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ABSTRACT 

Homogeneous difference schemes, suitable for transforming differential equations whose 
coefficients belong to certain classes of function into difference equations, are defined and discussed. 
The main points which arise are, first, whether the solution of the resulting difference equation 
converges to that of the original differential equation in the given class of coefficients, and of what 
order the convergence is, if it exists; and, secondly, how the “best” scheme, giving a high degree 
of accuracy in the widest class of coefficients and stability with respect to computing errors, can 
be selected. A basic lemma concerning the necessary condition for convergence is proved. 

Examples are given of a difference scheme for Sturm-Liouville type operators in the class of 
sufficiently smooth coefficients, of a scheme for the first boundary problem in the class of smooth 
coefficients and in the class of discontinuous coefficients, as well as in the class of piece-wise contin- 
uous coefficients. The latter is the basic class of coefficients which is discussed in the article. 

Green’s function for the difference operator is constructed, and bounds are found for it and for 
its first difference ratios. 
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INTRODUCTION 

THROUGH the wide-scale use of high-speed electronic computers there has arisen 
the need to develop homogeneous computing methods suitable for solving definite 
classes of mathematical problems. 

The method of finite differences is often used to find approximate solutions 
of the differential equations Lu = 0 with certain supplementary conditions lu = 0, 
the unknown function u being replaced by the net function uh defined on the differ- 
ence net &, and the differential operator Lu by the differential operator L,,uh 
[l-IO]. 

The approximate solution of the initial problem is defined as the solution of the 
system of difference equations LhUh = 0 with the corresponding difference con- 
ditions Ihuh = 0. 

Computer experience has demonstrated that it is less convenient to find a nu- 
merical method suitable for one particular problem alone, than to develop numerical 
algorithms suitable for solving certain classes of problem. Consider for example 
the class of differential equations Ltk)u = 0 with the supplementary conditions 
Ick)n -= 0, characterised by the type of the operators Lck) and Zck) and by the functional 
space K from which the vector coefficients are drawn. The difference scheme 
is the rule according to which the difference equations for any coefficients k(x) 
of the functional space k are written down. The difference scheme I?&*, together 
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with f:uh, is the computing algorithm for the solution of any problem from the given 
class of problems. 

The following questions then arise. 
(1) Does the solution of the difference problem with the difference scheme we 

have chosen converge to the solution of the initial problem of a differential equation 
in the given class of coefficients, and what is the asymptotic order of the convergence 
as h-+0? 

(2) If we think of some family of “admissible” schemes rather than of one fixed 
scheme, in what way should we select the “best” schemes, which give a high degree 
of accuracy in the widest class of coefficients and are stable with respect to disturb- 
ances caused by computing errors? 

Section 1 of the Introduction is devoted to a discussion of the concept of homo- 
geneous difference schemes. The structure of the initial classes of schemes must be 
studied, since the basic problem in the theory of difference schemes consists in 
finding a relation between the structure of a scheme and the accuracy it provides. 
A large amount of work concerned with particular difference schemes has been 
published. 

We give an example in Section 2 of a difference scheme for differential oper- 
ators of the Sturm-Liouville type giving high accuracy in the class of sufficiently 
smooth coefficients, but not even giving convergence in the class of discontinuous 
coefficients. As it happens, the class of equations of this type, with discontinuous 
coefficients, proves to be of great scientific and practical interest. 

“Open” families of difference schemes are of great value, in that they enable 
us to solve problems with either continuous or discontinuous coefficients by a single 
method, without having to exclude the points of discontinuity. (It is a complicated 
procedure to find these points when the coefficients are obtained from the approx- 
imate solution of other equations.) 

In Section 3 we give a second example which is essential in a discussion of what 
questions should be posed. 

Section 4 summarises the results of the whole article. 
This work is a revision of the results published by the authors in 1956-1960 

[I l-191. While summarising them we have essentially reworked them. 

1. Homogeneous difference schemes. The need for uniformity or homogeneity 
in computation, which is especially important in constructing programming cycles, 
puts certain requirements on the families of difference operators and schemes. 
First we define homogeneity of difference operators and schemes, restricting our- 
selves to the case of one variable; our definitions can be extended without difficulty 
to the case of many variables. 

Let us consider some examples. For a differential operator with constant co- 
efficients 

d2u 
Lu = z -qu, q = const , O<x<l, 



8 A. N. TKHONOV AND A. A. SAMARSKII 

the simplest difference operator (three-point) is determined by what pattern !l)i,. 
consisting of the three points m = -1, 0, 1, and producing the functions 

This function can be thought of as a functional given on the net function zi, defined 
on the pattern 

Q = {timj, rnE!)!i,{-I, 0, 1:. 

The value of the difference operator Lhuh at the point Xi of the net &,(x8 = ih, 
h=l/N, i=O,l,..., N} for 1 < i <N-l is defined as the value of the generating 
function of the operator Oh whose arguments are the values of the net function 
uh = {u!} at the points of the pattern “r(~, taken to the point xi: 

9X”,. L = {xi+mh}, rnE!l&, i.e. 

(Lhuh)i = !!k: $t_!! _ qu” = @h[;(Xi+mh)]. 

Difference operators for the case of many variables are defined similarly (for 
example, for Laplace’s equation) (see [I]). 

Let us discuss the concept of the homogeneous difference operator &,uh = Uh. 
First, we introduce some definitions. 
A finite set of points of an integt al net 9i, = {-ml, -ml + 1, . . ., 0, 1, . . . , m,} 

will be called an operator pattern, and the function Qh(zZ_,,, zZ_,,,+~, . . . . C,, pi, . . . . 
G,J ,.@[??I f o m, +m,+ 1 variables depending on h and on a parameter will 
be called the generating function (functional) of the difference operator. The 
function ah is an h-parameter functional of the net function zz = {S,, m E 9&} 

given on !W,. 
The transformation of variables 

s = x+sh 

called a shift transformation, maps the pattern 9X, (with s = m, m E !)!i,) on to 
the set of points ?Nz, which we call the transformed z-pattern at the point X. 

If Z = Xi, m, < i < N - m2 is an interpolation point of the net & and t% = h, then 
the transformed h-pattern at the point Xi is part of the net &,. 

The net function uh given on the base net &, with the help of the transformed 
h-pattern at the point xi, induces the function t&, defined on W,: 

ziii = {u”(x+ mh), m E %,,}, if only !ZJI?:i c &, , i.e. m, < i < N- m, . 

The difference operator Lhuh = Uh is said to be homogeneous if there exists 
a generating function (functional) 0,” [zZJ, C = (6, m E %I?,} defined for net functions 
given on the pattern YJi$, such that the values of the operator at the point xi are 
equal to 

Vi” = Shari - ~‘[uh(Xi+nZh)] ) 
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where zi’& is the function induced on the pattern Em0 by the net function uh using the 

transformed h-pattern at the point Xi. Such an operator L,, transforms the net function 
uh, given on S,, , into a net function Uh, defined on the net S;{xi, m, < i < N-m,} 
which is part of the net & . 

Consider now some examples of difference schemes for the class of differential 
operators 

I!,‘% = $ k,(x) g -kk,(x)u +ks(x), 
[ 1 

where the coefficients k(x) = (k,(x), k,(x), k,(x)) belong to some functional space K. 

For example, consider the scheme 

(~(k+j’) = ,yi”, k) = &[B,(~;+, -u~)--A~(u~-&~)]- Di~i + Fi ) 

where 
O<i<N, 

+-o.Sh 0.5 

Di = $ [ k,(x)dx = J- k,(Xi+sh)dS, 
xi-*lJ.5h -0.5 

0.: 

Fi =_;(jk,(xi+sh)dsY, xi = ih, i = 1, 2, . . . . N-1, h = l/N. 

This scheme has a number of advantages. 

The value of (IIkkh); can be determined using the generating functional 

where 

AcG;’ = A[z&)] = [ _&]--‘~ 
1 

Bcx) = B[k,(s)] = [i&-j-‘= A[&(l+s)], 
,I 
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0.5 0.5 

D(“s) = D [i;,(s)] = j E, (S)dS ) F(G) = F[k,(s)] = [ k,(s)ds, 

Ill% -b.5 

defined for the net function zi = {ti,,,} given on the three-point pattern !N, (m 

= -1, 0, 1) and functions &s) = {&(.s), k&), &(s)}, given on the segment 
X,(-l <s < I), which we shall call the coefficient pattern, if we put 

ii, = u:+, ) m E !vi, ) q(s) = kj(Xi+sh), j = 1, 2, 3, SE&. 

We define the concept of the homogeneous difference scheme Lhk)uh. We first 
give some other definitions. 

The finite set of points of an integral net, %f,{m = -m, , --m,+l, . . . 
. . . ) 0, 1, . . . ) m,} is said to be a net set, and the segment Es{ -m, 0 < 91,) will be 

called a coefficient pattern. The functional mh[zZ, z(s)], defined for the net function 

+L m E W,} and coefficients z(s) (s E E,,) on the corresponding patterns, and 
depending on h and a parameter, will be called a generating functional. 

In our definition of the net pattern %i, and the coefficient pattern X0, we can, 
without loss of generality, take m, and m2 as identical. In the case of many variables 
we can make the pattern X,, independent of ‘3X0, the set of vectors joining the origin 

of coordinates to the points of the integral net. 
The shift transformation x = ?+sh maps the pattern 3X, and &-, on the sets 

of points !N$ and Cs, which we shall call transformed h-pattern at the point 2. 

We consider the functions uh and k(x) as given, respectively, on the base net Sh 
and on 2, the base region of change in x. These functions together with the trans- 
formed pattern !?li!& and Eti at the point xi induce the functions tiki and 6$s) de- 
fined on 9X0 and &: 

iiii = uh(xi +mh), m E No, E:,(s) = k(xi fsh), s E Co 3 

provided that !))i!& and Eti belong to Sh and Z respectively. 

The difference scheme L$fuh corresponding to the differential operator Ltk)u, 
will be said to be a homogeneous izyference scheme in the class of coefficients k(x) E K 
if there exists a generating functional @‘“[zi, k(s)] such that the values ( L(t)Uh)i can 
be found from the formula: 

(L~k’Uh)i = @” [tiii , Eii(s)] = ~‘h[Uh(Xi +mh) , k(Xi +sh)] e 

For any choice of k(x) E K the difference scheme Lp) defines an operator which 
transforms the function uh, given on the net S,, into the function Lik)uk, given on 
the net SA (Xi, m, < i <N--m&, which is part of the net Sk. 

If the difference scheme Lik)uh is linear with respect to the net function U’ = (u!) , 
then 

(Lik)uh)j = 2 a!,[k(x)l u:+b;[k(x)] , 
I 
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where the summation is taken, generally speaking, over the whole net S,. The co- 
efficients Q [k(x)] and b,h[k( x )] are functionals of the coefficients of the differential 
operator Lck)u, depending on the parameter h. Being given Lik)uh is equivalent to being 
given the matrix-functional (L& [k(x)]) and the vector-functional @[k(x)]. If the 
linear scheme Lkk)uh is homogeneous, then 

(Lik)Uh)i = 2 Ajh[kf(S)] UF+j +Bh[@(S)] ) (IQ(S)= k(Xi+SIl)) ) 
j=-ml 

- 
where A$[k(s)] and Bh[k(s)] are parametric functionals, defined for vector-functions 

k(s) given on the coefficient pattern &,(-m, <s < m2), where 

&[k(x)]= A$[k(Xi+sSh)], j=l-i, for -ml<j<mm,, 

a;~[k(x)] = 0 for j<-m, and j >m, , 

bf [k(x)] = Bh[k(xi+sh)] - 

The generating functional of this linear homogeneous scheme is equal to 

cDh[ti,k(s)] = 2 A![E(s~)]fij+B~[Z(s)]) 
j= --m, 

where k(s) is a function defined on the pattern X,,( - m, <s < mJ. 

The difference scheme is said to be symmetric if the expression Lik)uh is unchanged 
when the direction of the x-axis changes. The symmetry condition for a homogeneous 
scheme is of the form 

@‘[Ui+j, k(Xi+Sh)] = @‘[24--j, k(X,-S/Z)] , 

j=O,fl,f2 ,..., fm (m,=m,=m), -m<s<m. 

The symmetry of a linear homogeneous scheme is defined by the equalities 

A$E(s)=Akj[i[k(--_)I, j=O,&l,...,+m (m,=m,=m), 

Bh[k(s)] = Bh[k(- s) ] . 

When solving systems of differential equations dY/dx = k(x, Y(x)) the class 
of equations is not simply defined by the coefficients k(x) depending on the variable x, 
but also by the “coefficients” k(x, Y) , depending on the required vector-func- 
tions Y(x). The concept of homogeneous difference schemes can be extended to this 
case also, and includes schemes used in the Euler and Adams-Stermer methods*. 

2. Some examples. To clarify the questions posed in Section 1, we consider 
some examples. 

Example 1. Consider the first boundary problem 

L(+ = -6 k (x) d! 
dx [ 1 = 0 

dx ’ 
O<x<l, u(O)=l, U(l)=O. 

* The Runge-Kutta scheme goes outside this definition of homogeneous schemes. However, it is 
not difficult to extend the concept of homogeneity of difference schemes to in&de this scheme too. 
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Consider the homogeneous difference scheme defined by the generating 
functional 

which leads to the system of difference equations 

(L~k’~h)i = ~‘[Uh(Xi +mh) ) k(X, +Sh)] 

or 

h 

= /$4+1 h2- 
-2Uf +U!_, +k,,,--ki_l $!~--U~_~ = o 

-- . _____ 

2h 2h ’ 

m=-l,O, I, O<i<N. h = l/N, 

; [Bias; - A~k’vu;] = 0, O<i<N, utf= 1) uk = 0 3 

where 

Aq = ~i+l-~i, Vq = Ui-Ui_l ) Bik’ = ki +f (ki+l-ki_,), 

A’k’ =ki-‘((ki+l--ki-l). I 4 

As we shall show below (see Q 2, Section 4), this scheme gives second order 
accuracy in the class of smooth coefficients k(x) (k E Ct3)) 

Ur -U(Xi) =; 0(/22) . 

We show that this scheme does not even give convergence in the class of discon- 
tinuous coefficients. Consider the piece-wise constant function 

k 
k(x) = 

1, O<s<E, 

k,, E<x<l, 

where 6 is an irrational number. Let [ belong to the interval (x,, x”+,) of the net & , 

z = xn+8h, 0 < 0 < 1. The difference equations for i # n, i # n +l give 

Au; = Vu:+, , 

i.e. U! is linear with respect to the suffix i for i < n and i > n+ 1 

/ 

l-;-xi, Xl <5, 

*l zzc 

$(l-Xi), Xi >t* 

The coefficients 2 and $ are determined from the equations for i = n, n+l : 

3+x 
a=5-_K, p=;;+, k, x=--, 

k, 

A = &+$(I-Q+h[l-((p-a)(l-O)]. 
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Introducing the polygonal function iih(x, h) stretching along the net function U! 
and passing to the limit as h --t 0 we see that the limit function 

1 

1 +X, ,5 .Y c.. I)) 

0 

ii(X) = lim 2(x, h) = 
h-0 +(1-X), X <c 

0 

(A0 = aS+PU --a) 

is different from the solution of the original problem, which is equal to 

when x # 1. Indeed, comparing the expressions for a (x) and U(X) we can show that 
equality ii(x) = U(X) holds only when x = 1. For some x and E we have A, = 0 
and in general the limit function i;(x) does not exist. 

Thus, when using difference schemes, it is necessary to find the class of coeffi- 
cients in which they give convergence. 

