l:,, whose coefficients satisfy the con-
ditions

O<M,<A"<M, O<M<B'<M, h<i<n, (@)

. B ] . ~ -

et <y = ~h’ <eé™ n<i<n iFn—1,nn+l, ®
At

where M,, M, and b are positive constants, independent of A.

Basic LeMMA. If the coefficients A" and B! of the operator I:,, satisfy the con-
ditions (x) and () and the function ¢! converges uniformly to zero on the interval
(%, X) as h— 0 for all i n, n+1:

[pt <), (16)

then the necessary conditions that some sequence of solutions of the equation
Lzt =—g¢! (17)
converge uniformly to zero as h—0 on the interval (%, x) (|} < e(h), i< i<n) are
B =), BE=elh), @
AG ) = h( Ao @+ Bighy) = o(h). ®)

We introduce the functions

CPP) == 85:: ‘ﬁg -+ 8;, n+1 C\az»n ’ '952’ = 9‘55' - (Pzp):
i=],
i,

form of the sum

I,
where §;; ={0 and put the considered solution z! of equation (17) in the

h ~(1 2
& = “i()+zi( )9
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where z{¥ is a solution of the equation L,z® = — ¢® with some boundary condi-
tions, such as z,(Tz) =0, z'%z) =,

As we showed in § 2, the conditions () and (E) guarantee the existence and two-
sided boundedness of Green’s difference function of the operator L, .

In proving the basic lemma we introduce Green’s difference functions G’ and
G’ of the conservative operator A, .L, for the first boundary problem on the scg-
ments n<<i<n and i< i< n respectively.

The functions Gf¥ and G(b) are determined from the conditions

. 5. - ) -
AP LGP = — —’;’— (n<i<<n: jfixed, n<7j<n),
i-1
G® =0 wheni=nand i=n, AP ‘-Zis;
My G By B i<—n: ifi < i<l
AL G = — b (n<<i<n; jfixed, n<j<in),
i-1
G = when i =7 and i=n, AP = ” .
Using Green’s formula, we find
5
2 — N GPAP PR (O = O —0).
i=n+1
From this and that fact that G{ is bounded if follows that
1280 =) (I 9ll = max | ;). (18)

n<i<n
Thus on the segment 7 < i <7 instead of considering the solution of equation
(17) we can consider the solution z® of the equation

Lz = — P, (19)

By hypothesis ||z} ||, = p(#). From this and (18) it follows that z&"” = p(k) on (X, X).
1t is required to prove that given this condition, conditions (a) and (b) must be
satisfied.

To prove the Lemma, we put the solution of equation (19) in terms of the Green's
functions G’ and G{. Thus, for example, the solution on the interval n < i< 7
is expressed in terms of ¢j;; and the boundary values z{", 28", tending to zero as
h — 0. To obtain the necessary estimates (a) or (b) we use the lower estimates for
Green’s difference function (see § 2, Section 3).

(1) We put the solution of (19) lIlSldC the interval # <i < n in the form

- R S’ GIP AP h = GE i A ik, (20)

i
i= nIl

oL g Aw P Lpr o @ aw, 1)

h -1 in—1  n—1
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Due to the fact that the difference rations of Green’s functions G{® is bounded
for j—nand j=n—1 we have
CEO N S M (2P| 4122 ) = a(h),

since zM = p(h).
Usmg the lower estimate for G’ (sec § 2, Section 3, (22)), we sce that

a a M’ Ml’
Af: 1)1 Gi(,n)f 12 (/\7:')7 H’Ji.nﬂ = 7(7,"}:_,')'2 h(.\".; - Xp).
For definiteness choose i =iy, such that x=-—x; > 0-5(x—-%); then
a a a o Ml’ =
AS.J)] Gf )n}l h g( ), ga ) = 7(11};}“; B 0'5(36*-5,)

From this and (21) it follows that

190yl < max| zP—z{V|,

n<i<n

WG = o(h). (22)
(2) To obtain condition (b) we put the solution of equation (19) inside the inter-
val n <Ci <7 in terms of Green’s function G{:
"(.]) e ;(]) !E(l)
~-j i ~i
where
2N = GIAP G4 GRla AR G
ZM s expressed by a formula similar to (21).
Remembering that
ASlbl)l = A(h) (Bb/An +1)s
we put V) in the form

20 . 20D pw BRa Gl o o). @)
n~i-1

Due to (22) the second term is the quantity p(h).
We then choose i = i, such that x; —x; > 0-5(% — %), and obtain

AP

G(b) > giP)
An-l-l g

From (23) we have the estimate
I””’l ,
AE ) = (h) ‘+e (/1) = (). (24)