Example 2. Consider the first boundary problem 

L(k,q*f)U =-g k(x)$; -y(s)u t-,f’(x) = 0, 
.[ 1 

O<x<l, 

u(0) = 21, ) U(1) = 22, ) 

for the class of differential equations characterised by the coefficients k, q,fE Q(O) 

(i.e. by piece-wise continuous coefficients on the segment 0 < x < 1). We shall 

assume that k(x) > Ml > 0, q(x) > 0. 
It is obvious that in the interval (Xi-l, Xi+l) 

U(X) = ph(X)Ui--l+Q~<x>~i+l+Rl(x), 

where P!(x) and Q:(x) are found in terms of the solution z&)(x) and U(*)(X) of 
the homogeneous equation 

satisfying the conditions 

U(l)(Xi_l) = 0, ki_1 U(l) (Xi-l) = i 9 U(*)(Xi+1) = 0, 
1 

ki+lU”)(xi+1) = -h, * 

* The normalisation of the derivative is arbitrary. The initial values of the derivatives are chosen 
for convenience in the subsequent calculations. 
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where 

zP(x) P,“(x) z.zz ~-~~. 
U(‘)(Xi_l) 

Q:(x) = i;z+$ 
1 

A. A. SAMARSKII 

3 U(l)(Xi+l) # 0 3 Uc2)(X'_1)# 0 I 

and RF(x) is found in terms of the solution U(~)(X) of the initial non-homogeneous 
equation J?,(~+/) u = 0 satisfying the conditions 

U(3)(X’_1) = Uc3)(eUi+l) = 0 1 9 P(x) = U(3)(X) . 

Thus, the exact solution at interpolation points of the net coincides with the 
solution of the difference equations 

Yi = P!_Y-1+Q!Yi+l+@, - Yl, = %, yf., = ti,, 

whose coefficients 

Pi” = P,"(Xi) , QT = Qr(si), R) = Rr(Xi) 

are functionals of k(x), q(x) and f(x). 
We transform the conditions defining P,“, Qf and RF. The transformation 

transforms U(‘)(X) and u(“)(x) into the solutions z.P)(s) and zP(s) of the equation 

$ k(s)$ -h%j(s)C(s) = 0, 
t 1 

-l<S<l, 

k(s) = k(Xi+sh), 4(s) = q(~i+sh), 

satisfying the conditions 

$1)(-l) zz 0 > i;(-l)U(‘)‘(-1) = 1, 22@)(l) = 0 , k(l)zP’(l) = -1 , 

and u(“)(x) into the solution z?“‘(s) of the non-homogeneous equation 

$ I&$) -hh”y(s)z~(3’(~)_1-h.LJ:i~) := 0, 
( i 

f(s) =.f(_qj-sh), 

defined by the conditions 

$“)(-_I) -= $3)( 1) = 0. 

Consider the functionals 

zi@)(O) 
PhP(4, G)l = 22(2’(_l) 9 @W), cl(s)1 =-g+ 

Rh[k(.s), G(s), f(s)] = Uc3)(0) , 

depending on k(s), q(s), f:(s). 
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The exact difference scheme is a homogeneous scheme and is defined by the 
characteristic functional 

However, in practice, the exact scheme is not used due to the complexity of the 
determination of its coefficients. To solve this boundary problem we make use of 
various families of “admissible” schemes, whose coefficients are calculated quite 
simply. 

In particular, discrete schemes, defined by the values of the coefficients of the 
equation at the interpolation points of the net only. are widely used (see, for example, 
the scheme of example 1). 

To construct the theory of homogeneous difference schemes we must choose an 
initial family of schemes, find a functional class of coefficients of a differential 
equation in which the schemes from the original family converge, and also discuss 
the accuracy of the separate schemes. 

3. The approximation and accuracy of diffl?rennce schemes [6]. We consider the 
class of differential equations Z,(‘)U = 0 defined for k(x) E K, and the homogeneous 
difference scheme Lik)uh defined for the same class of coefficients. 

Let 

@h[?& k(s)] 

be the generating functional of the scheme L, u (k) “, defined on the patterns 5X,(- m, 
< m XC m2) and I&,(- m, < s < mz). Let X be a fixed point in the region of defi- 
nition of the operator L(‘)v and let V(X) be some function given in a neighbourhood 
of this point. With the pattern 

the function F(X) induces the net function 

5: = {v(?+mh), mE!&,} 

on the pattern 9X,. 
Consider the quantity 

and the difference 

where k,(x) is some fixed coefficient of the class K; we call the function ‘p the 
approximation error at the point X due to approximating to the operator Lj,k~‘) 
by the operator Ltko), or the approximation error of the operator Like). 

We shall say that the difference operator Llko) has an approximation of the 
rzth order as It -+ 0 at the point E with respect to the differential operator Ltk,,) if 
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we can find m such that for any function v(x) EC @‘I, which is differentiable m times. 

‘p(X,r, h) = O(P) or jqz~(X,v, h)l-< M/r”, 

where M is a constant depending on 2, v(x) and k,(x). 
We shall say that the difference scheme L,, (k) at the point X is of nth order approx- 

imation to Lfk) in the class K of coefficients if for any fixed coefficient k,(x) E K the 
difference operator Likoo) is of nth order approximation at the point X. 

Let U(X) be a solution of the equation 

satisfying some supplementary conditions Zu = 0 (problem I), and let uh = (u)} 
be a solution of the difference equation 

with corresponding supplementary conditions lhUh = 0 (problem 11). 
The difference z: = u! - U(XJ is the error in the solution of the initial problem; 

in future we shall evaluate this difference according to the norm 11 zf II1 = max ]z”l 
i 

where the maximum is taken over all the points of the net on which the function 
zf is given. 

We shall say that the solution of the difference problem 11 converges to that of 

problem I in the class K if 

for any coefficient k(x) E K. 

Further, if /I .z;lll = 0(/z”) or I/$ III < Mh”, where A4 is a constant depending 
only on the choice of the coefficient k(x), then we shall say that problem II is of nth 

order accuracy. 
The accuracy of the difference problem depends both on the choice of the differ- 

ence scheme and on the choice of the difference boundary conditions. If the bound- 
ary conditions for problems I and II are the same (as, for example, in the first 
boundary problem, in the introduction, section 4) then the accuracy of the difference 
boundary problem is completely determined by the choice of difference scheme. 
In this case we can say that “the difference scheme converges”, or “the difference 
scheme has nth order accuracy”. 

If the scheme Lik) is linear. then the equation for the function z) is 

,QUzj = _ ‘p!l I? where p; = /_j,kjUi (,++)i 

is the approximation error at the point Xi for the difference operator Lik) taken 
over the solution u(x) of the differential equation Lck) u = 0. 

The orders of approximation considered over the family of sufficiently smooth 
functions v(x) E Crmn) and over the family of solutions of the equations Lqk)u = 0 
may differ essentially. 
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We shall say that the homogeneous difference schemes iik) and ,?ik) defined in 
the same class K are nth order equivalent as regards approximation at the point 
x = X if, for any k(u) E K 

y(X, v; h) = @a), ;x - (Lpq,;, = O(h”) ) 

where U(X) is any sufficiently smooth function, i.e. IQ(X,v; h); < M/r”, where M is 
a constant depending on the choice of k(x), e(x) and X. 

Let 3” and 3 be solutions of the equations L$,k)j$ = 0 and ,?@2 = 0 with the 

supplementary conditions @)y” = 0 and Tik)p = 0 (problems 11’ and 11”). 
We shall say that the difference boundary problems II’ and II” are nth order 

equivalent in the class K if for any k(x) E K 

~ijf-y4’1~/,‘Mh”, 

where M is a constant depending on the choice of k(x) and independent of h. 
It is clear that we can always replace difference problems by their equivalents 

and select the structurally simplest difference schemes from the class of equivalent 
problems. 

4. Basic results. In this article we study homogeneous schemes for the solution 
of the first boundary problem 

L’k* 4% f), = $ Z<(X) p; -q(x) uSf(x) = 0 [ 1 (0 < x < 1) ) 
u(0) = J,, U(1) = zi,, (1) 

whose coefficients k, q, f are piece-wise continuous functions k, q, f E Q(O), where 

k(x) > M > 0, q(x) > 0. 

In 8 1 we take as our initial family of difference schemes the three-point homogene- 
ous difference schemes Lp”‘* f, characterised by the linear generating functional 

clqzqm), i;(s), Y(s), f(s)] = ;y [B(‘~‘i;f(~,--iio)-~~~~~~(~o-Z~_~)]-D(h~~~)ZI”+F(h*~), 

each coefficients of which is a functional of only one coefficient of the differential 
equation (I) : 

A@* k) = /P[7F(s)], lP.7;’ L P[k(s)] , 
D(h.i) = @[q($], F’h,fi = F’J[~($] 1 ’ 

-1 --I. <. s % 

Here Dh and Fh are linear functionals. Such schemes arc commonly used in practice, 
and we call them standard schemes. 

The value of a scheme can be characterised by its approximation error 

y(%, u; h) = (L~k”./)U),=;-(L(k~q’/)U), ;;, 

where u(x) is a solution of equation (I). 

? Polymer 1 
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To find the order of approximation as h + 0 the function r&Z, u; h) must be 
expanded in the parameter h and the coefficients of powers of h up to the rth must 
be calculated. It is possible to do this if the pattern functionals Ah, Bh, oh and Fh 

have derivatives of the corresponding order both with respect to the parameter h 
and with respect to their functional argument. 

We define the rank of a functional, including in our definition the requirements 
of homogeneity, monotonicity and normalisation as well as differentiability. 

Using the concept of the rank of template functionals, we consider the different 
classes L?(n,, n2, n8) of schemes whose functionals Ah and Bh have rank n,, and Dh 

and Fh have rank n2, n3 and are defined on the segment -0.5 < s < 0.5. 
If n1 = n2 = n3 = 12 then we shall say that Lf,k9q9f) is a scheme of the nth rank. 
We consider special families of schemes: those which are conservative, or self- 

conjugate (Bh[k(s)] = Ah[k(l +s)]), those which are discrete and those which are 
canonical, their pattern functionals not dependent on the parameter h. 

Having found necessary and sufficient conditions for the scheme Lr.9’ f) (n = 1,2) 
to have nth order approximation, in the form of a number of relations (A.C.n) between 
the moments of the functionals of the scheme, we pass in $2 to a study of the questions 
of convergence and accuracy of the original schemes in some class of mooth coef- 
ficients Ccm)*. It is proved that in order that the original scheme Ljlksq*f) of the class 
_.C’(n+ 1, n, n) with coefficients k(x) E C(“lk), mk > n+ 1, q(x) E Ccmq), mq > n; 

f(x) E C%-), mf > n shall be accurate to the nth order, it is both necessary and 
sufficient that it has nth order approximation (Theorem I). 

To prove this theorem we make use of Green’s difference function of the opera- 
tor Likpq). In Section 2 we give the construction of Green’s function, and in Section 3 
we give uniform upper and lower bounds for Green’s function and also for its first 
difference ratios. 

We note that in studying the convergence and accuracy of schemes in the class 
of smooth coefficients, we use the norm 

and in the class of discontinuous coefficients, of the norms 

Although in the class Cc”) the order of accuracy of the scheme Lik+q*f) is the same 
as the order of approximation, there is no such connection in the class of discontin- 
uous coefficients. It is sufficient to recall Example 1 given above. The scheme 
there has second order approximation in the class Cc”) (m > 3) (this can easily be 
verified) and yet diverges in the class of discontinuous coefficients k(x) E Q(“) (for 
any m > 0). 

* See Section 1, 5 1 for the definitions of Cm and Qm. 
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We find, by studying the function cp(X, U; h) at points of the net adjacent to a 
point of discontinuity 5 (x, GE < x”+J of the coefficient k(x), that the approxi- 
mation error for cpl: and ‘pi+1 when x=x,, and x = x,,, in general tends to infinity 
as h + 0. However, there is still a possibility that the solution of the difference 
equation converges to the solution of equation (1). We can then ask what properties 
the scheme L(,k3qvf) must possess for there to convergence in the class Qcm). 

In 0 3 we prove a basic lemma giving the necessary condition which the scheme 
L$kP*PfJ must satisfy for convergence in the class Q (*) This condition has the form . 

A([, h) = h(B,h~l: , + A:+,cp:) = p(h) -+ 0 (b) 
or 

BhBh. __!.ce_ A; Ah_ ” 1 

k+ k- 
~- - p(h)-+ 0 as h + 0, (b’) 

where k_ = k(E-, 0), k, = k([ + 0). 

If we require the scheme Lf‘fqpf) in Q (“‘) to have 2nd order accuracy, then the two 
conditions : 

11’3: = O(h”), hf& 1 --: O(h”). (a,) 

A(!& h) = O(h”). (b,) 

must be satisfied. 
It should be noted that any conservative scheme of zero rank satisfies the necessary 

condition for convergence. 
It is proved that condition (b) is not only necessary for a scheme of type .P(I, 0,O) 

but also sufficient for convergence of the scheme L$,kPq9f) in the class of coefficients 
k(x) E Q(l), q,fe Q(O) (Theorem 3, Q 3). 

A certain error is always admissible, generally speaking, in calculating the coef- 
ficients of the difference scheme. This can occur because of insufficient information 
about the coefficients k, q,f of equation (I): for example, the functions k(x), q(x) 

and f(x) may have to be determined approximately (using some computing algo- 
rithm) on a discrete set of points. Moreover. it can happen that the pattern 
functionals of the scheme are only approximate. 

It is therefore clear why the problem of schemes with disturbed coefficients 
is so important. 

In $4 we introduce the norm of the disturbance of coefficients of a scheme, and 
using it we give a definition of coefficient-stable (co-stable) difference schemes. 
For a small distortion in the coefficients of the scheme the “disturbed” scheme must 
converge as Ir -+ 0 in Q(“‘), i.e. IIj -- uI/* = p(h) + 0 as 11 -+ 0 if 

N-l 

j/kh-A”lj3=Ci~~-Af~h-p(h). /ii”-B&“j/,=p(h); 
i=l 

// L?‘-Dh II3 = p(h). ‘; Fh- F” Ii3 = p(h), 

(all the p(h) -+ 0 as h -+ 0) where yi is a solution of the difference boundary problem 
with disturbed coefficients $‘, $‘, $‘, $ and u(x) is a solution of problem 1. 
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It is proved that the necessary and sufficient condition for the coefficient-stabil- 
ity of a canonical scheme is that it shall be conservative. In the subsequent sections 
we only consider conservative schemes. 

In Q 5 we study questions of the convergence and accuracy of conservative differ- 
ence schemes. It is proved that a conservative scheme of zero rank converges in 
the class of piece-wise continuous coefficients (k, q,fE Q(O)); any conservative scheme 
of the first rank has first order accuracy in the class of coefficients Q(“‘) (m > 1); any 
conservative scheme Likp qy f, of the second rank, satisfying the conditions for second 
order approximation (A.C.2) has second order accuracy in the class C2), and, 
generally speaking, first order accuracy in the class Q(“‘) (for any m > 1). 

It should be noted that in proving these theorems of the convergence and accuracy 
of difference schemes we make use of the a priori estimate established in 3 2: 

where z is the error of the solution of the difference boundary problem, and ‘p is the 
approximation error of the scheme Lik* qs /) over the solution of problem (I). 

The estimate of the approximation error ‘p according to the norm I[ II2 allows us, 
moreover, to lower the rank of the pattern functionals and the order m of the 
classes Co”) or Q (m) of coefficients of equation (I). 

Thus, the results we have listed answer the question we posed above concern- 
ing “open”computing schemes, suitable for solving boundary problems for equation 
(I) in the class Q(“‘) (m > 0) of discontinuous coefficients without explicitly 
finding the points of discontinuity. As we show open computing schemes belong 
to the family of conservative difference schemes. 