The condition 4*@; = p(h), clearly, is a consequence of conditions (22) and (24).
This proves the lemma.
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Note. The basic lemma remains valid if the function o = of —(3; ¢k +
+ 3;, n+1Ph+1) satisfies the convergence condition according to one of the norms

we have used:
o[, = max [¢®| = p(h),

n<i<n
et i w1 i

L) § Yo\ (2)' — N\ » A

i il = Z . g‘ ‘“ ; hi Z hos| = p(h),
- =nil i=nitl s=n+1

(s#n,s#n+ 1

n-1
Pl = N higf| = o(h).
dad
i=n+1
For, from the inequalities
1220, < M[oP)la (6 =123,
obtained in § 2, Section 3, it follows that
1220, = o (h). )
LEMMA 1. If the coefficients of the operator L, satisfy the conditions (_&) and (B),
and the function o = ¢ — (3;,9%+ 8; n+194:1) on the interval (X, X) is of the
order of ™ according to some norm ||ef?|s (c =1, 2, 3):

e lls = O™),

then the necessary conditions for some sequence of solutions of the equation (17) to have
mth order smallness as h—0 (|| 2%, = O(h™)) on the interval (X,%), (m = 1,2), are
nret = oM™, ket =0Hm, (@m)
AE h) = O(H™). (b.)
4. The necessary condition for convergence of the initial scheme in the
class of discontinuous coefficients. To examin the necessary conditions for
convergence of the difference scheme L{*%/) from the initial family .2 (n,, n,, ny)
in the class of discontinuous coefficients, we consider the difference problem
(ITT) for the error z; = y;— u(x;).
We first consider the first rank scheme L{* satisfying (A.C.1).
Let £=x,+06.2 (0<0<1) be a point of discontinuity of the coefficient
k(x) e O, Since, when i#n, i#n-+1
B"® = k-t hk; B [s}+ ho(h) .
AP = ke +hk (14 AP [s]) + hp(h),

B(h k)

we find that »;= AR —oH =

=1-hp(h) when is*n in some neighbourhood

\%, X) of the point £ not containing other points of discontinuity of the function k(x).
It follows from this and from the condition 0 << M; < k(x) <{ M, that condi-
tions (=) and (B) are satisfied and

CP? = (Lszk)ui) _“(L(k)u)i = p(h)
at the points iz n, is*=n-1 in the interval (¥ + A, X—h).

4 Polymer 1
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Remembering the note at the end of Section 3, we see that the condition

A = h(B{Vop 1+ ALY o}) = o(h) (23)

is necessary for the convergence to zero of the solution of problem (111), i.e. for the
convergence of the difference scheme L{" and, therefore, of the scheme L{#%
of £(1,0,0) in the class of discontinuous coefficients.

The condition h*¢h = p(h) is satatisfied, since ho! = O(1).

Substituting the expressions (5) and (6) for ¢! and ¢%,, in (23) we obtain the
necessary condition for convergence of the scheme L{*%/ of the family .C(1, 0, 0)

in the form
B(h’k)B(:.'k) A(h k)A(h > k)
. k 2 k- — 9(”) . (24,)
+ —
Now consider conservative schemes.
THEOREM 1. Any conservative scheme L*%7) of zero rank satisfies the necessary

convergence condition in the class k, q, fe Q.
For, if the scheme is conservative, then B{"® = gAY,

APD = APk (x, + sh)] = AO[k(x, + sh)] +p(h) = k,+p(h) = k_+p(h),
BED = AW = Kyvotolh) = Kot o).
Putting these expressions in the left-hand side of condition (24') we shall
have

B’Eh,k)B’(lh,k) A(h k)A(h , k) B,. A(" s k)
L =~ AM( B AT o).

ki ko ky k.

THEOREM 2. Any conservative scheme L7 of first order approximation of
the family L2, 1, 1) satisfies the necessary condition for first order accuracy in
the class of discontinuous coefficients k(x) € QW g(x) € Q9, f(x) e Q.

Thus the condition A%p, = O(h) or hp, = O(1) is satisfied automatically. As
for the second condition A = O(h), it is easily verified, since B{"¥ = A%P,

B®P =k, 1 O(h), A, = k.. +O(k). From the conditions of the theorem it follows
that ¢; = O(h) when i n, i n+ 1. Therefore Lemma 1 (m = 1) can be used
here.

5. The necessary conditions for second order accuracy in the class of discontinuous
coefficients. We consider the difference boundary problem (IIl) for the function
z; =y —u(xy).

For simplicity we assume that k, ¢, f have one point of discontinuity. Put
(Pgl) = 8in(Pu + 8i,n+1 Pu+1s (PI(Z) = @i—@gl)- If k(.X) € Q(3)9 ‘I(x) € Q(2), f(x) € Q(Z)
and the scheme L{* %" belongs to the family (3, 2, 2) and has second order
approximation, then || ¢{® ||, = O(h2) and the conditions of Lemma 1 are satisfied.

From Lemma 1 the necessary conditions for second order accuracy of the
scheme L¥ 99 in the class of discontinuous coefficients take the form

Pn = 0(1) or Pn+1 = 0(1) s (az)
A=0". (b2)
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If the scheme is conservative, then condition (b,) is equivalent to condition
(b;) cPn—*_cpn-i‘l = O(h) .
LEMMA 2. The necessary condition for second order accuracy

(Pn+(Pn+1 = O(h) (25)

in the class of discontinuous coefficients k(x) € Q9 is satisfied by any conservative
scheme L® of second order approximation.
This is a consequence of the formula

A+ e = OS—0){(LWu), —(LPw) } +0(h) = O(h),

since (L®™u), = (L™y)_ = 0, u = u(x) being a solution of the equation L™y = 0.
From this it follows that it is only necessary to verify the first of the necessary
conditions ¢, = O(1) for a conservative scheme of second order.

6. Sufficient conditions for convergence. In Section 5 we established the necessary
conditions for the convergence of the initial scheme L% in some class of discon-
tinuous coefficients (k(x) € @, ¢(x) € Q¥ f(x) e Q©).

We shall show that this condition is also a sufficient condition for convergence.

THEOREM 3. The necessary and sufficient condition for the difference scheme
L& @D of first order approximation from the class 2 (2,1, 1) to converge for any
coefficients k(x) e 0, q(x) € 09, f(x)e QW is that at each point ;= x, ;+
+6,h(j=1,2,..., jo) of discontinuity of the functions k, q and f the condmon

Aj = (B P, 11+ A% 8 0,) = o(h) (26)

is satisfied, where @; = L% Dy— (L& 2 Ny),
Proof. The necessity of the condition A; = p(h) has already been proved. To
prove that it is also sufficient we use the formula

Il zillh = lvi—u;l <M g oo (v =1,2,3),

where M is a constant, independent of A.
We put o; and z; in the form of the sums

P = <P§1)+<P§2)’ (1) _Z (81 n; (Pn_, +81 n1+1<Pnl+1) ’ Z; = z(l)+z(2)
Jj=
where z{™ js a solution of problem (III) with the right-hand side equal to

o™ (m=1,2). At the points iz n;, i n+1 (= 1,2, ..., j), ¢ = ph, using
the inequality

1
1221 < ol 1l .

we obtain ||z®||; = max |23 = o(h).

0<i<
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For an estimate of z{) we use the inequality

H

Dk,

s=1 '

. vt
2000 < M Ao (wsuz =D ) @

s—1
where A4, = [] (Bh/A",,) and M is a constant independent of A.
m=1

For definiteness we shall take n; <n;,,.
Putting the expression for ¢{) in (27) we obtain

Jo
120, < M 21 [, 0+ 1A, @, A 9]

Putting A,,j+1 = A"j(B,,j+1) in the first term we find

o ijw , < A, l
10l M| D) Ay B+ D) S (28)
=1 =1 N

The first term is of the first order of smallness, since hg,, = O(1). The second

term converges to zero as & — 0, since, by hypothesis, A; = p(h) and the number j,
is finite. Thus

lzilh <[ +z2 ]y = o).

THEOREM 4. If L% 7) is q difference scheme of the type L2(m--1, m, m) of mth
order approximation (m = 1,2), then the necessary and sufficient condition for it
to have mth order accuracy in the class k(x) € Q"™, q, fe Q™ is that in the neigh-
bourhood of each point of discontinuity &; = x,,j—{—ejh (j=1,2, ..., Jo) of the functions
k, q,f the conditions

Fgh = O™),  hegh oy = O(A™), (a)

AEG;, h=00") (j=1,2,....jo) (bw)
hold.

The sufficiency of conditions (a,) and (b,) is proved by the relations ¢f®
= O(h™), ||z, = O(F™), and the inequality (28). The necessity follows from
Lemma 1.

§ 4. COEFFICIENT-STABLE DIFFERENCE SCHEMES

When solving the differential equation L®* % /) by the method of finite differences
we sometimes find that the information we have about the coefficients of the equation,
k, g, f, is insufficiently complete. This can happen, for example, when coefficients
are determined approximately using some computing algorithm.

For this reason, even when the coefficients of the difference scheme L{ %/
are calculated exactly, some error may occur. On the other hand, it can happen
that the functionals 4*, B* D" F" are themselves approximate, and this too leads
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to an error in the coefficients of the scheme. It is therefore clear how important
it is to consider schemes with disturbed coefficients.

We introduce below the norm of the disturbance of the scheme coefficients
and with its help we give a definition of a coefficient-stable, or co-stable, difference
scheme.

The principal result of this paragraph is the theorem which states that the nec-
essary and sufficient condition for the co-stability of a canonical scheme of type
£(1,0,0) is that it shall be conservative (Theorem 3).