The results we obtain are used to construct open computing difference schemes 
for solving parabolic type equations with discontinuous coefficients (see [20]). 

In conclusion, we mention some questions which go beyond the present article. 
Our results can be applied without essential change to the class of boundary problems 
corresponding to the boundary conditions of the third kind. We shall not consider 
here the very important questions regarding schemes of second order accuracy in 
the class of discontinuous coefficients, the best canonical scheme of second order 
accuracy, the accuracy of difference methods for solving the Sturm-Liouville problem 
in the class of discontinuous coefficients, or homogeneous difference schemes on 
non-uniform nets. 

Our results also pose a number of similar questions for the case of many unknowns. 
These questions will be considered in later articles. 

5 1. THE INITIAL FAMILY OF DIFFERENCE SCHEMES 

In Q 1 we discuss the characteristics of families of difference schemes for the 
differential equation (I) in the class Q(O) of piece-wise continuous coefficients. We 
consider difference schemes from this family, including canonical, discrete and con- 
servative schemes which are of value for the subsequent theory. 
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1. The boundary problem for the differential equation. To amplify the questions 
posed in the Introduction about homogeneous difference schemes we take the example 
of an ordinary differential equation 

L(k,qJ)u = L’S - 9(x) U Sf(x) = 0, O<x<l, (1) 

where Ltk)u = -!- k(x)% 
dx [ 1 dx ’ 

We shall consider the first boundary problem 

L&q&n = 0, O<x<l, u(0) = c,, u(1) = z&(l). (1) 

The class of boundary problems (I) is defined if we can find the families of 
functions to which the coefficients k(x), q(x) and f(x) belong. 

Let C(“)[a, b] be the class of functions with a continuous derivative on the seg- 
ment a < x < b, and let Q(“) [a, b] be the class of functions which are piece-wise 
continuous on the segment [a, b] with piece-wise continuous derivatives up to the n 
order inclusive on this segment. We shall denote the class of functions C(“)[O, 11, 
(Q” [0, I]) by Cc”) (Q(“)) . 

We shall always assume that the coefficients of equation (I) satisfy the condi- 
tions 

0 < Ml < k(x) < M,, 0 < q(x) < M,, IfW G M4 3 (a) 

where Mj (j = 1, 2, 3,4) are positive constants. We include the conditions (a) in 
our statement of problem (I). 

We require the solution of problem (I) to have the following properties: 
(1) if k(x) E Co+l), q(x) EC(‘), f(x) E 0) then u(x) E C(r+2) (r > 0) ; (2) if 

k(x) E Qtrn) (m > 0) and there is a discontinuity at the point x = E (k._ # k, 
where k- = k(c-0), k+ = k(E -j-O)) then the solution of equation (1) satisfies 
the conjugacy conditions u(E - 0) = u(E -t 0) = u(F), k_ uL = k+ u;_ or [u] = 0, 

[ku’] = 0 when x = 6. 

2. The initial family of homogeneous difSerence schemes. Consider, on 0 < x < 1, 
the net $,=(x,=0, x,=h ,..., xi=ih, . . . . x,=Nh=l} and let yi be a 
net function. 

We set the boundary problem (I) in correspondence with the difference boundary 
problem 

,r$~qJ)_,+ = 0 , O<i<N, Yo = 4 3 YN = c2 > (II) 

where Liksqpn is a homogeneous standard three-point difference scheme defined by 
the formulae 

Lp.“./‘yi = @.jyi -@Myi + F(M) , P! 
. 

_QJy. = i [B. (‘WAY; -_@.WV~.~] 
’ h2 ’ (AYi = Yi+l- yi 3 VYi = Yi -Yi--1) * (3) 

The schemes we arc considering are peculliar in that each of the coefficient of 
the difference scheme L$,k,qp/) is a functional of only one coefficient of the differen- 
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tial equation (1). We assume that the standard three-point difference scheme is 
homogeneous. This means that it has a generating function of the form 

where 

,4(h,Q = Ah[E(s)], lPyi) = P[Z(S)] ) (5) 

~(“,a z= fl[q@)], j’(“%z F”[f($], 

the pattern functionals Ah[$ (s)], Bh[#(.r)], Dh[JI(.s)], Fh [$@)I being defined for 
piece-wise continuous functions # (s) E Q(O)[ - I, I] given for - 1 < s < 1 and 
depending, generally speaking, on the parameter h. 

The coefficients of the difference scheme are calculated at each point according 
to the formulae 

A$h,k) = Ah[ki(s)], Bih3k) c Bh[ki(s)], ki(s) = k(xi+ oh) , (6) 

D!h’q) = oh[qi(S)]* iji(S) = 4(Xi+Sh)i Fi(h’f) = Fh[fi(S)]q j;(S) =f(Xi+aSh) 

where fi(S) = f(~i + A). 
From the definition of a homogeneous scheme we have 

L~k’ ” “Zli I CDh [V(Xi + mh) ) k(xi + oh) ( cl(Xi -~ sh) ) f(Xi + ah)] , (7) 

where m = --I, 0, 1, --I<s< 1. 

It should be noted that the fact that the considered difference scheme is three-point 
is a consequence of its homogeneity. 

The difference boundary problem reduces to the solution of a system of linear 
algebraic equations in the unknowns y,, yz, . . . , y&l. One can easily verify (see 
$ 2) that this problem is always soluble if the conditions 

,@ k) > 0 I Bth, k) > 0, * 1 DIh,q) > 0 . 

hold at all point i = 1, 2, . . . , N-~1 . 

When we use the term “the initial family of difference schemes” we shall mean 
homogeneous three-point standard schemes defined by formulae (2), (3) and (6). 

3. Functionals of the rth rank. For more detailed characteristics of the initial 
family of difference schemes we must know the class of its pattern functionals 
Ah, Bh, Dh and Fh. We shall need to expand the coefficients of the scheme (for example 
AihS k, = Ah [k(xi fsh)]) in powers of h ; it is possible to do this if the pattern functionals 
themselves possess some properties of differentiability both with respect to their 
functional argument and with respect to the parameter h. 

Ah[$] is called a functional of the rth rank (r > 0) if the following conditions 
hold : 
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l.tr) There is an expansion 

A” [+I = ~/?“A~“, [Jc] + Kp(h, $J) ) 
CT=,, 

(8) 

where I P@, $1 I < ~(4 *, if I$1 < M (M is a positive constant). Each of the 
functionals A(u) [JI] (o = 0, 1,2, . . . , r) has a differential ** of order r-c 

function JI E Q(O); this means, for example, that for A(0)[+] ke can write 
for any 

A’o’[++6.cp] = A’O’[+]+s. AIO’[+,(p]+ ...+PA~"'[JI,~]+6'p(6, #,rp), (9) 

where \p/<p@) if jrpI<M(p@)-+O as 8+0). 

II.(‘) The functional Ah[+] and, therefore, all the functionals A’“)[$] (c = 0, 

1 , *-*, r) are homogeneous functionals of the first degree: 

Ah[cjJ] = CAh[$l, A(‘J) [c(J] = CA(Q) [$I , (10) 

where c is a positive constant. 

III.(‘) The functionals Ah [$] and A’“‘[+] (r~ = 0, 1, . . . , r) are non-decreasing, i.e. 

Ah[$%l > AhC$ll. if $2 > $1 . (11) 

where Ah[+] is a normalised functional, i.e. 

AL[l] = 1 . (12) 

If A”[+] is a linear functional, then all the functionals A(“)[$] are also linear. 
Therefore the differentiability requirement in condition I(‘) is automatically satisfied. 
Moreover, condition II(‘) is an immediate consequence of the linearity. 

If Ah[$] is a functional of the rth rank, then 

A’O’[l] = 1 ) A’“‘[l] = 0 for o=l, 2 ,..., r. (13) 

We shall use the notation 

A$[rp] = A’“‘[ 1 cp] 112 ) (# = 1) . (14) 

Let Ah[$] be a functional of the rth rank. From I(‘) and II(‘) we know that for 
any k(x) E Cc’) satisfying the condition k(x) > M1 > 0 there is an expansion 

+~aT[s~]}+ . . . +h’p(h). (15) 

* p(h) will in future be used to denote quantities which tend to zero as h + 0. We can use the 
same symbol in the case of several arguments to denote an expression which tends uniformly to zero 
as h+O. 

** Cf. M. A. Lavrent’ev and L. A. Lyustemik, “Osnovy variatsionnogo ischisleniya” (The 
Essentials of Variational Calculus), Vol. I, part II. M.-L. (1935). Ch. VI. 
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For from II”’ 

, [ k(-“i+sh)-ki 
ki )I 

k!‘s2 h + . . . 2 +h’-‘p(h) II - (16) 
Now using the expansions of I(‘) and taking into account the linear property of 
A$‘)[,$], the quadratic property of A$“)[#], and so on we arrive at (15). 

We note some properties of homogeneous functionals of the first degree, 
omitting proofs. 

LEMMA 1. Any homogeneous functional A[#] of the first degree having a dfferen- 
tial of the first order A,[f, ~1, can be put in the form 

AMI = A,[f> fl. 

This lemma is the analogue of Euler’s well known theorem on homogeneous 
functions. 

LEMMA 2. If A [f ] is a homogeneous functional of the first degree, and Ak[f, cp] 
is its kth order dJfferential, then 

Ak[Cf> Cp] --&A&& k= 1, 2,..., (17) 

where c it any positive constant. In particular, A,[cf, 91 is independent of c: 

A,[cf> ‘PI = A,[f, ~1. 

LEMMA 3. The differential A,[f, cp] f o a non-decreasing normalised homogeneous 

functional of the first degree, A[f], is a linear positive functional in the argument ‘9. 
LEMMA 4. If A [f] is a non-decreasing normalised homogeneous functional of the 

first degree, having a first order differential, then 

o < 4 [f 9 cpl < 1 
_ A-- \ ’ 

if O<cp<f, f>z>O. (18) 

These lemmas will be used below (for example in 5 4, 9 6 and elsewhere). 

4. The classes ,_‘(n,, n?, n3) of difference schemes. Consider the difference 

boundary problem (II) and compare its solution d with the solution U(X) of 
problem (I). The accuracy of the solution of problem (II) is characterised by the 
difference 

2: = J$- U(Xi) ) (19) 

which, as can easily be observed, is defined by the conditions 

where 

,$,k.q’zt = - $ I, O<i<N, zgh=o, z;== 0 , WV 

,Qk, qL; =I #Gz; _ D;h,‘nz!’ I? (20) 



Homogeneous difference schemes 25 

and 

denotes the approximation error of the scheme Lik1q9/) at the nodal point x = Xi 
of the net S,, taken over the solution U(X) of problem (I). 

Due to the homogeneity of the scheme, the approximation error can be con- 
sidered at any fixed point x = X of the interval 0 < x < 1: 

rp(x, e; h) = (Lp’fb)x=; - (L(k*q,f) &j;, 

wherea is any sufficiently smooth function, h < h, < 1, h, is the distance between 

the point x = X and the boundary of the segment [0, I]. 
In order to go into the question of the order of approximation of the scheme 

we must have an expansion of the function cp(x, u ; h) in a series of powers of h. 

To do this we must formulate the differentiability properties of pattern functional& 
using the definition of the rank of a functional. 

We shall say that the difference scheme L, (kvq~/) from the initial family belongs 
to the class of schemes .P(n,, n2, n3) if the functionals Bh[$] and Ah[#] are of rank 
n,, and the functionals D”[$(s)] and F’[$( s )] are of rank n2 and rank n3 respectively, 
and are linear and defined for functions of Q(O) given on the segment -0.5 < s -< O-5, 
(# E Q(O) [-0.5, 0.51). 

We define similarly the classes .L!(ni) and .L?(n,, nJ for schemes Ljk) and Lik,q) 

respectively. 
The schemes Li k,q9/) of the class _!J(n,, n2, n3) are called schemes of the nth rank 

(all the pattern functions are of rank n). Any scheme Lik) of P(n) is a scheme of 

the nth rank. 

5. The error of approximation. We now proceed to the calculation of the approx- 
imation error for schemes from the class .P (n,, n2, n3) (usually n2 = n3). 

We consider the scheme L$,k*qP1) of the class .C(n+l, n, n) and assume that 
k(s) E C(“+l), q(x) E CC”), f(x) E 0") and the function v(x) E C(“+‘) where n > 0; 
the solution u(x) of equation (l), in particular, belongs to C(“+‘), if k, q,,f satisfy 
the requirements given above in Section 1; therefore we can take z1 = U(X). 

We use the expansions of Ajhsk) and BihJ k, given by formula (15) for r = n $- 1, 
and for Dchvq) (and F$h*f)) L we use the expansion in powers of h: 

Di(h3q)= Dh [q(-Ui + Sh)] = 5 DC’ [q(x; + sh)] h” + h”p(h) 
0:” 

= qi + hq; D(O) [s] + . . . + h”p(h) . (22) 

Then, using the expansion of the function v(x) in the neighbourhood of the 

point x = X 

v(Z+sh) =~(X)+dzw’(X)+ . . . +$$+,d”tz)(f)+IT+“p(h), (23) 

we obtain 
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The coefficients y (j) = @)(x,V)iX=; (.j = 0, 1, --n) of the powers hj depend on 
the functions V, k, y, f and their derivatives. We shall need expressions for cp(“) 
and $I): 

$O’ = a,k’(l)v’(Z), (24) 

where 

a, = B,‘O’[s]-&‘[s] -. 1, a, = B$l’ [S] - A{” [s], 

a, = B,cO) [s]-&’ [s], a, = 0*5(By [?I - AIO’ [s?]), 

1 

(26) 

a.$ = 0.5(B,‘O’[s]+AIO’[s]), b, = - D’“‘[S], c = F’O)[s]. 

6. The order of approximation. We shall say that the homogeneous difference 
L$,k*4.r) has nth order approximation of if the approximation error 

cp(x, ‘L ; h) = (L(,k*4*“,)X=; - (L’kPqsf’),=; 

for this scheme is of the nth order of smallness in h: 

&X, a ; h) = O(h”) 

for sufficiently smooth functions z’ (x), k(x), q(x) and f(x) (in particular for 
k(x) E C(“+l), q(x) E C(“), f(x) E Cc”), v(x) E C’“), m > n + 2). 

From the series (23) it follows that the necessary and sufficient conditions (A.C.) 
for the scheme L([*q,f) from the class P(n+l, n, n) to have nth order approximation 
are as follows for moments of the pattern functionals: 

(1) for a scheme of the first order (n = 1) 

BjO’ [s] - A[O’ [s] = 1. B’O)[l] = A’O’[I] = D’“‘[l] = F(O’[l] = 1 (A.C.1) 

(the normalisation condition of the pattern functionals is automatically satisfied 
for schemes of this class): 

(2) for a scheme of the second order (n = 2) 

B$“)[S] = 0.5, Ay’ [s] = -- 0.5 7 By [s”] = flp [?I , 

@‘[s] = A$O’[s] 9 I 

B,c’) [s] = fp [s] fP’[s] = P’[s] = 0 , 

I 

(A.C.2) 
3 

A~“[l] = B$l’[l] = D”‘[l] = P)[l] = 0 

(the last four conditions are a consequence of the normalisation of the pattern 

functionals). 