1. The dependence of the solution of a differential equation on its coefficients.
Consider the boundary problem

LYy =0, 0<x<l, w0 =4u, wl)=iu )]
and compare its solution u(x) with the solution #(x) of the disturbed problem
(D=0, 0<x<l, #O)=a, @)=, )

We shall assume that the coefficients of problems (1) and (2) satisfy the conditions
0 <M <k(x) <M,, 0<gx)<M;, |f(x <M,. (o)

LeEMMA 1. If the coefficients of equations (1) and (2) are piece-wise continuous
and satisfy conditions (&), then
1

() — 3(x)] <X Gy [ 1K) k()| dx +C, [ |g(x)— G(x) | dx +C; [ | f(0)— F(0)] dx,

o
(3)
where C,, C,, Cy are positive constants depending only on M;(j=1,2,3,4), 4,
and 1#,.
For, the difference z = u — it is found from
L&Dz — o 20)=0, z(1)=0, (4)
where o ;
o= L& ® N L8 i — [(k—R)FY — (g — Pii+(f~1). ®)
We put the solution of (4) in the form
1

200 = | Gx D@ — — [ KO—FEN 7 (5, D @)~

— | G(x, D - FONE) E+ [ Gx, D@ —FENE,  (6)

where G(x,%) is Green’s function for problem (1).
Using the estimates for Green’s function and the solutions of problem (1) found

by analogy with the estimates found in §2:

dG M+ M,

S TME

Iu,i < My (M4 M3)IM3,

0< 6B < 4> ul < M,
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where
M;= [M4+(| Uy I‘H Uy I)M:a]/Ml‘H ty l “H u |,
we obtain inequality (3) from (6).
The inequality (3) expresses the stability of the solution of problem (1) with
respect to a change in the coefficients of the equation.

2. The principle of co-stability of difference schemes. Turning to difference schemes,
it is natural to demand that they also shall possess the property of stability with
respect to a disturbance of their coefficients, whatever its nature.

Together with the initial scheme L{%/) we consider the “disturbed” scheme
LEDD whose coefficients A*, B, D, F! are obtained from the coefficients
AP, BF, D! F}, after an arbitrary disturbance. In the general case this disturbance
can be caused by a distortion of the coefficients of the differential equation L% y=0,
by a distortion of the functionals 4*[{], B*[{], D"[¢] and F"[{] and by errors arising
in the calculation of the scheme coefficients at points of the net.

As well as problem (11) we shall consider the problem

LELDNG =0, 0<i<N, .=, Jy=12. 11))
For an estimate of the magnitude of the distortion in the coefficients we intro-

duce some norm, such as
N,

-1
L N\
iy = N 1l ()
i=1

For an estimate of the solution we first use the norm

| z; 1}y = max || z;]] .
O<i<IN

We shall say that the scheme L%/ is coefficient-stable, or co-stable, if, when

the coefficients of any form of the disturbed scheme L% converge as h— 0 to the
coefficients of the scheme L{*%) according to the norm (7), the solution of problem
() converges uniformly to the solution of problem (I) with the condition that the
coefficients k(x), g(x) and f(x) belong to some class Q™ (m > 0).

In other words, the scheme L{*% /) is co-stable if the conditions
| A —Ab|ls = p(h),  ||BE—Bls = p(h), |ID}—Dhls = (), o
| Ff—F}l; = p(h)

mean that

1 Zilly = [IPi—u(x)lly = p(h) - (10)
We see from the definition that the co-stability of a scheme reduces to
two requirements: (1) the convergence of the scheme (||y¥—u(x)|, = (k) in
0™ (m > 0)); (2) the stability of the solution of the difference boundary prob-
lem (I) with respect to a disturbance of the coefficients of the scheme

(17— yilh = o(h):
7= uCellh < 1¥i— il + Il yi—ux) | - (1
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In order to study the structure of co-stable difference schemes belonging to the
initial family we specify the type of disturbance of the coefficients of the difference
equation, assuming that it is caused by a disturbance of the coefficients of the differ-
ential equation. Let k(x, h), §(x, k) and f(x, k) be the disturbed coefficients of the
differential equation, depending on the step A of the difference net S,. The corre-

sponding coefficients of the equation l~,§,7"‘~1’7 )y; =0 are equal to
AF = AP (x+sh, B)],  BF = BME(x;+sh, h)],
Dt = DG (x; +sh, )], F'= F"[f(x;+ sh, b)].

In particular, in Section 4, we shall consider disturbances of the coefficients k,
'q and f on one interval of the net in the neighbourhood of a point of discontinuity
of these functions.

3. The co-stability of a conservative scheme. We show that conservative schemes
are co-stable.
Consider first the solutions y* and ¥ of the two difference boundary problems:

1
Lt = AMIVID = DIt = —Fl,  0<<i=N, W=, yh=1a. (12

Lhyi'=—,;2—A(A’a'Vy?)—D’:'y’£=—F.", O<i<N, Jo=1ty, Yy =14,, (13)

where L, and L, are conservative difference operators.

LeMMA 2. If the coefficients of the conservative difference equations (12) and (13)
satisfy the conditions (&), then the inequality

[ 72— 21l < Cyll AF— Al [ly+ G| D — Dby + Cyll Ft — F, (14

holds, where C,, C, and C, are positive constants depending only on the constants
M;(j=1,2,3,4).

To prove this lemma it is sufficient to form an equation for the difference z!
= y# — ¥, then to put z! in terms of Green’s difference function for problem (13),
and, applying Green’s first difference formula, to use the estimates of §2 for Green’s
function and its difference ratios.