7. Canonical schemes. If the pattern functionals of the scheme Lf,ksqsf) do not 
depend on the parameter h, then we call them canonical functionals, and call the 

scheme a canonical scheme. 
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To each scheme L$k’q*f) of the initial type there corresponds a cannonical scheme 
L’,k*q*f) of the same rank 

@.qJ’_ri = @$ _@,n) xyi+ @‘.I), 

where 

@Qi = _!_ [#o+$,. _ @k’Vy] 
,!,” L ’ i 3 

B,C”‘li’ = B’O’[k(xi+ Sh)] ) AI”lk’ = A”‘[k(xi + Sh)] ) 

Dl”,q’ = D(O) [4(xi + Sh)] , Fi(o.f’ = F(O) [f(xi + Sh)] . 

If L(hksq* /) has nth order approximation (n = 1,2) then iik’ 4, f) also (from 
(A.C.l) and (A.C.2)) has the nth order approximation and these schemes are equiv- 
alent as far as approximation is concerned. 

When discussing canonical schemes we shall omit the zero index in their pattern 
functionals A [+I, B[+], D[$] and F[+]. Then the conditions for second order approx- 
imation, for example, take the form: 

B,[S] = --A,[s] = 0.5 ) 4b21 = 4b21 , D[s] = F[s] = 0. (A.C.2’O’) 

8. Conservative difference schemes. We consider the difference scheme L(hk) 
= L$kposo). Fixing k(x), we obtain the difference operator 

Lhvi = k [BiAyi--AiVyi] , O<i<N. 

By analogy with the differential operator of the second order, we call the differ- 
ence operator L,, self-conjugate if the expression Ui Lhai-Vi Lh Ui can be put in the 
form of some difference AQi = Qi+l-Qi for any ui, w, at each point i. It is not 
difficult to show that the necessary and sufficient condition for the self-conjugacy 
of a difference operator Lh is the relation Bi = Ai+l forall 1 <iSN-I, so thatwe 
can write 

Lhyi = $ A(AiVyi) or Lhyi = i!p A(AiAyi__,) . (27) 

We have the identity 

Ui LIC’i -Z~iLh Ui = ~~- A [Ai (Ui_-l~i - UiZli. .1)] , 

where Ui and Wi are arbitrary net functions. 
This leads at once to Green’s second difference formula 

N-l 

~ (uiL,vi--viL,ui)h = ~[A,(u,_,~li-~i~~, pi)] ii”. 
i-1 

We call the difference operator (27) a conservative operator. This term expresses 
the physical meaning of the difference equation Z+yi = --Fi which can be treated 
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as the equation for the stationary temperature distribution J+ in the presence of 
heat sources. 

Introducing the difference analogue of heat flow Wi = --AiVyi/h at the point 
x = _x~__I/~ and rewriting the equation Lhyi = - Fi in the form 

1%’ r+1 -Wi = --t;;h, 

we see that it expresses the law of the conservation of heat on the interval (xi-l/, , 

xi+l,,) of length h. On the left we have the heat flow difference at ‘the ends of the 
interval, and on the right we have the amount of heat which produced in the interval 

due to the sources. 
Let us return now to the difference scheme 

The difference scheme Lik) is said to be conservative if, for any function k(x) E Q(O) 
the corresponding difference operator is conservative, i.e. 

and, therefore 

~h~~(41 = AhN4 +$I <+(.9 E Q(O)). 

It follows that the functional A”[$( s )] is independent of the values of the function 
G(S) for 0 < s < 1, and the functional P[$(s)] is independent of the values of 
4(s) for -1 <s < 0. 

If the scheme Lik) is conservative, then, clearly, the corresponding cannonical 
scheme is conservative too. 

The difference scheme LikSqSf) is said to be conservative if the scheme Lik) is 
conservative. 

The following method, which we call the integro-interpolation method (I. I. M), 
can be used to obtain difference schemes.when solving different physical problems. 
In place of the differential equation we write an integral relation expressing the 
conservation law (balance) for an elementary cell in the net. To substitute for the 
derivatives and integrals appearing in the balance equation we interpolate for the 
required function and the coefficients in the neighbourhood of a node. As a result 
we obtain a difference equation whose coefficients depend essentially on the char- 
acter of the interpolation used both for the required function and for the coeffi- 
cients of the initial equation. 

We illustrate this method using the example of the equation L(k,+f)~ = 0 and 
we show that it produces conservative schemes. We 
for the interval (.X,-Z,, , Xi+z/r): 

write the heat balance equation 
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where w(x) = -k(x)u’(x) is the heat flow at the point X. Therefore 

Integrating with respect to II from Xi-1 to Xi we shall have 

(29) 

Equations (28) and (29) are exact. 
Assuming, for example, that W(X) = const = Wi-I/, for Xi-l< x < Xi we obtain 

If q(x) G 0, then we can obtain by this method the best canonical scheme 
Lik* f). To obtain the best canonical scheme Lf,k9Ppf) we assume that u - const = Ui 

tor -~i-‘i, <X -< Xi+l/?r so that 

xi + ‘il xi + ‘ir 

j q(X) U(X) Cl.u ~ Ui .I’ q(.U) dX . 

Xi-‘/2 
xi_-‘, ,? 

It must be noted that the interpolations 1~ = const for x E (Xi-l, Xi) and n = const 
for x E (Xi-l,,, x1+1,,) are not consistent with one another. However, the subsequent 
use of the same interpolation NJ = Wi-l/, for x E(x~_~, Xi) leads to a noticeable 
complication in the difference scheme without increasing its accuracy. 

Other interpolations are also possible; for instance 

1%’ W 

---= i-1 k k i-‘/z 
= const for .X E (Xi-l, Xi), which gives Ai = ki_I:, . 

With this method we obtain conservative schemes of the form 

where 

(h, k)Vyi. 
)I’i-I/, = --Ai 

h ’ 
Ai”*k)= A”[k(xi+sh)], --1<~<0, 

Of”* ‘) = Dh [q(Xi + sh)], Fi’h’ ” : ; P” [f(Xi + Sh)], -05~SSO~5, 

oh and Fh being linear functionals. 
The integro-interpolation method was also used in [lo] by G. I. Marchuk to 

construct discrete schemes (see Section 10) for open computing, in connection with 
the calculation of the critical dimensions of nuclear reactors. 



30 A. N. TIKHONOV AND A. A. S.+MARSKII 

We consider now the conservative scheme Lj,klq’f) of .I_‘@+ 1, n, n) and take 
k(x) E C@+l), q(x), f(x) E C(“) (n = 0, 1). If n = 0, then the approximation error 

cp(x, u, h) = ‘p’O’(x, u) + p(h) * 

If n= 1, then 

rp(x U h) = y(O)(x 3 > > u>+ O(h) , 

where p(O) is given by formula (24). 
We show that the condition for first order approximation B~“)[s]--A{o)[s] = 1 

’ (a, = 0) is satisfied for any conservative scheme of _P(l, 0, 0). For P[+(s)] 
= Ah[#(l + s)] and, therefore B$O)[s] = A$‘)[(1 +s)] = 1 + Ai’)[s]. Therefore for 
a conservative scheme cp(O)(x, u) = 0. We thus proved 

LEMMA 4. Any conservative scheme L, (kSq9f) of the family Q(l,O, 0) satisfies 

the conditions for first order approximation, and a conservative scheme of type 6(2, 1, I) 

has first order approximation. 

If the conservative scheme LikY q*f) is symmetric, then 

Ah[+(--s)] = Ah[$(l +s)]> Dh[+(- s)] = Dh[+(s)l, 

~h[+(- 91 = m4491 * 
This leads to 

LEMMA 5. Any conservative symmetric scheme Lik* qS f, of .L’ (2, 1, 1) satisfies 

(A.C.2); if such a scheme belongs to the family P(3, 2, 2), then it has second order 
approximation. 

Let us now discuss the procedure of making the operator 

conservative. 

We multiply it by some function Ai and require that the operator f_l = ‘ii& 
shall be conservative, i.e. BiAi = A&,, AiAi = At. From this we have 

.li+l E y2i(BilAi+l) = [j CB,yIA.~+l) 7 

3 = I 

if we put A, = 1. Thus, we obtain the conservative operator’ 

Lh*yi = AiLhyi = aA(ATVyi)) Af = Ai Ai. 

If the initial scheme Lik) is homogeneous, then the conservative scheme Qk’ 
= AiL~k’ is not homogeneous. 
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9. Linear schemes. If A’[#] and Bh[JI] are linear functionals with respect to +, 

then we can call the scheme Lf‘*q*f) a k-linear scheme. 
In addition to k-linear schemes, we can consider the so-called p-linear schemes 

1 
, 

where bihSp) = bhlp(xi+ sh)] , aihSP) = ah[p(xi+sh)] , with ahE( and bh[$(s)] 
being linear functionals, P(S) EQ(O) [-1, I]. This form corresponds to the 
differential operator 

The study of linear schemes in the class of discontinuous coefficients is made 

easier by the fact that there is in Q(O) and integral representation for linear functionals 

using characteristic functions (see Section 11). 
We note that the best canonical scheme L$“), obtained in 5 4, for which 

Bi = Ai+1 3 

xi-l 

is a canonical conservative p-linear scheme in which 

- [;- jip(x)dx]l, 
=i-l 

0 

b[lW = 431 +41, a@(s)] = 1 j(s) ds . 
. 

10. Discrete schemes. If the pattern functionals Ah[$(s)] and Bh[$(s)] depend 
on the values of the function #(s) on a discrete set of points, then they are called 
discrete functionals, and the corresponding scheme Lik) is a discrete scheme. When 
Jo E Q(O) the discrete functional can depend not only on the values of $ at separate 
points, but also on the left- and right-hand limit values of the functions + at these 
points. 

As an example we consider the canonical discrete scheme Lik) whose coefficients 
are three-point discrete functionals : 

Ai =h.(ki-l9 ki 9 ki+l), Bi =fi(ki_.l 3 ki, ki+l) (ki = k(XJ) y 

where fi(x, y, z) and f,(?r, y, z) are some functions of three variables. 
It follows from the condition (II(r)) for the pattern A[k(s)] and B[i(s)] that 

fi(x,_% z) = Ycp(X, 3, f,(X. y, 2) = .l+(?r, 2) (X = .Y/_Y, 5 = z/u>, 

where ~(1, 1) = 1, $(l, 1) = I. 
The scheme mentioned in section 2 of the Introduction (Example 1) is discrete: 

Ai = ki-~(ki+,--ki_,)~ Bi = ki + i(ki+l-ki._l) e 
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If the scheme is conservative, then 

- - 
since, for conservative schemes cp(x, z) = O(Z) is independent of 2, and $(Z, Z) 
= +(z) is independent of X. 

It follows therefore that 

q?(E) = 4@ + , 
0 

@(I) = 1. 

If the scheme LAk) is also symmetric then q(t) = O(t) and we obtain the functional 
equation 

(24’) 

for 0((F). The general solution of this equation has the form (I@,) = 1, &(ln <) 
where w(t) is an arbitrary even function satisfying the condition w(O) = l*. 

We give two examples of the function a(t): 

1. CD(t) = O-5(1 +c) 9 Ai = 0*5(ki_,+ki) 3 Bi = Ai+l s 

A - 2E& 
i 

ki-1 + ki ’ 
Bi = Ai+l s 

11. Linear functionals in the class of discontinuous functions. As we know, the 
linear functional A[f] is defined by the conditions 

1”. A[fi+hl=AEfi+fil; 2”. IN-H CMswlfj. (30) 

Consider the linear functional A[fl, defined for piece-wise continuous functions 

on the segment [a, b]. 
Due to the fact that the representation of a linear functiorial in the class C(O) 

[a, b] using Stieltjes’s integral 

h 

A [f] = 1’ f(s) dcx (s) (Riesz’s theorem) 

is not continued uniquely in the class Q(O) we must find a representation for A[f] 

in Q’O)[a, b]. Such a representation is given in [12]. It is proved (Theorem 1) that 
the linear functional A[f(s)] where f(s) E Q(OJ[a, b] is uniquely defined by the two 
characteristic functions : 

where 

-Q(S) = 1 1, SCh, 
m(s) = ( l 

s=A, 

0, s>J., 0: s#A. (32) 

* M. V. Maslennikov has pointed out the existence of a general solution for equation (29’). 
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If a(h) G 0 for h E [a, b], then the functional is said to be regular; while, 
if SC(A) E 0 for A E [a, b] it is called a point functional. 

We give here the properties of linear functionals and their characteristic func- 
tions which we shall heed below; for the proofs reference should be made to 1121. 

(I) There exists not more than a denumerable number of points cl, &, . . . , 

<jv a... at which C(<j)# 0, where 

(2) Any linear functional A can be put in the form of the sum of a reqular 
linear functional A and a point linear functional A* 

A [f’] -= -q[f] i-A* [f’] . 

where 

The regular functional A[S] is wholly defined by the characteristic function 

Z(A) -.= &-q;.(s)] = ‘A(h) - x cT(Cj). 
ij< A 

(3) (a) The function G(A) is of bounded variation; 
(b) there exists not more than a denumerable number of points A,, A?, 

**.>A{, *.a) at which Z-(Ai) # Z(hi) or a(~;) # ~+(A,), s = I , 2, . . . ; 
(c) the function 

I = a_(A)-_ [~+(i\i)--~. (A;)] 
Xi ,h 

is a continuous function on [a, b]. 
(4) We have 

THEOREM 1. Any linear functional A [f], d .f’ d e me in the class Q(O)[a, b], can be 

put in the form 

If it follows from f > 0 that A[f] 2 0, then the linear functional A[f] is said 
to be non-negative. 

f Polymer I 
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THEOREM 2. In order that the linear functional A[f] shall be non-negative it is 
necessary and sufficient that these two conditions are satisfied: 

(1) the characteristic function Z(A) of rhe regular part A of the .functional A 

is a non-decreasing function ; 

(2) 6(<,) > 0 for all j = 1, 2, . . . 

That these conditions are sufficient follows from (33). We prove that they are 
necessary. Let A[f] be a non-decreasing functional. Taking 

fi(s) = nti(s) > 0 1 

we shall have o($) -: A[A(s)] 3 0 for any j = 1, 2, . . . 
Introducing the function 

we note that 

Add] - M(A) _- JC(<j) L M(A). 

Cj<A 

Let A, and A, 3 A, be any points of the segment [a, b]. 

From the inequality 

JJ.9 _.fh,(S) > 0 > 

(34) 

and formula (34) it follows that 

A[fh(s) -f~,(s)l -= ii @a> - Z (A,) > 0 when A, > A,, 

i.e. Z(A) is a non-decreasing function. 
In other words, the necessary and sufficient conditions for the linear functional 

A[f] to be non-negative are the conditions for its regular and point components 
A[f] and A* [f] to be non-negative. 

The homogeneous functional of the first degree, Am, is completely determined 
by its first differential A,[f, cp], which is a linear functional with respect to it second 
argument ‘p; we have the equality 

A[fl= 4 [Lfl (Lemma 1% (35) 

5 2. HOMOGENEOUS DIFFERENCE SCHEMES IN THE CLASS OF SMOOTH 
COEFFICIENTS 

In this paragraph we show that the order of approximation of a homogeneous 
scheme from the initial family E(n,, n2, n3) in the class of sufficiently smooth coef- 
ficients is the same as the order of accuracy of this scheme. 

1. The accuracy of difference schemes in the class of smooth coefficients. In Q 1, 
when considering the question of the accuracy of the solution d of the difference 
boundary problem (II) with respect to the solution u = u(x) of the initial problem (I) 
we obtained the following conditions for the net function zf = 9 -U(X): 

Ll;ks 4)z; = -q:, Q<i<N, “h - 0 -0-m , J$ = 0, (111) 
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where 

is the initial scheme and 

‘p” = ,r$+q,fJui _ (LCk.q.OU)i (2) 

is the approximation error of the scheme Lik* qP I) over the solution U(X) of the bounda- 

ry problem (I). 
Let R,, be an operator giving the solution of problem (III): 

i$ = R,,cp;. 

We introduce the norm for the net function $: 

and some norm j[q~*]]~ for the function cp:. If, for fixed k and q the norm of the 
operator R,, is uniformly bounded with respect to k: 

then the uniform convergence (see [6]) of the solutions of the difference boundary 
problem (II) to the solution of problem (1) will follow from the smallness of the 
approximation error according to the norm jj /IO. 

In considering the convergence of difference schemes in the class of smooth 
coefficients the same norm can be taken for cpt and z!: 

lldllo = llcp1/11 = $a;xN I rvri (a- 1). 
I 

In Section 3 we consider Green’s difference function for problem (111) and show 
that the operators Rh giving a solution of (Ill) are uniformly bounded with respect to 
h for any scheme Lj,k*4) (from the class .P(2, I)), if k(x) E C(l) and q(x) E @) 
(Lemma 2). 

If k(x) E c(*+i), q(x) E Cc”), f(x) E Cc”) (n = 1, 2), and the scheme Ljtk9qsf) from 
the class P(n+ 1, n, n) has nth order approximation, i.e. satisfies the conditions 
(A.C. 1), n = 1 or (A.C.2), n = 2 (see 3 1, Section 6) then we have the uniform 
estimate 

Il’p” 111 = W3 or lj$‘]li <Mxh”, (6) 

for the error’cpt where M is a positive constant depending on the choice of k, q, J 
and independent of h. 

This, together with Lemma 2, leads to 

LEMMA 3. Zf the initial scheme L,, (k,q~f) of J)(n+l, n, n) has nth (n = 1, 2) order _ 
approximation, then the solution of the boundary problem (II) has nth order accuracy 
in the class k(x) E Cc” + l), q(x) E C(;), f(x) E C(“). 
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When discussing the accuracy of the solution of the boundary problem (II) in 
the class of discontinuous coefficients we require that the operator R,, shall be bounded 
according to the norm 

(7) 

It will be shown in Section 3 that the operators R,, are uniformly bounded with 
respect to h in this norm. 

2. Green’s difference function. We come now to the question of the existence and 

boundedness of the operator R,,, defined with the use of Green’s difference function. 
We consider the difference boundary problem 

LhZf = ---‘pi, O<i<N, 7h- 0, ‘0 .- A - 0 .,N -- 3 (8) 

where L,, is a difference operator defined by 

1-h =i ~ -: (B~A=i - 

the expression 

A$‘:,) -- Dfr,. . (9) 

We shall assume that the coefficients of the operator Lh satisfy the conditions 

O<M, <A:<M,, O<M,<B;< M,, 0 <Of <MS (0 < i < N) , (~4 

where it4,, M, and MS are positive constants independent of h. 
The solution of this problem can be put in the form 

N-l 

(10) 

with the help of Green’s difference function. In particular, if the boundary conditions 
are non-homogeneous, then 

We define Green’s difference function Gij of the problem (8) using the con- 
ditions : 

(a) G, satisfies the equation 

L 
2.. 

G.. _ ___‘J~ h L.I Fi 
with O<icN, where ai = 

jl, i=j, 

I 0, i #I’. 
(12) 

for variable i and fixed j (0 &: j < N). 
(b) Gij satisfies the homogeneous boundary conditions 

Gij == 0, G,j _ 0. (13) 

We show that the function G, exists if conditions (a) are satisfied. We consider 

two cases. 
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- -z h(APVzi)-~zi. 
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operator Lh is conservative, i.e. &” = A!+, and LhZi 

By analogy with differential equations, we shall look for Gij in the form 

i N’ ’ 
‘-“. 

i>J, 
(14) 

where aj and bj are factors to be determined, and Z’i and U’i are the solutions of the 
homogeneous equation L,,Zi = 0 satisfying the conditions 

Lh ll’i = 0 3 O<i<N, l('N = 0, __Ai!'FI = 1 or )t'N-1 = +. (15’) 

Using Green’s second difference formula (see Section 8. $ 1) for the functions ‘Z’i 
and )l’i we see that 

e’N =-: 1,‘” . (16) 

From the conditions (15) we obtain 

i-l 

From this, and from the conditions 0’: > 0: v1 = $ > 0 it follows that vi > 0 
I 

when i 1~ 0, or more precisely, 

I-h’i 
and, similarly, I(‘i > -K . 

Thus, Green’s function G, > 0 (0 CC i, j <N). 
From the condition UjVj = bjlj; and from equation (12) for i = j we find that 

where 

b = -i Ai(P’IU’i~_l-Z’i..l)l’i). = const . 

From conditions (15) and (15’) for the functions Vi and Il’i it follows that 

A = VN = wO. 
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As a result we obtain the following expression for Green’s difference function: 

We obtain at once the symmetry property of Green’s function: Gij = G,i . 

B. If the difference operator L, is not conservative, i.e. 

L,yi = ,(B~A~i-A!JVyi)--Dfyi~ 

then, multiplying it by the factor 
i- I 

ni _[p$-, 
s:l 

sfl 

according to Section 6 of 6 1 we obtain the conservative operator 

Lhs’i = h’ A(A:hVyJ-D’hyi, 
2 

where Afh = A:hAi. TO the operator Lz corresponds 
Gc, which is constructed as in case A. 

From the equations for Gii and Gc we see that 

Gij = Aj G,~ . 

3. Estimates of Green’s difference function. When 
(uniform with respect to h) for Green’s function, we 
with the condition (a), the inequality 

Green’s difference function 

deriving uniform estimates 
shall assume that, together 

g ” 
c -hh _ ___I _ , hh 

. A!., I ‘e ’ 
O<i<N-1, 

is satisfied, where b is a positive constant independent of the parameter h. 
Consider first the case A. 
It follows from formula (IQ, and the inequality w( > xr/Mz, Wj > (1 -xi)/& 

that 

(19) 

where ~ij = 
X,(1 -Xj) 

when 
i <j, 

Xj (1 -Xi) i>j. 

We see from this that to obtain a two-sided estimate for Green’s function it is 
sufficient to find an upper estimate for nN. To do this we need 

LEMMA 1. Let Vi be a solution of problem (15), and 5i a solution of the problem 

ihi?, = 0, i+)=o, &V, = h , 
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Zf the conditions Ai < Ai, Iri > Di, together M’ith the conditions (u), hold for the 

coefficients of the operators J+, and Lk, then Oi > Zji. 

For, the function zi = ;i, i - zti satisfies the conditions 

LhZi = -Ifi h[(Ai--Ai)VoJ+(D,- Di)“i 3 to = 0, 

We obtain 

i.e. .7i ‘2 Li__l > Z1 > 0 or V, > W)i . 

Putting Ai = M,, of = M3 we obtain an equation for 7Yi with constant coef- 

ficients 
A”& - x2haFi = 0, x2 = MB/MI, 

whose solution, when V,, = 

wh xh 
where w is the root of the equation sh -2- = - - such that sin w < sin x. 2 

Therefore, we obtain the estimate 

for lTN, for any values of h > 0. 

We arrive at the following upper and lower bounds for Green’s function : 
,__ 

If 0: = 0 then formula (21) gives 

(20) 

(22) 

for the corresponding Green’s function ~j (M, = 0). 
From the inequality Gij 4 Gt (with the condition 0” > 0) it follows that we 

can use the simpler upper bound for Green’s function 

Gij < &- = gl. (23) 
1 
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For the first difference ratio of Green’s function we have 

Z’i An; 

_~i~+G~~j I - ---- 

. 

z'N I1 

’ i -L.J, 

Z= 

h 
i>j. 

From the inequality 

1 

--I- .$ vN 4 M,(M, , MS) , 
1 

A-=1 

we obtain 

where M, = M,(M,, M,) is a positive constant, depending only on Ml and M,. 

Taking, for example, i = j = iu = 

If the operator L,, is not conservative, and satisfies the conditions (u) and ($), 
then we shall have 

0 .<_ M; <;A,? <;M;, 0 ..>, D; < Mj, (26) 

for the coefficients of the conservative operator Lt = hiLh, where M; = M,i”, 

Mi = M3eb, Mj = M,eb. 

We have the two-sided estimate 
‘zh <I iji . . eb, () .::: i <r: N (27) 

for the factor .Ii. 
TO estimate Gc we can use (21). replacing the constants Mk (k = 1, 2, 3) by the 

constants M;. WC obtain an estimate for Gij if WC use relation (27) and the formula 

Gij = AjG~ e 

We return now to the formula 

Using (23) WC have 

From this WC have 

(28) 

(29) 
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Thus, the constant $ also gives a uniform estimate of the operator R,,, 

LEMMA 2. The operators R,,, which give the solution of problem (III) (zh =: Rhyh) 

./Or any scheme Lf.4) of the class P(2, 1) and for k(x)E C(l), q, f E C(O) are uniformly 
hormded both accolding to the norm jj /iI and accorditig to the norm 11 liz, i.e. 

IIZhlll CgOj/‘phjjo, d - 1, 2, 

where g, and g, arc positive constants depending only on M,, Mz, M, and b 

Thus conditions (a) will be satisfied if 

0 < MI < k(x) 4 iWz, 0 s.. q(x) < M,, 

since the pattern functionals of the scheme are normalised and are non-decreasing. 

If BECK), then A{“*k’ = ki+hk;Ai”)[s] fhp(h) , 

Bf”*” __ ki t-hk;B,‘“‘[s] -t-hp(h) , 

k’ 
Bihv k)lA$:) =- 1 -i-h k ,. a,, +hp(lt), 

(1 
a, = S,C”) [s] - Ap) [s] - 1 . 

1 

We see from this that WC can always choose the constant h so that condition 
($) is satisfied. For cxamplc 

When considering the convergence of our schemes in the class of discontinuous 
coefficients we need a more exact estimate, as well as the estimate (29). Putting 
zi in the form 

?v I i I 

Z: = x Gi,iA (,GI’ yth) 
j= 1 

and using the identity kjCjhCL; == -vi: IAUj -( A(Llirlj) WC obtain 

From this follows the inequality 

which takes the form 

jjzh II1 < MJj vh Ila, where M; = ebM5(M; , Mj) , (30) 

if we use the uniform estimate (24) for the difference ratio of Green’s function. 
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NOTE. if condition (p) is satisfied everywhere apart from a finite number of points 

j= 1,2,... , j,, then all the estimates obtained above are still valid if, instead of b. 

MZ we introduce a new constant b, using the condition b, = b +j, In -a--: then Ebl :< Ai 
1 

_C e bX, MI = d Ml , Mi = ebMz and so on. 

4. The order of approximation of convergent schemes. We come now to consider 
the relation between the order of approximation and the order of accuracy of a 
scheme for problem (II). In Section 1 we stated Lemma 3. Its proof follows from 
inequalities (29) and (5). 

Can we make the reverse statement? Is the order of approximation of a scheme 
determined by its order of accuracy? The answer to this question is given by 

LEMMA 4. If the difference scheme L, (kS q~f) of the family P(n + 1, n, n) has nth order 

accuracy in the class of sufficiently smooth coefficients 

k(X) E C(“‘k), q(X) E C(“‘,), f(X) E c’$ , nlk > n + 1 , mq>n, mf > n , 

then it has nth order approximation (n = 1, 2) . 
Thus, suppose Zi = O(h”) for any coefficients of the given class. We show that 

then the conditions for nth order approximation must be satisfied (see (A.C.1) and 
(A.C.2) in Section 6. 5 1). We can use the inequality 

In particular, if ‘pi = (p. h”+ O(/Z”~~~) where (p = const, m > 0 then it follows that 

0 

0 < ~,,'-:gO V ~i,j /r. 
d 
j=l 

N--l 

(31) 

In Section 5, 9: 1 we obtained the expansion in powers of/l 

y = v(O) + hr$” + 0(h2) , 

for the approximation error cp(x, u, h), where (p(O) and ‘p(l) were determined from 
formulae (25) and (26), Q 1 in terms of the moment of the differentials of the 
pattern functionals, the functions k(x), q(x), and f(x) and their derivatives. 

We choose the functions u(x), k(x), q(x) and f(x) so that #a) and (p(l) are constant. 
Let n = 1. Putting k(x) = e”, u(x) = e-x and using (31) for m = 0, we find 

that (p(O) = -a, = O(h), i.e. a, = 0. 
Consider now a scheme of .2(3, 2, 2) n --_ 2. We have ‘p = @)h + O(U) since 

y(O) = 0 (m = 1). To show that the relations aj = 0, j = I, 2, 3,4 are valid we give 
the following examples : 

(1) k(x) = 1, f(x) = x, q(x) = 0, ‘p(l) = r;!O’[s] 

(the inequality (31) gives (p(l) = O(h) i.e. Fl”)[s] = 0); 

(2) k(x) = 1, f(x) = 1 -x, q(x) = 1 -x, u(x) = 1, (p(l) = Dp’[s] = 0 ; 

(3) k(x) = 8, u(x) = eeX, ‘p(l)= -_a,-a,-a,+a,= 0; 
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(4) k(x) = e”, u(x)=e”, y(l)= --a,+a,+a,-ua,=o, a,=o, u,=a,+a,. 

therefore (p(l) can be rewritten in the form 

$1) = %($)‘. kuk&).f. u, 

if we use the equation ku”+ k’d= -f; 

(5) k(x) = e”, f(x) = - I, q(x) = o, ~$1) z - a4 = 0; 

k’ 
(6) (-) k ’ 

ku’= 1, $1) z a8 z 0. 

This proves the lemma. 
From Lemmas 3 and 4 we obtain the following: 

THEOREM 1. For the difference scheme L,, (‘Pg*/) of the class .P(n+l, n, n) for any 
coefSicients k(x) E C(“+l), q(x) E 6”’ f(x)~ bin) 
Section 1, Q 1) to have nth order accuracy it is 

order approximation (n = I, 2). 

(satisfying conditions (a) and (p), see 

necessary and suffcient that it has nth 

8 3. THE NECESSARY CONDITIONS FOR 
OF DISCONTINUOUS 

CONVERGENCE IN THE CLASS 
COEFFICIENTS . 

In this paragraph we establish the necessary conditions for the convergence of the 
difference scheme Li’*4’f) in the class of discontinuous coefficients. 

1. The approximation error in the neighbourhood of a point-of discontinuity of the 
coefficients. The error z: = yf - u(xJ of the solution d of the difference problem 
(II) relative to the solution u(x) of problem (I) is determined, as we have seen, from 
the conditions 

L;,k.Y’J) /I L __I h 7i P I? O<i<N, z; = 0, ZA I_. 0 N * (111) 

The right-hand side of the equation 9: = L,, (“Pq*J)ui -(L(k,qSf)u)i is the approximation 
error of the scheme Lik7q*/) over the solution u = u(x) of problem (I). 

If the coefficient k(x) of the equation has a first order discontinuity at some 
point x = E, then in the neighbourhood of this point the scheme Liklqvf) does not 
approximate to the differential operator LckP q* f, . 