We return now to the question of the co-stability of the conservative scheme
L%, We must compare the solutions of the problems (11) and (I) with the
condition that

| At —Alls=p(), | Dt—Dis=p(h), IFt—Ftls=p().  (I5)
Lemma 2 is applicable to a conservative scheme of any rank. Therefore we have

7~ il = eh). (16)
From this and inequality (14) it follows that the proof of the co-stability of a conser-
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vative scheme reduces entirely to the proof of the convergence of this scheme in the
class of discontinuous coefficients, since

[P —uily <[V —ull 4o th) .

From the theorem of § 3, Section 6, it follows that the conservative scheme
L2 9) of the class (1,0, 0) is convergent if

k(x)eQW,  q(x)eQ®, f(x)eQW.
This proves
THEOREM 1. The conservative difference scheme L %7 of the first rank is co-
stable if k(x)eQW, q, fe QW.
In § 5 we shall prove a theorem concerning the co-stability of a conservative
scheme of zero rank in the class Q9 (k, g, fe Q©).

Can we make the reverse assertion, i.e. is every co-stable scheme conservative?
An affirmative answer to this question will be given in Section 5.

4. A necessary condition for co-stability. In order to be able to make practical
use of the co-stability requirement for a scheme, we find a specific necessary condi-
tion for co-stability similar to the necessary condition for convergence of § 3, Sec-
tion 3.

Let L{* 2 ) be some co-stable scheme of the type (1, 0, 0). Since we are discussing
a necessary condition, we can discuss the simplest case of a scheme L{¥ of the first
rank, putting ¢(x) =0 and f(x) =

Let k(x) be some function of Q™ (m 1) having a discontinuity at the irrational
point & =x,+0.h, x,=n.h, 0 <0 <I. We introduce the function k(x, k)
which coincides with k(x) everywhere except on the interval (x,, x,.1). Then the
coefficients A" = A®® and B! = B™#® will coincide with A* = 4®® and B!
= B{"® everywhere except fori = nandi = n-1.

Since the scheme L{¥ is co-stable, by hypothesis, (i.e. || 7" — u]| = p(h)) and is
of first rank, we can apply the basic lemma of § 3. Using the expressions for ¢, and

®,41 for the scheme L{® which were given in Section 1 of § 3 we obtain the condition
B::Br’:-H An—H

M= T = o), a7

which is thus the necessary condition for co-stability.

For the sake of simplicity we shall suppose that k(x) is a piece-wise constant
function (k(x) = k_ for x <£ and k(x) = k,. for x > £).

For the function k(x, h) we introduce the arbitrary piece-wise continuous positive
function p*(s), 0 <Cs <1 and also the function

k_, s<0,

w@) =1 u*@s), 0<s<1, (18)
k., s>1
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and put

K(x, ) = g(“%)i) . (19)

Since the coefficient k(x, h) must satisfy the lower bound condition (k(x, u)
> M, >0) the function (s) must also be subject to this condition.

We shall call functions of the same structure as u(s) functions of type .

Putting (19) in condition (17), we obtain the necessary condition for co-stability

Blu) 1Bl +9]__ A6 ] Al +8)]

, 5 ; (20)

where A[u] and B[p] are the canonical parts of the functionals A"[u] and B"[u]
(we have omitted the index (0) from the functionals 4 and B®),
We now require that condition (20) shall be satisfied for the function u(s) +3.¢(s)
(of type @), where & is an arbitrary non-negative parameter,
k., s<0,
e(s) =1 ¢*(), 0<s <1, (21)
0, s>1,

where @*(s) is an arbitrary piece-wise continuous non-negative function. Then we
shall have

Blu(s) +8.9(5) | Blw(l +-5) +8.0(1 +9)]
k.

_Alp(s) +3. 9] Al +9 4-3.5(1 +5)] _

e e S 0. (22

Then using the expansions

Al +3.9] = A[u] +8. 4, [, 9] +38.009),
Blu +93.9] = B[p] +38. B[, ¢]-+3.0(3),

we obtain from (22), because of the fact that & is arbitrary,

L+-2[us) . 9@ +Bludd 4-5), »(1 5]
= a[u(s), o] Fafu(l +s), 2(1+s5)]. (23)

. Alfs 9l
[f (P]“”—“—AU]

B1[f’ CP]
Blg] ”

the functionals B[f] and A[f].
Similarly we find
Tafu(s), $(—1+9)]-+alu(l+s5), o))
= Bluts), Y(—1+91+Llu(l+s), 4], (24

where B[f, %] =

are the logarithmic derivatives of
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where
l 0, s <1,
w(s) =) w*@s), —1 <s <0,
kp,s>0,
and *(s) is an arbitrary non-negative piece-wise continuous function.
The identities (23) and (24) are also the necessary conditions for the co-stability
of the scheme L and are used in Section 5.

5. The conservativeness of a co-stable canonical scheme. We now require the
canonical scheme L} of the first rank to satisfy the necessary condition for co-sta-
bility and, therefore, relations (23) and (24).