The position of the point x = 5 on the difference net S,,{xO = 0, . . . , Xi = S/I, . . . , 

xN = Nh = l} is defined by the two numbers n and 0: 

< = x,+0h, 0<8<1, x,, = nh . (1) 

It is obvious that n and 8 are functions of the step h or the number N: 

n = n(h), 8 = B(h) . G9 

At the point x = 5 the solution u=u(x) of problem (I) satisfies the conjugacy 
conditions 

u([ - 0) = u(C+ 0) = u(E), k_ ul. = k, u; (k_ = kg-O), k, = k(<+O)). (3) 
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We shall consider the initial scheme L ik$“*‘) of the family of schemes _t?(2, 1, 1) 
of first order approximation with the coefficients 

Ai”’ k, = A* [k(Xi + S/I)], B$*l k, - B* [k(xi ~; sh)] , 

0:“’ ‘) = D* [q(Xi $ S/I)]. F1”’ ” _ Fh [f(xi + oh)] ) 

where Dh and Fh arc linear functionals. We now assume that IC(X)EQ(~), q(x)EQ’l’, 
f(x)~Q(l). Since the scheme is three-point 

. Tp” = U(h), ifn, if n-kl. (4) 

For the estimates of cpf: and q&r we expand U(X) in the neighbourhood of the point 
x= 5: 

In future we shall omit the index h in 
Using the conjugacy conditions (4), 

$Yn = $’ f otp’ + O(h), 

I$. u:’ -I-- O(P) (j=2, 1, 0, -1). 

$5;. 
when x = 5 we obtain 

911 t1 -- fJ" t-1 - f (“) + 6,$!1$- O(h), (5) 

-I 

We see from this that the terms rp. and T,,+~ are of the order of $, i. c. the differ- 

ence operator L, (k,q* f) does not approximate to the differential operator Lfk‘ y* I) at 

the points x = x,,, .V = x,,,, . 

If k(x) E Q’l’, q(x) E Q (O), f‘(x) E Q(O) then pi = p(h) for i # n. n+ 1, yn = (ri -t_ 
+ G$ -i_ p(h), ‘pn+r = ?;+I + 0,0+~ + p(h), where p(h) -+ 0 as h --t 0. 

2. Conservative schemes. Suppose now that L$,kTq*f) is a conservative scheme, 
i c that BihVk) = A$:). In this case formulae (6) take the form . . 
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+A; cp( l~S-8)~~;~--(L’~‘u)+--h(l-~) (LCk’rr);~ . (9) 

We shall need the sum 

w I 
pp’+Y$‘, L= -h- ki- Ah,+z 

i 
-+A; -t-A~(~-i-O.5)u”-t-Aj:,.,(l.5--B)u;’- 

i 

(L’%) -~(L’%),~$-O(h). (IO) 

If L,: is the initial scheme of 2nd order approximation, then 

A; = k~.-(0.5-t_8)hkL+O(h2), A;.k, = k.++(1.5--8)hki,-+ O(P) 

and therefore 

_IAii, 
I 

; 

k+ 
-$-A:, = h (1.5-R)kk_!~(O.5(-B).~~ -i_O(h’). 

/ 1 
As a result we obtain 

q$q&?, = (0*5--O) ((L(k)U)~,.-(L(k)U)_}~t O(h). (11) 

Now calculate the sum a:+ o:+~. For the sake of simplicity we shall make the 
calculations relating to the term containing ,f. 

We must distinguish between two cases: 
(a) if 6 -C 0.5. then 

F: 1-1 = f+ -t W) , Fj: = F::’ + O(h) , 

<tit + w”,+~ = F+-f + O(h), F$‘) = F’“’ [f(x,, + sh)] , 

(b) if 0 > 0.5, then 

Fiil = F% + W) > Fl: = f-+ O(h), 
4+4+1 = f%1f+-tO(~) * 

Tn the general case of a scheme L, (IrsqvJ) of second order approximation we obtain : 

?,a t-T”+1 = (0*5-f)) U (I, 4, %)+ - (L’k* 4, h).. ] _1- X” + O(h) = y> -+ O(h) , (12) 

where 

in = F~‘)--~“u(~)-(O.5-t8) (f--y...u(~))+(O~5--o)(f~f,--q+u(~)), 0 i 0.5 , 

& = F~~~,!,--~~lu(S)+(l,5-o> (&-q-U(E))-(1*5--O) (.j+&)), 0 ‘= 0.5 . 

We note that when S(X) = 0, .f(.x) = 0 

‘?n +rgn ,-l = O(h) * (13 

While in the general case 

‘pn-i-qn,_l -= O(1). (14) 

3. A basic lemma. Since the difference operator does not approximate to the 
differential operator in the neighbourhood of a point of discontinuity of the coeffi- 
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cients of the equation L (kf** I)ZA = 0 the question arises as to what necessary condi- 
tions a (P” and (P,,+~ must satisfy for the scheme L,, tkV 9’ f, to converge or have nth order 
accuracy (n = 1, 2) on any sequence of nets S, as h + 0 (or N + m). 

be 
The answer to this question will be obtained with the help of the basic lemma to 
proved in this section. 
Consider the difference operator 

defined on any sequence of nets Sh 

Let (X,%) be some neighbourhood 

-< I? < 1, where 

x = .~-,--~$-8h, ; = +-Oh, 

and 

of the particular point ~E(O, I), 0 < .Y < 4 

xi == ih . 

We shall be concerned with the operators &, whose coefficients satisfy the con- 
ditions 

O<M,<&&& 0<M,Cl$G14Mz, S<i<G, (3 

l?i” b,, e--bh<Ci=-;-<e 
A!+, ’ 

ii 4; i 4, ifn-i,n,n+l, 6, 

where MI, Mz and b are positive constants, independent of h. 

BASIC LEMMA. If the coefficients A-: and I$ of the operator i,, satisfy the con- 
ditions (2) and (p) and the function 6: converges uniformly to zero on the interval 
(X, 2) as h + 0 for all i # n, n fl : 

181 <p(h), (16) 

then /he necessary conditions that some sequence of solutions of the equation 

i,$ zzz -(p” (17) 

converge uniformly to zero as h+O on the interval (2, z) (1 zf j T p(h), ii < i < i) are 

hW+l = p(h), h2@l: = p(h), (4 

NE, 4 = h Gk,, 2 + kX+,) = p(h) . (W 

We introduce the functions 

Cpi”’ = sincPj:+ 8t, nfl(PL19 
y+ = $" - yp, 

11, i=j, 
where aij =lo, if j, and put the considered solution z! of equation (17) in the 

form of the sum 
Zi - ld + Zi 9 h _ Al) (2) 
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where z$‘) is a solution of the equation L,,zi’) = - cp$“) with some boundary condi- 
tions, such as z$? = 0, z!$?) = 0. 

As we showed in 0 2, the conditions (&) and ($) guarantee the existence and two- 
sided boundedness of Green’s difference function of the operator L,, . 

In proving the basic lemma we introduce Green’s difference functions Gf;) and 
Gij) of the conservative operator RiL;, for the first boundary problem on the seg- 
ments n < i < g and 5 < i < G respectively. 

The functions G@’ and G!T) are determined from the conditions 

j\(a) L G+, = _. & 
i h 0 

h 
(n -:I i <s : .j fixed, rt < ,j < g), 

i-l 

G,‘,“)==O when i=n and i-k, _,I!“’ = 2 ;,V; 

Ti 

$2) = c G$“$“‘#‘h ($1 r: -_“’ = 0). 

i=ii+l 

From this and that fact that G@) is bounded if follows that 

llz!2)ll~=P(~) (li+lll=maxI+iI)a 
;: 

ki<n 
(18) 

Thus on the segment ii d i < G instead of considering the solution of equation 
(17) we can consider the solution z$‘) of the equation 

Lh$) =; - Q11) .I * (19) 

By hypothesis Ij zf Ii1 = p(h). From this and (18) it follows that z~) = p(h) on (X, 5). 
It is required to prove that given this condition, conditions (a) and (b) must be 

satisfied. 
To prove the Lemma, we put the solution of equation (19) in terms of the Green’s 

functions G$’ and Gij . (b) Thus, for example, the solution on the interval n < i -=c ?I 

is expressed in terms of +:+I and the boundary values z!$, z!), tending to zero as 
h + 0. To obtain the necessary estimates (a) or (b) we use the lower estimates for 
Green’s difference function (see 9 2, Section 3). 

(1) We put the solution of (19) inside the interval n < i < i in the form 
= 
n-1 

41) _ $“__+ 3:” -I 5(l) = , y G@’ Ay’$ihh = G’~‘n,_, A$,$ (pi _+, h , (20) 
i-n-l I 
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Due to the fact that the difference rations of Green’s functions Gi;) is bounded 

for ,j--n and j=E---I we have 

~,?;‘)[I1 < M(~$)I S@LII~) I- p(/t), 

since 7!1) zz.z p(h). 

Usi& the lower estimate for G$) (set g 2, Section 3, (22)), we see that 

For definiteness choose i - i,, , such that .~,~--xiO > 0.5(2--Q; then 

From this and (21) it follows that 

/l? @n”, 1 = p(h) . (22) 

(2) To obtain condition (b) we put the solution of equation (19) inside the inter- 

val E < i <s in terms of Green’s function GfT): 

-!‘, ::: F(l) .I .=,!I, 
-1 -1 ‘I > 

where 

z(l) = Gtb) A?)+;. h -t_ Gs(b;+l A$$ r$& . h , C ‘r n . 

If’) is expressed by a formula similar to (21). I 
Remembering that 

A$!, = A?). ($//il: +,), 

we put Zi’) in the form 

Due to (22) the second term is the quantity g(h) 

We then choose i = in such that Xi --x,-P 0*5(:---Z), and obtain 0 

From (23) we have the estimate 

I$‘/ 
A(<, /I) -.r: - -my- +F(/I) == p(h) . 

g?’ (24) 

The condition h2+j: = p(h), clearly, is a consequence of conditions (22) and (24). 
This proves the lemma. 
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NOTE. The basic lemma remains valid if the function c#) = (~~--(8r,~$ + 

+s r,n+I’pt+J satisfies the convergence condition according to one of the norms 
we have used: 

n- 1 

l/‘pi(2)!/s == z hl(pj2’/ = p(h). 

i-n-t 1 

For, from the inequalities 

i/zj2)jll SMIly~!~‘j!d (n = 1, 2, 3), 

obtained in 4 2. Section 3. it follows that 

II zi2) II1 = P(h) - 

LEMMA 1. If the coefficients of the operator I$ satisfy the conditions (G) and (p), 
and the function qj2) = (pi(“) - ($,B~+ Gt,n+lCpt+l) on the interval (F, 5) is of the 

order of h” accordinp to some norm jl (p12) II0 (a = 1, 2, 3): 

jl vc2’ 110 = O(h”‘) I 9 

then the necessary conditions for some sequence af solutions of the equation (17) to have 

mth order smallness as h-+0 (I/,$ jil = O(h”)) on the interval (x, s), (m = 1, 2), are 

h2+l: = O(h’“), h2$+:+, = O(h”‘), (a,) 

A([, h) = O(hm) . (bm) 

4. The necessary condition for convergence af the initial scheme in the 
class of discontinuous coefficients. To examin the necessary conditions for 
convergence of the difference scheme L 2(1+/) from the initial family P(n, n2, n3) 

in the class of discontinuous coefficients, we consider the difference problem 
(IIT) for the error Zi = yi- u(x~). 

We first consider the first rank scheme Lj,“) satisfying (A.C.l). 
Let < = x,+ 8. h (0 < 0 < 1) be a point of discontinuity of the coefficient 

k(x) E Q(l). Since, when i# n, if n + 1 

Bi(h~k’= ki+ hkf B~‘[S] + hp(h) . 

A~h*k’=kt+hkf(l+A$o)[s])+hp(h), 
Bi(W 

we find that xi=- = 
A!$;’ I+ hp(h) when if n in some neighbourhood 

\I, 2) of the point c not containing other points of discontinuity of the function k(x). 
It follows from this and from the condition 0 < M1 <k(x) < M, that condi- 

tions (a) and (p) are satisfied and 

rs3 = (L~k’ui) -(L(‘)u)i = p(h) 

at the points i# n, if n + 1 in the interval (2 -I- h, z-h) . 

4 Polymer 1 
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Remembering the note at the end of Section 3, we see that the condition 

A = h(B~h,k)rp,h+tl+A~~,hC:)(P~) = p(h) (23’) 

is necessary for the convergence to zero of the solution of problem (III), i.e. for the 
convergence of the difference scheme ,!$’ and, therefore, of the scheme Lik+fJ 
of .C?(i, 0,O) in the class of discontinuous coefficients. 

The condition h”rpi = p(h) is satatisfied, since hqj: = O(1). 
Substituting the expressions (5) and (6) for cpi and (P:+~ in (23) we obtain the 

necessary condition for convergence of the scheme Lj,k’q*f) of the family .C(l, 0,O) 
in the form 

(24’) 

Now consider conservative schemes. 
THEOREM 1. Any conservative scheme Lik*+/) of zero rank satisfies the necessary 

convergence condition in the class k, q, f E Q(O). 
For, if the scheme is conservative, then BjhPk)= A:!$!), 

A:h*k’ = Ah[k(x, + sh)] = A(“)[k(x, + sh)] + p(h) = k, + p(h) = k_ + p(h) , 

B$h;;’ = Ai$$’ = k,,, + p(h) = k+ + p(h). 

Putting these expressions in the left-hand side of condition (24’) we shall 
have 

THEOREM 2. Any conservative scheme L$,k,qVJ) of first order approximation of 
the family l?(2, 1, 1) satisfies the necessary condition for first order accuracy in 
the class of discontinuous coefficients k(x) E Q(l), q(x) E Q(O), f(x) E Q(O). 

Thus the condition h’q, = O(h) or hrgn = O(1) is satisfied automatically. As 
for the second condition A = O(h), it is easily verified, since BLhrk) = A$$?‘, 
B$j“ = k+ + O(h), A, = k_ +0(h). F rom the conditions of the theorem it follows 
that ‘pi = O(h) when if n. if n+ 1. Therefore Lemma 1 (m = 1) can be used 
here. 

5. The necessary conditions for second order accuracy in the class qf discontinuous 
coefficients. We consider the difference boundary problem (III) for the function 
Zj = ,Vi - U(Xi) e 

For simplicity we assume that k, q, f have one point of discontinuity. Put 

‘pl (‘) = Ginvn + 8i,n+l(Pn+l, ~p$“’ = vi-_‘P$“. If k(x) E Qt3), q(x) E Q”‘, f(X) E Q(‘) 
and the scheme tP*q*f) belongs to the family ,2(3, 2, 2) and has second order 
approximation, then Ijq$2) ]I1 = 0(h2) and the conditions of Lemma 1 are satisfied. 

From Lemma 1 the necessary conditions for second order accuracy of the 
scheme Lik“J* f) in the class of discontinuous coefficients take the form 

‘9”= O(1) or vn+r= W), ias) 

A = 0(h2). (b,) 
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If the scheme is conservative, then condition (b2) is equivalent to condition 

(b;): ~P,+(p,+l = O(h). 

LEMMA 2. The necessary condition for second order accurac? 

%I+%I+1 = O(h) (25) 

in the class of discontinuous coefficients k(x) E Q(l) is satisfied by any conservative 
scheme Lik’ of second order approximation. 

This is a consequence of the formula 

~$,“‘+#p!l = (0.5 -0) {(L’k’u)+-(L’k’u)_~ +-O(h) = O(h), 

since (L(‘)u)+ = (LCk)u)_ = 0, u = u(x) being a solution of the equation Lck)u = 0. 
From this it follows that it is only necessary to verify the first of the necessary 

conditions (P” = O(1) for a conservative scheme of second order. 

6. Sufficient conditions for convergence. In Section 5 we established the necessary 
conditions for the convergence of the initial scheme Lj,ks4,‘) in some class of discon- 
tinuous coefficients (k(x) E Q(l), q(x) E Q((” f(x) E Q(O)). 

We shall show that this condition is also a sufficient condition for convergence. 