LeMMA 3. If condition (23) is satisfied, then
Blu@s), o] =0, (25)
where (s) is an arbitrary non-negative piece-wise continuous function
o) E0, —1 <s <0, () =0 when s > 0.
We take the step function
) ., 8 <20,
0o(s) = lo,s>0.
Since wy(l+5) =0, —1 <s <| we find
afu(l+5), @o(1-+5)] = Blu(l +5), o(1+8)] = 0.
When ¢(s) = wy(s) condition (23) becomes
[+BlS) , @o@)] = xlx(s) , ()] @n

The pattern functionals A[f] and B[f] of the scheme L{¥ of any rank are
normalized and non-increasing functionals. It follows that the functionals a«[f, ]
and B[f, o] are positive with respect to ¢ and

Bl fl=1, O0<B[fiol<l, 0<a[f, o] <! for 0 <o <f, 0<e<f

(26)

(see Lemmas 1, 3, 4 of Section 3, § 1), and in particular
Blu(s), o)l = 0, 0 <Zafu(s), we(s)] < 1.
Therefore (27) is only valid when
Blu(s), we(9)] = 0, (28)
afu(s), wo()] = 1. (29)

Without loss of generality we can take w(s) <Cwy(s). Since the functional
Blfi, f2] is non-negative with respect to its second argument we have

0 <B(s), (s)] <BLr(s), ()] =0,
and, therefore B[u(s), w(s)] = 0.
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We prove similarly:
LEMMA 3*. If condition (24) is satisfied, then

a[ix(s), (9] = 0, (30)

where y(s) 5= 0 only on the interval 0 <s <1, and elsewhere is an arbitrary piece-
wise continuous non-negative function.

LemMmA 4. If B(f(s)] is a canonical functional of the first rank, defined for
f(5)e QO —1, 1] and its first differential B,[f, 9] = B[f, ¢]. BLf) satisfies condition,
(25), then B[f(s)] does not depend on f(s) for —1 <s < 0.

We first prove the lemma for functions of type p. Let py(s) and p,(s) = po(s) -+
+we(s) be two functions of type p which coincide for s > 0 and differ when 5 < 0.
We introduce the function p,(s) = po(s) +Awy(s) where A is an arbitrary number
on the segment [0,1]. If we assume that B[y, (s)] # B[w,(s)] then we can find

a number A = A such that %B[W (N5 = By (5), 4(s)] # 0, and therefore,

Bl1(5), o(s)154 0 which contradicts condition (25) of the lemma.
We can put any function f(s)eQ®@[—1, 1] (bounded below by the constant
i, > 0) in the form

S8) = w(s)-+w(s), ahH

where 1(s) is an arbitrary function of the form (18), and «w(s) is an arbitrary picce-wise
continuous function different from zero only when s < 0.
The lemma will be proved if we show that

BIf(s)] = Blu(s)]. (32)

Let 0{’(s) and w{®(s) be step functions of the form (26) which are the lower and
upper bounds of w(s):

0 < ofP() < ols) < ofP(s).

Then
Si(9) <f5) <fols) s (33)

where f,(s) = u(s)+ of(s), fo(s) = p(s) + w{(s) are functions of type p. for which
the lemma has been proved, so that

Since B{f]is a non-decreasing functional, and from (33), we have (32).

We prove similarly:

LeMMmA 4*. If A[f(s)] is a canonical functional of the first rank defined for f(s)
QW ([—1, 1] and satisfying condition (30) then it does not depend on the values of f(s)
Jor s >0.

Let us return now to condition (23).
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Since @(14-5) = 0 for 5 2> 0 (p(s) is any function of the form (21)), by using
Lemma 4 we obtain

Blu(l +s5), 9(1+5)] = 0.
It follows from Lemma 4* that
O([(.L(S), CP(S)] = d.[k__, k] = l,
since w(s) = ¢(s) = k_ when s <0,
As a result formula (23) takes the form

Blu(s), 9] = afuw(l+5), o(L+9)], (34)

where @.(s) and ¢(s) are arbitrary functions of type (18) and (21).
We show that (34) is equivalent to the inequality

Blu(s)] = Alp(1 4 95)]. (35)
To do this we form the functional

— In. BlO]
Hip(s)] = In- e 70

which is equal to zero from Lemmas 4 and 4* for p*(s) = pg(s) = k9 = const,
and prove that it is equal to zero for any function u(s). Suppose that for some
function p;(s) = ue(s) +o(s) (p(s) is a function of the form (21)) Hiw,(s)]
— Hlu,(s)]— Hluo(s)] # 0. Then there exists a value % == x for which

)
-y Hm @, 5 = Blx(9), @) — 2l (14 ), 51+ 9] # 0,
where
0,(5) = () +2rp(s), O<KA<!, ols) =k —k@#£0 for s5<0.

This contradicts condition (34) and so means that H[u] = 0 for any function
of type u.

Now using Lemmas 4 and 4* and the expression (31) we conclude that

Blf(s)] = A[f(1+5)],

where f(s) is any piece-wise continuous positive function given on the segment
—1 <s < 1.

This proves:

THEOREM 2. If the difference scheme L* of the first rank satisfies the necessary

condition for co-stability, it is conservative.
For, condition (36) means that

Blk(x;i+sh)] = Alk(xi+ (1+9)h)] = Alk(xyy +-sh)},  le. B = Ay,.

Theorems 1 and 2 Alead to:

THEOREM 3. The necessary and sufficient condition for the co-stability of the
canonical scheme L% %7 of the family (1,0, 0) is that it shall be conservative.
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§ 5. CONVERGENCE AND ACCURACY

Having explained in § 4 that only schemes with a conservative canonical part
are co-stable, in § 5 we shall only consider conservative schemes.

In this paragraph we discuss questions of the convergence and accuracy of the
conservative schemes L) in the classes Q™ of discontinuous coefficients
k, g, f of the differential equation.

We make use of the estimate

2" << M9,

obtained in § 2, Section 3 (formula (30)) for the solution z! of problem (II1) with
right-hand side ¢!, The norm

. N-1 i
LY 1
ww=2ﬂ%mm
i=1 §=

proves to be a very effective means of proving not only theorems concerning the
convergence and accuracy for discontinuous coefficients, but also of proving Theo-
rem 3 concerning accuracy in the class C™ of smooth coefficients, since by using
this norm we can reduce the requirements both on the rank #n of the scheme, and
on the order m of the class of coefficients as compared with the corresponding theo-
rem proved with the use of the inequality

', < Mllo"l,  lie"lh = max [ol|
0<i<N
(see § 2, Section 3, formula (29)).
1. The convergence of conservative schemes in the class of discontinuous coef-

ficients.

THEOREM 1. Any conservative scheme L% %) of zero rank converges in the class
of piece-wise continuous coefficients k, q, fe Q9.

For the sake of simplicity we give the proof for the case when there is only one
point of discontinuity of the coefficients k(x), ¢(x) and f(x), namely £ = xn-
40k (x, = Oh, 0<<O<1). As usual, introducing the difference z! = y! —u(x,)
we obtain for it the difference boundary problem

LEOzF— gt 0<i<N, z£=0, z4=0, (1)
where
'P? — Lﬁ"’ “’f)u,-— (L“‘""f)u)i.
We put the right-hand side ¢} in the form of the sum
o =50 +o0 e, (1)
where
1. i=}],

AW = it Oner-Si . By = 0, i},

)
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o) =— (D" —q)u A (F*D—~f), i#n, iFntl,
B = AUPIVI) (Y, i#n iEnt],

P =5M=0, i=n i=n+l.
If i~ n, i n+1 then
F" D = F*[f(x;+ sh)} = FO[fi+ o (W] +p(h) = fi+p(h)

and, similarly,

D"® = gi-+ (k).
so that

1821l = e(h).

&)
@

(5)

(5

()

In Section 1 of § 1 we remarked that if k, q, fe Q9 then the derivatives u’, (ku')’
of the solution u(x) of problem (I) are also piece-wise continuous. Therefore, for

i#n and i n+1 we can write

o, = Gy o e Y e

h
(ku'); v, = (ku'); — > (ku'); +ho(h) ,

and, therefore

o ku' )iy, — (ku'Yi—y,
;= E 2y o
Since the derivative #’'(x) is continuous for x = &,
—Vhi‘i =ul_y,+plh), if iFn+l.

As a result we can put the expression for () in the form

= AQ;
P = T +-p(h),
where
Q; = (AP kv Yutjv, +p(B).
Since L™ is a scheme of zero rank,
AR = ki+-o(h) = ki +o(h),  iFEn+l.
From this and form (10) we conclude that
Qi=op) forall i#n+1.

@®

(8)

)

(10)

(11)

To find the bounds of the solution of problem (I11) we make use of the inequality

obtained in § 2, Section 3:
12" < M ll%"ls .

(12)
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Since the coefficients k and ¢ satisfy the conditions
0 <M, <k(x) <M, 0<q(x) <M, ()

these conditions are also satisfied by 4% and D®9. Then M; = My(M,, M,)
is a constant depending only on M, and M,.

Putting ¢! = 0+ oW 4-¢® in (12) we obtain
ot < Ma{llBD o+ 11 o+l 0@ 1o}
Since ||g*|ls > ll»"!l;, we have, from condition (6)
[y == o(h). (13)
Further, we have
n—1 N-1
180 = 2 h Q=+ 3 hl@ua= Q)+ @ Oru) 1+

+2h1Q,—Q,} <4 max |Q;|+eh). (14)

W<i<N(i#ni1)
Now using estimate (11) we have
1Bl = o). (i5)
We calculate the norm of function ¢‘® defined by formula (2):
N—1
10 = R 1gllHhigh+abal 2 b <Rlelthmtanl . 09

The necessary condition for convergence ¢,-+¢,,, = p(h) is satisfied by our
scheme, and kg, = O(1); therefore

9@y = o(h) . (16"
Collecting estimates (13), (15), and (16") we obtain
|2}y = eh) . (1

2. The accuracy of a conservative scheme.

THEOREM 2. The conservative scheme L7 of the first rank has first order
accuracy in the class of piece-wise continuous and piece-wise smooth functions
k, q, f € Q(l).