THEOREM 3. The necessary and sufficient condition for the difference scheme 

LikV4*f) of first order approximation from the class .I? (2, 1, I) to converge for any 

coefficients k(x) E Q(l), q(x) E Q(O), f(x) E Q(O) is that at each point cj = xnj + 
+ejh(j= I, 2, . . . , j,) of discontinuity of the functions k, q and f the condition 

is satisfied, where (Pi = Lik’ qF f’ui-(L’k,‘, %), . 

Proof. The necessity .of the condition Aj = p(h) has already been proved. To 
prove that it is also sufficient we use the formula 

il zi l/l = II.Vi-"iII1 G MII 'Pill (u (w = 1, 2, 3). 

where A4 is a constant, independent of 11. 
We put pi and Zi in the form of the sums 

‘pi = cpi” + fp, 
Cpi” =Jf ($,“j(P”j+~i.“j+l(Pnj+3 9 

zi = p+p 
, 

j=l 

where ,r$“‘) is a solution of problem (III) with the right-hand side equal to 
rpj’“) (m = 1, 2). At the points i# nj , i# nj + 1 (j = 1, 2, . . ., jo), (~1~’ = ph, using 
the inequality 

II d2) Ill < $; II q4”’ II* , 

we obtain II zi2) [II = emiax_ / z!‘) 1 = p(h). 

4’ 
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For an estimate of zi(l) we use the inequality 

s-1 

where A, = fl (B~/Ah,+l) and M is a constant independent of h. 
m=l 

For definiteness we shall take nj < nj+r . 

Putting the expression for cp$‘) in (27) we obtain 

II z? 111 C MC [Anj(i)njh2+W,xjrqnj i-A,,+,cp,,+Jl . 
j=l 

Putting Ani+, = A,j(B,,j+J in the first term we find 

I 

I 

. 

(27) 

(28) 

The first term is of the first order of smallness, since hq,, = O(1). The second 

term converges to zero as h + 0, since, by hypothesis, A, = p(h) and the numberj, 
is finite. Thus 

lIzill QIlz~‘)~~l+llz?/ll = P(lt)- 

THEOREM 4. IfLikpq*f) is a dyference scheme of the type _!?(m+l, m, m) of mth 
order approximation (m = 1,2), then the necessary and sufficient condition for it 
to have mth order accuracy in the class k(x) E Q(“‘+‘), q, f E Q(“) is that in the neigh- 

bourhood of each point of discontinuity Ej = x,,~ +0jh (j = I, 2, . . . , jO) of the functions 
k, q, f the condifions 

h2y;, = O(h”‘), hg’p:j+l = O(h”), (4 

A([j, h) = O(h”) (j= 1, 2, . . . ,,j,). (bm) 
hold. 

The sufficiency of conditions (a,) and (b,) is proved by the relations (pj2’ 
= O(h’“) jl~i(~)/I~ = O(h”) 
Lemma ;. 

9 and the inequality (28). The necessity follows from 

5 4. COEFFICIENT-STABLE DIFFERENCE SCHEMES 

When solving the differential equation L wq*f) by the method of finite differences 
we sometimes find that the information we have about the coefficients of the equation, 
k, q, f, is insufficiently complete. This can happen, for example, when coefficients 
are determined approximately using some computing algorithm. 

For this reason, even when the coefficients of the difference scheme Lj,k*q’f) 

are calculated exactly, some error may occur. On the other hand, it can happen 
that the functionals Ah, Bh, Oh, Fh are themselves approximate, and this too leads 
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to an error in the coefficients of the scheme. It is therefore clear how important 
it is to consider schemes with disturbed coefficients. 

We introduce below the norm of the disturbance of the scheme coefficients 
and with its help we give a definition of a coefficient-stable, or co-stable, difference 
scheme. 

The principal result of this paragraph is the theorem which states that the nec- 
essary and sufficient condition for the co-stability of a canonical scheme of type 
.@I, 0,O) is that it shall be conservative (Theorem 3). 

I. The dependence of the solution ?f a differential equation on its coefficients. 
Consider the boundary problem 

L’k 4. /)U = 0, 0 < .Y < 1. u(0) = 221 ) u(l) = Q, (1) 

and compare its solution u(x) with the solution 2;.(x) of the disturbed problem 

,$ix = 0, 
II O<x<l, ii(O)=zi,, iz(1) = c,. (2) 

We shall assume that the coefficients of problems (1) and (2) satisfy the conditions 

0 CM, <k(x) <IV,, 0 < q(x) < M3, I.f(x)l c M4 * Cd 

LEMMA 1. If the coefficients of equations (1) and (2) are piece-wise continuous 
and satisfy conditions (u), then 

/ u(x) - t;(x) 1 5:; C, ;; j k(x) --k(x) 1 dx + “,I 1 q(x) - (T(x) / d.x + C3 i ] f (x) -f(x)\ dx, 
b 

(3) 

where C,, C,, C, are positive constants depending only on Mj (j = 1, 2, 3, 4), r& 

For. the difference z = u--ii is found from 

L,%4JZ =-v, i(0) = 0, -1(l) = 0, 

where 
‘p _ L’k,q.J)~--L 6 II, Ai = [(k - j$qt - (q - (i)C + (f-f) . 

We put the solution of (4) in the form 

=(.v) =i/G(.v, F)cP(D& - -;; [k(E)-&] $(x, W’(OdE-- 

--)G(x, 4)[q(E)- i(OlWdE+ ;W. 4~[f(F)-fiW~, 
0 iJ 

where G(x, 5) is Green’s function for problem (1). 

(4) 

(5) 

(6) 

Using the estimates for Green’s function and the solutions of problem (1) found 
by analogy with the estimates found in $2: 

0 S G(x, E) s h Y 
MI.+& 

M; ’ 
iui < M5, 

1 
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where 

we obtain inequality (3) from (6). 
The inequality (3) expresses the stability of the solution of problem (1) with 

respect to a change in the coefficients of the equation. 

2. Theprinciple of co-stability of difference schemes. Turning to difference schemes, 
it is natural to demand that they also shall possess the property of stability with 
respect to a disturbance of their coefficients, whatever its nature. 

Together with the initial scheme Lik+/) we consider the “disturbed” scheme 
_ 1-1 
Lik14*f) whose coefficients if, &“, $, $’ are obtained from the coefficients 
Al, BF, Df, I;!, after an arbitrary disturbance. In the general case this disturbance 
can be caused by a distortion of the coefficients of the differential equation L(kP’%=O, 
by a distortion of the functionals A”[$], Bh[$], Dh[$] and Fh[$] and by errors arising 
in the calculation of the scheme coefficients at points of the net. 

As well as problem (11) we shall consider the problem 
- ---- ,$k.qJ)Yi = 0, O<i<N, _O=dl, y,=C,. 61) 

For an estimate of the magnitude of the distortion in the coefficients we intro- 
duce some norm, such as 

!j #i ;j3 = FJ IJlil h . 
i-1 

For an estimate of the solution we first use the norm 

/I Zi ill = max // Zi /I . 
O<iiN 

We shall say that the scheme L$k9qYfJ is coefficient-stable, or co-stable, if, when 
_I_ S 

the coefficients of any form of the disturbed scheme Lik*q9f) converge as h-+ 0 to the 
coefficients of the scheme Liksq*f) according to the norm (7), the solution of problem 

(5) converges uniformly to the solution of problem (I) with the condition that the 
coefficients k(x), q(x) and f(x) belong to some class Q(“) (m > 0). 

In other words, the scheme Lik’4* 1) is co-stable if the conditions 

II d--A; 113 = p(h), I@‘-@ 113 = p(h), II ti--tilla = p(h), 
(9 

mean that 

II @--Fi’llz = p(h) 

II 2i II1 E IIVi-“(xi) Ill = PCh) . 

We see from the definition that the co-stability 

(10) 

of a scheme reduces to 
two requirements: (1) the convergence of the scheme (ll~-U(Xi)1I1 = p(h) in 
Qcm) (m > 0)) ; (2) the stability of the solution of the difference boundary prob- 
lem (II) with respect to a disturbance of the coefficients of the scheme 

(ll.fi-~il/~ = p(h)): 
llYi-“(xi~lll c II~i~YiII~+IIYi~~u(x~~I/~~ (11) 
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In order to study the structure of co-stable difference schemes belonging to the 
initial family we specify the type of disturbance of the coefficients of the difference 
equation, assuming that it is caused by a disturbance of the coefficients of the differ- 
ential equation. Let A&, h), 4(x, h) and fix, h) be the disturbed coefficients of the 
differential equation, depending on the step h of the difference net S,,. The corre- 

sponding coefficients of the equation zE~‘*‘*“~i = 0 are equal to 

A~ = Ah[~(Xi + sh, h)] , ~~ = B”[k”(Xi + sh, h)] , 

Of = .Dh [i(Xi + sh, h)] , .F’f = F” [,f(Xi f sh, h)] e 

In particular, in Section 4, we shall consider disturbances of the coefficients k, 
‘y and f on one interval of the net in the neighbourhood of a point of discontinuity 
of these functions. 

3. The co-stability of a conservative scheme. We show that conservative schemes 
are co-stable. 

Consider first the solutions J.$ and 9: of the two difference boundary problems: 

L,,y: = -,+ A(A: Vy;) - D;$ = -F:, 0 < i r N, A = 3,, yi = ~7~ , (12) 

Lhs = -+&j;, - @j$’ = - F,!‘, O<i<N, jt=iil, j$!,=ti,. (13) 

where Lh and ih are conservative difference operators. 

LEMMA 2. If the coefficients of the conservative dif,ference equations (12) and (13) 

satisfy the conditions (a), then the inequality 

ll~1-~111~C~IIA:-A~I/,+C,I/~:--oTllz+C3l/~:-F1llz (14) 

holds, where C,, C, and C, are positive constants depending only on the constants 
Mj (j = 1, 2, 3, 4). 

To prove this lemma it is sufficient to form an equation for the difference zf 
= j$ -s’, then to put zf in terms of Green’s difference function for problem (13), 
and, applying Green’s first difference formula, to use the estimates of $2 for Green’s 
function and its difference ratios. 

We return now to the question of the co-stability of the conservative scheme 
Lj,k9qv/). We must compare the solutions of the problems (11) and (fi) with the 
condition that 

il&A;ll,=p(h), I@-D”/j3=p(h), IIr”il-F:jj3=p(h). (15) 

Lemma 2 is applicable to a conservative scheme of any rank. Therefore we have 

IlZ -Y! 111 = p(h). (1’3) 

From this and inequality (14) it follows that the proof of the co-stability of a conser- 
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vative scheme reduces entirely to the proof of the convergence of this scheme in the 
class of discontinuous coefficients, since 

From the theorem of 8’ 3, Section 6, it follows that the conservative scheme 
Lf,kSqSf) of the class _/2(1,0,0) is convergent if 

k(x) E Q(l), &z) E Q(O), f(x) E Q((‘). 

This proves 

THEOREM I. The conservative dffirence scheme Lik*‘+f) of the first rank is co- 

stable if k(x) E Q(l), q, f~ Q(O). 

In 9 5 we shall prove a theorem concerning the co-stability of a conservative 
scheme of zero rank in the class Q(O) (k, q, f~ Q(O)). 

Can we make the reverse assertion, i.e. is every co-stable scheme conservative? 
An affirmative answer to this question will be given in Section 5. 

4. A necessary condition jtir co-stability. In order to be able to make practical 
use of the co-stability requirement for a scheme, we find a specific necessary condi- 
tion for co-stability similar to the necessary condition for convergence of Q 3, Sec- 
tion 3. 

Let Lik9 cl* f) be some co-stable scheme of the type .1-‘( I, 0, 0). Since we are discussing 
a necessary condition, we can discuss the simplest case of a scheme Lik’ of the first 
rank, putting q(x) z 0 and f(x) G 0. 

Let k(x) be some function of Q(‘“)(m > I) having a discontinuity at the irrational 
point [=x,+O.h,x;,=n.h,O<O<l. WC introduce the function k(x, h) 
which coincides with k(x) everywhere except on the interval (x”, x,,+i). Then the 

coefficients >f = Ajh,z) and i!’ = Bth,o will coincide with A! = Athpk) and B! 
= Bihpk) everywhere except for i’= n and i = n + 1 . 

Since the scheme Lik’ is co-stable, by hypothesis, (i.e. i/j”- u!! = p(h)) and is 
of first rank, we can apply the basic lemma of 0 3. Using the expressions for 4. and 

(Pn_+r for the scheme L, (9 which were given in Section 1 of 9 3 we obtain the condition 

jhljh 
” n+1 

jhA” 
” n-f-1 _-= 

k.,. k__ 
PV& (17) 

which is thus the necessary condition for co-stability. 

For the sake of simplicity we shall suppose that k(x) is a piece-wise constant 
function (k(x) = k_ for x < 5 and k(x) = k, for x > E). 

For the function Ik(x, h) we introduce the arbitrary piece-wise continuous positive 
function p*(s), 0 S s < 1 and also the function 

k-, s<O, 

p(s) = p*(s), 0 <s c 1, 

I k +, s>l 
(18) 
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and put 

Since the coefficient /&.x , h) must satisfy the lower bound condition (L(X) u) 

> Ml > 0) the function p(s) must also be subject to this condition. 
We shall call functions of the same structure as p(s) functibns of type p. 
Putting (19) in condition (17), we obtain the necessary condition for co-stability 

where A&L] and B[p] are the canonical parts of the functionals A”[p] and Bh[p] 
(we have omitted the index (0) from the functionals ,4(O) and B(O)). 

We now require that condition (20) shall be satisfied for the function p(s) + 8. y(s) 

(of type p), where 6 is an arbitrary non-negative parameter, 

/ 

k- . s .< 0 , 

y(s)= (p*(s), 0 <s <I, 

0, s>l, 
(21) 

where cp*(s) is an arbitrary piece-wise continuous non-negative function. Then we 
shall have 

AM4 +~.ywlAMl +s) +fi.u(l +$)I 
k.T( 1Ct 6) 

o 

(22) 

Then using the expansions 

A[P+~*?l = A[tLl$_~.4[IL., yl-tF.p@), 
QSS.‘31 = %I -t~.4[p, VI $_S.p(@ 3 

we obtain from (22), because of the fact that W is arbitrary, 

where $[f, ‘p] = w, a[f, cp] = “yiT1 are the logarithmic derivatives of 

the functionals B[f] and _4[fl. 
Similarly we find 
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I 0, s <-- 1, 

3(s)- q*(s), -1 <s<o, 

I k,, s>O, 

and G*(s) is an arbitrary non-negative piece-wise continuous function. 
The identities (23) and (24) are also the necessary conditions for the co-stability 

of the scheme Lp) and are used in Section 5. 

5. The conservativeness of a co-stable canonical scheme. We now require the 
canonical scheme Lik) of the first rank to satisfy the necessary condition for co-sta- 
bility and, therefore, relations (23) and (24). 

LEMMA 3. If condition (23) is satisfied, then 

P [EL(s) > 4s)l = 0 9 (25) 

where w(s) is an arbitrary non-negative piece-wise continuous function 

o(s)+o, -1 <s CO, w(s) ~0 when s > 0. 

We take the step function 

(3&) = ( ,“-;;;O? (26) 
. I * 

Since ~“(1 +s) = 0, -1 <s < 1 we find 

a[u(l+s), oo(l+s)l = $[p(l+s), ~o(~-t~)l = 0. 
When q(s) = w,,(s) condition (23) becomes 

I+ P k-4) , 441 = a WI y w&)1 - (27) 

The pattern functionals ,4[f] and B[f] of the scheme Lj,‘) of any rank are 
normalized and non-increasing functionals. It follows that .the functionals a[j’, ‘p] 
and /3[f, ‘p] are positive with respect to ‘p and 

Bv; fl= 19 0 d$[f, cpl< 1, 0 <a[f, cpl < 1 for O<y<,‘f, O<E<,~ 

(see Lemmas 1, 3, 4 of Section 3, 9 I), and in particular 

P MS) 7 %(41 a 0 > 0 i “[P(S), o,(s)] < I . 