To prove this theorem we need only repeat the proof of the Theorem 1, replacing
o(h) everywhere by O(h).

THEOREM 3. The conservative scheme L& 1) of second rank, satisfying the con-
ditions (A.C.2) of second order approximation, has second order accuracy in the class
CD of coefficients k, g, f.

However, such a scheme has, generally speaking, first order accuracy in Q™
(for any m > 1).
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If k(x)eC® then
AP P = ko, bk, (AP [5]40-5) + O(h?) = kv, + O(h)2, (18)

since 4{®[s] = —0-5 (the condition for second order approximation of the
scheme L{®).
Since the derivatives u'

"

and k'’ exist,

(k)i — (k“')f_‘,’;
h

Au;fh= ui,y,+ O(H?) .

(ku"); =

+ O3,

Put o = o -+¢®, where
P = — (DD — gyu; 4 (F*N—f)) |

(1, k)
A(Ah V“,),_(k N = ég_{ o>, (19)

Q = (A — Ky )i, + OGH)

Using condition (18) we obtain at once

2
o) =

Q, = 0. (20)
From the conditions of the theorem it also follows that
D0 = g+ O, F™D =fi+0(), of" = 0. @n

Returning now to formula (12), for the solution of problem (III) we have

2" < Ml ‘P(l) [+ H‘Pm lla} »

where [|¢@ |, = O(h?) from condition (21).
Using formula (19)

lg® [ = D hlQ— Q[+ O,
i=1

and with estimate (20) we obtain
9@l = O,
i.e. ||2*|l, = O(h?) which we were required to prove.

COROLLARY. The conservative symmetric scheme L") of second rank has
second order accuracy in C®,

For such a scheme satisfies (A.C.2) i.e. all the conditions of Theorem 3.

NoOTE. In Theorems 2 and 3 we can relax the requirement that the coefficients
shall be differentiable. Theorem 3 remains true if k, g, fe C®*V where CO-V is the
class of functions whose first derivative satisfied the Lipschitz condition on the
segment [0, 1]. Theorem 3 remains true if k, ¢, fe C?*D where C®? is the class of
piece-wise continuous functions on the segment [0, 1], satisfying the Lipschitz
condition in the intervals where they are continuous.

A similar remark applies to Theorem 4.
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THEOREM 4. For a conservative scheme of second rank satisfying the conditions
for second order approximation to have second order accuracy in the class Q™ (m > 2)
it is necessary and sufficient that it satisfies the conditions

P, @npe = O(h) (bs)
in the neighbourhood of the points of discontiuity of the coefficients k(x), q(x) and
f(x), the points &; = x,,j—I—th (x,,j.h, 0<Y; <1, j=1,2,..,jy.

We note that the difference between this theorem and the similar theorem of § 3
lies in the relaxation of the rank requirements for the scheme and of the order m
of the class Q™ of coefficients. The proof of necessity in this case too presents no
difficulty. As usual we take the case of one discontinuity.

Dividing problem (III) into three problems, according to formulae (1)-(4) we
see, by analogy with Section 1, that

19, = Oh?).
a0 = S 008), Q= (AP ki ud o 00)

(i#n, i#n+l),
¢M =0 for i=n, nt+l.
Since L{" is a scheme of second rank, satisfying (A.C.2), we have A®"®

=k;_y,+ O for i#An+ 1.
It follows that

Q;=0F) for i# n+1.
Now using
P, < 4max |[Q;|+OM),

0<i<N, i#n+1

by analogy with inequality (14), we have ||@® |, = O(h?).

_ 1fz{V and z{V are solutions of the problem (III) with right-hand sides " and

2 respectively, then formula (12) and the estimates for || ||, and || ™|, give
1Z0], =0, IzW], = 0(k). (22)

Returning to the problem (III) for z® = z; — GV +2zM) with the right-hand
side ¢® = §;,,¢8+3; ,+19"1 and using the results of § 3, Section 3, we see that
the conditions (a,) and (b,) are necessary for || z? ||, to be equal to O(h?). From the
inequalities

|22, < M,

9@,
and

1@y < A2 9n |+ | 9n-+ Ppp | (23)
we see that the conditions (a,) and (b,) are also sufficient for second order

5 Polymer 1
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smallness of the function z® and (from (22)) the function z. This proves
Theorem 4.

If there is a finite number of discontinuities at the points §; = Xu, +6;.h
(i=1,2,...,j,) instead of just one, then

Jo
p 2
= Sop,
j=1

where % = Si,,jcpf',j—}—S,, nj+1<Pﬁj+1, and instead of (16) and (23) we obtain the
estimate

Jo
ol < Y [k | A+ 9, + @b el A,
i=1
since

Jo
o® 1l < X6l
i=t

Translated by R. FEINSTEIN
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