Therefore (27) is only valid when 

IS MS) 7 %(dl = 0 3 (28) 

449, ~&)I = 1 - (29) 

Without loss of generality we can take w(s) <or,(s). Since the functional 
PV;, fi] is non-negative with respect to its second argument we have 

0 G P MS) 3 441 G P W) 9 %(S)l = 0 9 

and, therefore /~[P(s), w(s)] = 0. 
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We prove similarly: 
LEMMA 3;. If condition (24) is satisfied, then 

59 

x b(s) 3 x(s)1 = 0 3 (30) 

where x(s) S@ 0 only on the interval 0 < s < 1, and elsewhere is an arbitrary piece- 
wise continuous non-negative function. 

LEMMA 4. If B[f(s)] is a canonical functional of the first rank, defined for 

f(s)EQ(O)]--1, l] and its first differential B, V; ~1 = B[f, cp].B[f] satisfies condition, 

(29, thelt B[f(s)l d oes not depend on f (s) for - 1 < s < 0. 

We first prove the lemma for functions of type p. Let pa(s) and pi(s) = pa(s)+ 
-too(s) be two functions of type lo which coincide for s > 0 and differ when s < 0. 

We introduce the function ~~(3) = l~,(s)+Ao,(s) where A is an arbitrary number 
on the segment [O,l]. If we assume that B[l~.~(s)]# B[y,(s)] then we can find 

a number A = h such that $! B [pi(s)] /).;A = B, [ TV_ (s), we(s)] # 0, and therefore, 

B[l_q(s), w,(s)]# 0 which contradicts condition (25) of the lemma. 
We can put any function f(s)EQ(O)[-1, I] (bounded below by the constant 

11, > 0) in the form 

.f’w = PCS) -t 4s) 9 (31) 

where [k(s) is an arbitrary function of the form (18), and o(s) is an arbitrary piece-wise 
continuous function different from zero only when s < 0. 

The lemma will be proved if we show that 

B [f(s)1 = B WI ’ (32) 

Let C&)(S) and C@(S) be step functions of the form (26) which are the lower and 
upper bounds of w(s): 

0 < @(s) < w(s) G 6@)(s) . 

Then 

f1(s) <f(s) Gfz(s) 3 (33) 

where fi(s) = p(s)+ o&‘)(s), fz(s) = P(S) + w$,‘)( s are functions of type lo for which ) 
the lemma has been proved, so that 

Nfi(s)l = NY(S)1 3 j = 0, 1 . 

Since BLf] is a non-decreasing functional, and from (33), we have (32). 
We prove similarly: 

LEMMA 4*. Zf Au(s)] is a canonical functional of the first rank defined for f(s) 
ccQ(O) [- 1, I] and satisfying condition (30) then it does not depend on the values of f(s) 
for s > 0. 

Let us return now to condition (23). 
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Since cp(l +s) = 0 for s > 0 (q(s) is any function of the form (21)), by using 
Lemma 4 we obtain 

P[tL(l +s>, ?(l +.a = 0 * 

It follows from Lemma 4* that 

K[~L(s), cp(.r)] = a[k_, k~ ] = 1, 

since p(s) = cp(s) = k_ when s < 0, 
As a result formula (23) takes the form 

PMs>~ CpMl = 441 +s>, ~(1 +s)l, 

where p(s) and cp(s) are arbitrary functions of type (18) and (21). 
We show that (34) is equivalent to the inequality 

m-w = A w + 41. 

To do this we form the functional 

(34) 

(35) 

which is equal to zero from Lemmas 4 and 4* for p*(s) = pi(s) = k? = const, 
and prove that it is equal to zero for any function p(s). Suppose that for some 

function pi(s) = P&)+(P(s! (V(S) is a function of the form (21)) H[pI(s)] 
- H[~I(.r)]-H[~o(s)] # 0. Then there exists a value A = h for which 

where 

p,(s) = &r) -I- Arg(s) , 0 \ A G 1 , u(s) = k_ -k(o) # 0 for s < 0. 

This contradicts condition (34) and so means that H[p] = 0 for any function 
of type p. 

Now using Lemmas 4 and 4” and the expression (31) we conclude that 

Nf(41 = Ml + 41, 

where f(s) is any piece-wise continuous positive function given on the segment 
-1 <‘s<l. 

This proves : 

THEOREM 2. If the difference scheme Lik) of the first rank satisfies the necessary 

condition for co-stability, it is conservative. 

For, condition (36) means that 

B[k(Xi+sh)] = A[k(xi+ (1.+s)h)] = A[k(si+l tsh)], i.e. Bi =z Ai+, . 

Theorems 1 and 2 lead to: 

THEOREM 3. The necessary and sufficient condition for the co-stability of the 

canonical scheme L$k’gpf) of the family !?(I, 0, 0) is that it shall be conservative. 
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$ 5. CONVERGENCE AND ACCURACY 

Having explained in 0 4 that only schemes with a conservative canonical part 
are co-stable, in 5 5 we shall only consider conservative schemes. 

In this paragraph we discuss questions of the convergence and accuracy of the 
conservative schemes LikS Q3 f, in the classes Q(“‘) of discontinuous coefficients 

k, 9, f of the differential equation. 
We make use of the estimate 

I/2”j/l<MIl~hll?, 

obtained in $ 2, Section 3 (formula (30)) for the solution zf of problem (111) with 
right-hand side 0:. The norm 

proves to be a very effective means of proving not only theorems concerning the 
convergence and accuracy for discontinuous coefficients, but also of proving Theo- 
rem 3 concerning accuracy in the class C M) of smooth coefficients, since by using 

this norm we can reduce the requirements both on the rank n of the scheme, and 
on the order m of the class of coefficients as compared with the corresponding theo- 
rem proved with the use of the inequality 

II zh Ill G &If II Yh Ill, IIYhlll =o~.ap:l 

(see Q 2, Section 3, formula (29)). 

1. The convergence of conservative schemes in the class of discontinuous cocf- 

ficients. 

THEOREM 1. Any conservative scheme LikP9*‘) of zero rank converges in the class 

of piece-wise continuous coefficients k, 9, f E Q(O). 
For the sake of simplicity we give the proof for the case when there is only one 

point of discontinuity of the coefficients k(x), 9(x) and f(x), namely E = xn+ 
+8h (x, = Oh, 0 < 0 < 1). As usual, introducing the difference z: = 4’: - u(xi) 
we obtain for it the difference boundary problem 

where 

@9)$ = -& O<i<N. zlf=O, zj;=O, (111) 

We put the right-hand side up” in the form of the sum 

cp; = cp!“f@f #2’ 1 3 

where 

(1) 

(2) 



62 A. N. TIKHONOV AND A. A. SAMARSKII 

cpi” = - (lpp 4) - 41) ui+ (F, p’f) _f{), i# 4 i#n+l, (3) 

c$) +(A I"' “VUi) - (k#‘);, i # n, i f Tl + 1 , (4) 

fp = &,'I' = 0, i = n, i=n+l. 

If i# n, i # n+l then 

Gh”) = F*[f(%+w = F’“‘M+p(~)l+P@) =fi+pv$ 

and, similarly, 
Dihsq) = 4i-f p(h). 

so that 

II#11l = P(h). 

(9 

(5') 

(6) 

In Section 1 of Q 1 we remarked that if k, q, f~ Q(O) then the derivatives u’, (ku’)’ 
of the solution U(X) of problem (I) are also piece-wise continuous. Therefore, for 
if n and i# n+ 1 we can write 

and, therefore 

(kU’)i-l/, = (kU’)j - t (kU’)f + hp(h) 3 

(kU’)! = (WWi, -(Wi+, + p(Jr) ~---- 
h 

Since the derivative U’(X) is continuous for x # E, 

J$ = z&l,, fp(h), if i#n+l. 

As a result we can put the expression for Cpi’) in the form 

@’ = !L~+p(~), 

where 

(8) 

(Co 

(9) 

Ri = (Alh~k’-ki-l,,)u;_fi, +p(h) . (10) 

Since Lik) is a scheme of zero rank, 

Ajh*k) = k,+p(/z) = k,_l,,+p(h), i#n+l. 

From this and form (10) we conclude that 

Q ‘= p(h) for all i # n + 1 . (11) 

To find the bounds of the solution of problem (III) we make use of the inequality 
obtained in 0 2, Section 3: 

II zh III < M, II ‘p” /I2 . (12) 
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Since the coefficients k and q satisfy the conditions 

0 <Ml <k(x) GM,, 0 <q(x) <M3, (4 

these conditions are also satisfied by Aih* Ir) and Dth*@. Then &, = ii?,(M,, MS) 

is a constant depending only on M, and M% 

Putting up: = $$‘)+ F(l) +r#) in (12) we obtain 

l19hll~ c ~6~11~“‘112+11 ~“‘Il2+IIP!/2~ - 

Since II ‘ph I/? > /I 3’ J, we have, from condition (6) 

II,(l) /I2 :- p(h) . (13) 

Further, we have 

n-1 N-1 

Wih =~hlQ+1-41+ 1 h/(R,~,,-SZ,)+(R,-R,,)I+ 

i-l i=-N+2 

+2hjL2,--0r\ <4 max I!&I+P(h). (14) 
Il<i<N(i#n4-1) 

Now using estimate (11) we have 

IIU”’ II2 = P(h) . (15) 

We calculate the norm of function q(2) defined by formula (2): 

N--l 

II P :;2 = wf4+QPpl:+&/ 2 h ~h21%I+hfJ”+(P”+ll. (16) 
i;=n (-2 

The necessary condition for convergence ‘p.+‘pn+l = p(h) is satisfied by our 
scheme, and hrgn = O(1); therefore 

!I Ip(*) II2 = P(h) * (16’) 

Collecting estimates (13), (15), and (16’) we obtain 

II 2 Ill = PM * (17) 

2. The accuracy of a conservative scheme. 

THEOREM 2. The conservative scheme Lik*lg*f’ of the first rank has first order 

accuracy in the class of piece-wise continuous and piece-wise smooth functions 

k, q, f eQ(‘). 
To prove this theorem we need only repeat the proof of the Theorem 1, replacing 

p(h) everywhere by O(h). 
THEOREM 3. The conservative scheme LLk* q* f, of second rank, satisfying the con- 

ditions (A.C.2) of second order approximation, has second order accuracy in the class 

C(2) of coefficients k q f 
However, such a icheme has, generally speaking, first order accuracy in Qtm’ 

(for any m > 1). 
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If k(x)~C(~) then 

Afh’ Ir) = ki-‘/,+hk,‘-1,,(A~o’[s]+0’5) + 0(/Z’) = ki_l/,+ O(h)‘L, (18) 

since A$‘)[s] = -0.5 (the condition for second order approximation of the 

scheme Lik)) . 
Since the derivatives u”’ and k” exist, 

(kU’)i+l!,_(kU’)l-I:, 
(ku’); = __ _+ O(k;) 

h 

AuJA= u;.~‘,~ + O(h?) . 

Put ~JJ: = #)+(pj2), where 

/+$I’ = -(O1”,q’-qi)Ui+(~~h.S)-fi), 

cpf2’ = A(A!z;:‘v!!d _ (/&‘); = .!;i _, o(h2) , 

n. --_ (Alh,k) - ki-l/,)ut_l~? + O(h2). 1 

Using condition (18) we obtain at once 

IRi = O(h2). 

From the conditions of the theorem it also follows that 

Dlh,” = qi+ O(h2), F~h’Z’ = fi+ O(h2), y$” = O(P) . 

Returning now to formula (12), for the solution of problem (III) we have 

II zh 111 G MI (P(l) II2 + llT(2) IIJ 7 
where Ij (p(l) 11% = 0(h2) from condition (21). 

Using formula (19) 
N 

(19) 

(20) 

(21) 

l[~,(.2)112 = Ch/ni-n,I+O(h"), 
i-l 

and with estimate (20) we obtain 

Ii P II2 = W”) 9 
i.e. I/ zhjjl = 0(h2) which we were required to prove. 

COROLLARY. The conservative symmetric scheme L$k’41*) oj. second rank has 

second order accuracy in Ct2f. 
For such a scheme satisfies (A.C.2) i.e. all the conditions of Theorem 3. 
NOTE. In Theorems 2 and 3 we can relax the requirement that the coefficients 

shall be differentiable. Theorem 3 remains true if k, q, fed’*‘) where C(l*l) is the 
class of functions whose first derivative satisfied the Lipschitz condition on the 
segment [0, 11. Theorem 3 remains true if k, q,fE C(l$l) where C(l*l) is the class of 
piece-wise continuous functions on the segment [0, 11, satisfying the Lipschitz 
condition in the intervals where they are continuous, 

A similar remark applies to Theorem 4. 
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THEOREM 4. For a conservative scheme of second rank satisfying the conditions 

for second order approximation to have second order accuracy in the class Q(“) (m > 2) 
it is necessary and sufficient that it satisfies the conditions 

‘9ij = O(1). W 

in the neighhourhood of the points qf discontiruity of the coefficients k(x), q(x) and 
f(x), the points ~j=X,j+8jh (xnj.h, 0 ~ej <l, j= 1,2, . . . . j,). 

We note that the difference between this theorem and the similar theorem of 9 3 
lies in the relaxation of the rank requirements for the scheme and of the order m 
of the class Q(“) of coefficients. The proof of necessity in this case too presents no 
difficulty. As usual we take the case of one discontinuity. 

Dividing problem (III) into three problems, according to formulae (l)-(4) we 
see, by analogy with Section 1, that 

I/ (p(l) 111 = 0(h2) . 

@’ = _ep + 0(/g), Q = (/p -ki_‘!,)Ul_‘,‘,+ O(h2) 

6 f n, i#fi+l), 
;p = 0 for i=n, n+l. 

Since Lik) is a scheme of second rank, satisfying (A.C.2), we have Ai*, k, 
= ki_l/,+ O(h’) for i# nf 1. 

it follows that 

Now using 

ni=O(h’) for i#n+l. 

/I Cp(l) 112 < 4 iiiZ 1 fii j + O(h’) , 
O<i<N,i#ntl 

by analogy with inequality (14), we have 11 $(l)/jz = O(P). 

If Zi(‘) and ;I’) are solutions of the problem (III) with right-hand sides @;‘J and 
Gil) respectively, then formula (12) and the estimates for I/ (p(l) II2 and I/ G(1) II2 give 

jl t”’ 11, = 0(h2), 11; ‘l) 11, - O(h?) . cm 

Returning to the problem (III) for z,!~) = Zi - <j’)+$‘)) with the right-hand 

side (~1~’ = si,Yi+ si,n+lYk+l and using the results of $ 3? Section 3, we see that 
the conditions (a%) and (b,) are necessary for jj .zt2) /II to be equal to O(h2). From the 
inequalities 

11 ,(Z) jll < M, /I $2) jj d $2 1 
and 

/l~~2~//~~~21~nI+~l~n+~n+~i (23) 

we see that the conditions (a& and (b,) are also sufficient for second order 

5 Polymer I 
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smallness of the function zt2) and (from (22)) the function z. This proves 
Theorem 4. 

If there is a finite number of discontinuities at the points Ej = x,,~ +f3,. h 

(i= 1,2, . . . . j,,) instead of just one, then 
j0 

r#’ = J$,’ , 
j=l 

where cp!y = hjdj + h, nj+l dj+l, and instead of (16) and (23) we obtain the 
estimate 

since 

Translated by R. FEINSTEIN 
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